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Abstract

Program verification using Hoare-style techniques reguirany

logical annotations. We have previously developed a gememo-

tation inference algorithm that weaves in all annotaticeguired

to certify safety properties for automatically generatede It us-

es patterns to capture generator- and property-specifie ichoms

and property-specific meta-program fragments to consthecain-

notations. The algorithm is customized by specifying theecpat-

terns and integrating them with the meta-program fragmésnts
annotation construction. However, this is difficult sinteévolves

tedious and error-prone low-level term manipulations.
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1. Introduction

The verification of program safety and correctness usingrétoa
style techniques requires many logical annotations (jpaity
loop invariants, but also pre- and post-conditions) thastrhe
woven into the program. These annotations constitute erotsg
concerns, which makes their construction difficult and ewee.

For example, proving even a single array access safe may need

annotations throughout the entire program to ensure thahel

information about the array and the indexing expression itha

required for the proof is available at the access location.
However, in certain cases it is possible to construct thaired

Here, we describe an approach that automates this customiza annotations automatically, e.g., if the program comes fedimit-

tion task using generative techniques. It uses a saraibtation
schema compilethat takes a collection of high-level declarative

annotation schematailored towards a specific code generator and

safety property, and generates all customized analysgifins and
glue code required for interfacing with the generic alduoritcore,
thus effectively creating a customized annotation infeesalgo-
rithm. The compiler raises the level of abstraction and $iinep

schema development and maintenance. It also takes carenef so

more routine aspects of formulating patterns and schemasar
ticular handling of irrelevant program fragments and exeint vari-
ance in the program structure, which reduces the size, @iyl
and number of different patterns and annotation schemasreeh
The improvements described here make it easier and fasteisto
tomize the system to a new safety property or a new genegatdr,
we demonstrate this by customizing it to certify frame safeft
space flight navigation code that was automatically geadribom
Simulink models by MathWorks’ Real-Time Workshop.

Categories and Subject Descriptors  D.2.4 [Software Engineer-
ing]: Program Verification; 1.2.2 Artificial Intelligencd: Auto-
matic Programming; |.2.3Afrtificial Intelligencq: Deduction and
Theorem Proving

General Terms Algorithms, Verification

Keywords automated code generation, program verification, soft-

ware certification, Hoare logic, logical annotations, auated the-
orem proving
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ed domain [16] or if only limited properties are shown [14].dur
previous work [10], we have developed a genamnotation infer-
ence algorithnthat exploits the idiomatic structure of automatical-
ly generated code to weave in the annotations required féy\ser
given safety property. Idioms are recurring code pattenas $olve
similar programming tasks using similar constructionsaltomat-
ically generated code, they result from the way generatsusily
derive code, i.e., by combining a finite number of buildingdis
(e.g., templates) following a finite number of combinatioeth:
ods (e.g., template expansion). For example, Figure 1 skiuwe
matrix initialization idioms employed by Real-Time Worksgh the
code in Figure 1(c) uses a vector to represent the matrix.

A 0,0]:=ao,0; fori:=0tondo fori:=0ton -1do
forj:=0tomdo forj:=0tomdo
A0, m]: = ao,m; Ali,jl:=q& Ali*n+j]:= a;
A[l,O]:=a1,0;

'A.['n, m] = an,m;

@ (b) ()

Figure 1. Idiomatic matrix initializations in Real-Time Workshop

Our inference algorithm uses generator- and propertyipec
patterns to capture these code idioms and property-specédta-
program fragments associated with these patterns to congtre
annotations. It first builds an abstracted control-flow grépFG),
using the patterns to collapse the code idioms into singtiesio
It then traverses this graph and follows all paths from usdes
backwards to all corresponding definitions, adding the tatians
along the way. This algorithm is implemented as part of oura-
CeRT system for the safety certification of automatically getenta
code. Its core (i.e., CFG construction and transversallliig §ener-
ic but it must be customized for a given code generator aretysaf
property by specifying the code patterns and integratiegnthvith
the implementation of the meta-program fragments for aatiat



construction. However, while the former part can build orlean,
declarative pattern language, the latter part has so fahied te-
dious and error-prone low-level term and program manijporhest

Here, we describe an approach that largely automates this cu
tomization task. It uses a smahnotation schema compiléhat
takes a collection cAnnotation schemasilored towards a specif-
ic code generator and safety property, and generates a&lade
required for interfacing with the generic algorithm cofeys effec-
tively generating a customized annotation inference #lgor. The
compiler allows us to represent all knowledge required todtea
class of specific certification situations declarativelgl anone cen-
tral location (i.e., in the annotation schemas), whicheaitbe level
of abstraction and simplifies development and maintendhaéso
takes care of some more routine aspects of formulatingnpatsend
schemas, in particular handling of irrelevant program rfinagts
(“junk™ and irrelevant variance in the program structuesq, the
order of branches in conditionals), which reduces the sine;-
plexity, and number of different patterns and annotatidmestas
that are required. Together with improvements of the uryilegl
core inference algorithm and the pattern matching macHhswede-
scribed here, the schema compiler makes it much easier atet fa
to customize the generic annotation inference algorithra tew
safety property or a new generator. We demonstrate this by cu
tomizing it to certify frame safety of space flight navigatioode
that was automatically generated from Simulink models bglRe
Time Workshop [1].

In this paper, we thus build on but substantially improverove
our previous work on annotation inference for automatjcgkn-
erated code [10]. Our paper makes four main technical dmntri
tions. The first two areif the development of the schema compiler
and ¢4) the implicit junk handling by the compiler. In addition, we
have also 4i¢) modified the underlying core inference algorithm
so that the inference for one variable can “trigger” the iafee
for other variables if the safety of the former depends onlate
ter. This dependency is also controlled by the schemasliy;inee
have (v) extended the pattern language by additional constraint
operators, which make it more expressive and allow moressdnt
sensitivity in the patterns, thus minimizing reliance oe tise of
arbitrary meta-programming functionality in the guardspérticu-
lar, we have integrated a simple data-flow analysis into taeher,
which allows us to match a pattern againsttbetentof a variable
as well. This significantly improves our ability to distingh struc-
turally equivalent code fragments. Our main empirical dbotion
here is a significantly extended evaluation of our genenabtation
inference approach. In particular, we have evaluated @CERT

2.1 Safety Certification

Program Safety Safety certification demonstrates that a program
does not violate certain conditions during its executionsafety
property [8] is an exact semantic characterization of these condi-
tions, while asafety policyis a set of specialized Hoare rules de-
signed to show that a program satisfies the safety propeityerf

est. Language-specific properties can be applied to allpnag in

the underlying programming language. For example, vaeiatit
tialization before useilfit) ensures that each variable or individual
array element has been explicitly assigned a value befseigted,
while array bounds safety(ray), requires each access to an array
element to be within the specified upper and lower bounds ef th
array. Our approach can also be used with more specific demain
specific properties. For example, frame safdtarfe shows that
vehicle navigation software uses the different frames ftdremce
consistently [18, 23].

Annotation and Verification We split certification into an un-
trusted annotation construction phase (see below forldetnd

a simpler but trusted verification phase, where the standead
chinery of a verification condition generator (VCG) and an&bed
theorem prover (ATP) is used to fully automatically provattthe
code satisfies the required properties. As usual in Hogte-gerifi-
cation, a VCG traverses the annotated code and applies|théus
rules of the safety policy to produce verification condisqivCs).
These are then simplified, completed by an axiomatizatiothef
relevant background theory and passed to an off-the-sHet K

all VCs are proven, we can conclude that the program is sdfe wi
respect to the safety policy, and, given the policy is sowalso
the safety property. Note that the annotations serve ags'hor
lemmas for the ATP, and must be established in their own right
Consequently, they remain untrusted—a wrong annotationata
compromise the assurance provided by the system.

2.2

The idioms used by a code generator are essential to ouragpro
because they (rather than the generator’s building blocksmbi-
nation methods) determine the interface between the gemenad
the inference algorithm. The idioms and correspondingepastare
specific to the given safety property, but the inferenceritigm re-
mains the same for each property. This allows us to applyemin-t
nique to black-box generators as well, as the example of Rea
Workshop shows. Moreover, it also allows us to handle optimi
tions: as long as the resulting code remains idiomaticheeithe
specific optimizations nor their order matter. We can thig@mize

Idioms

using C code generated by the Real-Time Workshop code gener-5'\ qrifier for a given generator and safety property, by itging

ator. Based on the extensions described here, we have blen ab

to certify frame and initialization safety for code genethfrom
Simulink and Embedded Matlab models, as well as severatysafe
properties for a variety of programs generated by ourABAYES
[13] and AUTOFILTER [27] generators.

the relevant idioms and formalizing them as patterns.

The idioms represent the key knowledge that drives the anno-
tation inference. However, we need to distinguish diffexdasses
of idioms, in particular, definitions, uses, and barri@sfinitions
establish the safety property of interest for a given vdeiatvhile

The next section gives some general background on the safetysegefer to locations where the property is requirBariers rep-

certification of automatically generated code and sumrearthe
underlying annotation inference algorithm as far as isiregihere;
more details can be found in our previous work [10]. Secti@x3
plains the extended pattern language used here. Sectiamain®
a description of the different aspects of the annotatioesehcom-
piler, while Section 5 focuses on the practical experienechave
gained so far. The final two sections discuss related workcane
clude with an outlook on future work.

2. Technical Background

Here, we briefly summarize our approach to safety certificatif
automatically generated code and the generic annotatfereimce
algorithm. Details can be found in our previous work [8, 9].10

resent any statements that appear between definitions asdins
the control flow graph) that require annotations, i.e., gpally
loops. In the case of initialization and frame safety, thiinitions
are the different initialization blocks, while the uses st@&ements
which read a variable (i.e., contain avar). In the case of array
bounds safety, the definitions correspond to fragments twhat
the values of array indices, while the uses are statemerithwalb-
cess an array variable. In all cases, barriers are loops.

2.3

The inference algorithm itself is then based on two relateddb-
servations. First, it is sufficient to annotate only in reseealong
all CFG-paths between uses (where the property is requamnd)

Inference Algorithm Structure



definitions (where it is established). Second, along eadh jia
is sufficient to annotate only with the definition’s post-diion,
or more precisely, the definition’s post-condition undes tireak-
est pre-condition transformation that is implemented i YCG,
which corresponds to the safety condition which must holthat
point in the code.

The inference algorithm builds and traverses the CFG and re-
turns the overall result by side-effects on the underlyinggpam
P. It reduces the inference efforts by limiting the analysiser-
tain program hot spots which are determined by the so-cdtietl
variables” and “hot uses” described in our previous work] [10-
tuitively, a variable use (and thus the variable) is hothdre is a
barrier between the use location and any of the variablefmide
tions. Note that the hot variables are computed before thphgr
construction (and thus before the actual annotation phasey-
der to minimize the work in the subsequent stages. For eath ho
variable the algorithm then computes the CFG and iteratesall/
paths in the CFG that start with a hot use, before it finallystarcts
the annotations for the paths.

Abstracted Control Flow Graphs The algorithm follows the
control flow paths from variable use nodes backwards to al co
responding definitions and annotates the barrier statesredang
these paths as required (see below for details). The CFGabare
stracted by collapsing entire code idioms matching spepitc
terns into individual nodes. Since the patterns can be petrazed
over the hot variables, separate abstracted CFGs are gotestifor
each given hot variable. The construction is based on abtfar-
ward syntax-directed algorithm as for example describedHby
rold and Rothermel [15].The only variation is that the algorithm
first matches the program against the different patterrd,rathe
case of a match constructs a single node of the class conmgisigp
to the successful pattern, rather than using the standastrcation
and recursively descending into the statements subterms.

In addition tobasicnodes representing the different statement
types of the programming language, the abstracted CFG ean th
contain nodes of the different pattern classes. The alguriis
based on the notions of thuse anddefinitionnodes and usdsar-
rier-, barrier-block and block-nodes as optimizations. The latter
three represent code chunks that the algorithm regards aguep
(to different degrees) because they contain no definitiontte
given variable. They can therefore be treated as atomicanfmie
the purpose of path search, which drastically reduces thebeu
of paths that need be explored.

Annotation of Paths For each hot use of a hot variable, the path
computation returns a list of pathspatativedefinitions. They have
been identified by successful matches, but without thesafebf
we cannot tell which, if any, of the definitions are relevdnfact, it
may be that several separate definitions are needed to filyeda
variable for a single use. Consequently, all paths must hetated.

Paths are annotated in two stages. First, unless it hagdglrea
been done during a previous path, the definition at the entleof t
path is annotated. Second, the definition’s post-condifwinich
has to hold at the use location and along the path as welkéntas
the initial annotation and propagated back along the patin the
use to the definition. Since this must take computations anttal
flow into account, the current annotation is updated as trekest
pre-condition of the previous annotation. Both the comipomaof
pre-conditions and the insertion of annotations are dortke riny
node rather than statement by statement.

1Since the generators only produce well-structured programsyntax-
directed graph construction is sufficient. However, we dpiflnecessary,
replace the graph construction algorithm by a more genersion that can
handle ill-structured programs with arbitrary jumps.

= reX
| | P?| P* | P+| P ... P
| Prs Po | Pl P | P 4P
| Pr// Pa| PL\\ P, (lookahead)
| PAID P |PL3P| PL g P,  (subterm matches)
| P«U (weave)
| PQx (access)
| P::C (constraint)

U= &(A{, A}) | &&(A{, A}

| (prim-op)

;= inv F' | pre F' | postF FeF

(data-flow lookback)

C = P1 = PQ
| (prim-op)

Figure 2. Grammar of extended pattern language

Annotation of Nodes The path traversal described above calls the
actual annotation routines (whether implemented manuaalfen-
erated from the annotation schemas) when it needs to apratat
node. Three classes of nodes need to be annotated: definiian
riers (which are typically loops), and basic nodes whichrespnt
loops that have not been matched by any other pattern. Howeve
the most important (and interesting) class is the defirstioacause
their annotations (more precisely, their final post-cdodi) are
used as initial values for annotation along the paths.

For example, we can define a separate annotation schema for
each of the three different initialization blocks shown igie 1.
Each schema inserts a final (outer) post-condition estabighat
the matrixx is initialized, e.g., in the first two cas&t0 < i <
N,0< 5< M - Anclt, j] = INIT.

However, the annotations also need to maintain the “intérna
flow of information within a definition. Hence, the schemaaldwy
with the situations shown in Figure 1(b) and 1(c) also needgert
an inner post-condition, as well as inner and outer loopriawss.

Note that even after a pattern has been successfully matched
the annotation schema itself might still fail. For examjphes pat-
tern in the schema handling the idiom in Figure 1(a) simplyaina
es against a sequence of assignments, but the schema seaire
the indices of the first and last assignments are the loweuppédr
bound of the array, respectively. Of course, even if the szhsuc-
ceeds, the generated VCs might fail since annotation agst&in is
untrusted. In other words, matching is approximate, buinately
checked by the prover.

3. Extended Pattern Language

The annotation inference algorithm uses patterns to caphe
idiomatic code structures and pattern matching to find threeeo
sponding code fragments and build the CFG. The pattern &gyeyu

is essentially a tree-based regular expression languagjéasito
XML-based languages like XPath [3]; Figure 2 shows its gramm
Compared to our previous work [10], we added more contextual
patterns (the lookahead operatory and \\ and the outside-
operatof), operators to support interactions with the meta-program
fragments constructing the actual annotations, and cinsdr¢ :),

in particular the data-flow lookback operatdr .

Core Patterns The language supports matching of tree literals
f(P1,...P,) over agiven signaturg, wildcards () and the usu-



al regular operators for optionaP); list (*) and non-empty list«)
patterns, as well as alternatior|() and concatenation { ) op-
erators. The ellipsis operator.. allows the concise formulation
of enumerationsP; ... P, is compiled intoP;; P*; P,, where

P =lcs(P1, P») is the least common subsumer (or anti-unifier) of
P, and P». This is computed by replacing any two different sub-
terms at corresponding positions in the two terms by a fresh v
able. ¢ is a committed choice operator, which is similar to alterna-
tion, but tries the alternatives in a left-to-right ordemdacommits

to the first match, i.e., does not backtrack into the otheradttives.

Context Dependencies Unlike a “pure” regular expression lan-
guage, our pattern language allows us, to some limited degpe
express context dependencies. This can be achieved by fwo di
ferent mechanisms, contextual patterns and pattern naetables.
Contextual patterns generalize the idea of lookahead shaell-
known from regular expression matching. dontextual pattern
P, op P, consists of a base pattefh that must be matched against
the input, and will eventually be returned as match resott,acon-

text patternP, that can rule out potential base matches, depending

on the given context operatop. Possible operators are lookahead
(//) and its complement (i.ePx \\ P, matches ifP; is not fol-
lowed by ), which check the right siblings of the term matched
against the base pattern (i.e., work horizontally), anibverforms

of subterm matching, which check its descendants and amsest
(i.e., work vertically). HenceP; > P, matches all terms that match
Py and have at least one subterm that matdhesimilarly, P, 2 P,
matches all terms that matdh and have no subterm that matches
P».2 For example, the patted* 2 1; 1; * 21]:= _3 Auses sub-
term matching to rule out array updates in which the indeiatde

| appears more than once in the index list, or in which the a#ray
appears on the right-hand side of the assignment. In coneréise
inward-looking operator® and 2, the ¢ -operator looks outward:
Py ¢ P, checks for instances dP, which are not within any en-
closing occurrence of». This has proved very useful to rule out
accidental matches. Uninstantiatpdttern meta-variablesnatch
any term but, unlike a wildcard, they then become instagdiatith
the matched term and subsequently match only against furthe
stances of the first match. For example, the pattefq (= )+
matches the entire statement At1] : =1; Al 2] : =2; B[ 1] : =1
while the pattern{_] := _)+ matches only the two assignments to
A but not the final assignment 8, due to the instantiation of
with A,

Interaction Operators Another extension of the pattern language
describes interactions with the meta-program fragmentstcoct-
ing the actual annotations. The two operater&nd @ are used to
compile the guards and actions of the corresponding sch&hea.
weave-operatiorP « U executes an update actiéhon the pro-
gram fragment matched againBtwhen the annotation schema is
applied, and thus weaves in the annotatidhcan be an arbitrary
meta-program operatioprim-op of type T, — T, but typical-
ly it just adds a list of annotations to the target fragment e
provide two built-in operations for this casé (A) simply adds
the annotationsl to the target fragment, whil&& (A) recursively
addsA to all barriers inside the target fragment. This is mostlgdis
for the junk handling described in Section 4.3. In both cageso-
tations are simply formulag’ € F, labeled with their purpose as
invariant, pre- or post-condition. The access-oper&t@ x binds
the meta-variable to the term matched againBt so that it can be
referred to in the guards and actions. This is similar to tbe of
pattern meta-variables, but allowsto be further instantiated.

Constraints Constraints are similar to contextual patterns in the
sense that the base pattefhwill be returned as result only if

21n our previous work [10], these were denoted By € P; and P, £ P,
respectively.

the constrainC' is satisfiedC' is either a data-flow lookback (see
below), or an arbitrary meta-program operation. These @an f
example be used to check structural properties of the maiah t
cannot be expressed in the pattern language, e.qg., ideleticghs
of two different lists.

Data-flow Lookback Since pattern matching works on the syn-
tactic structure of the program, all relevant semanticedéhces
must be reflected syntactically. However, in practice, thisften
not the case and semantically different concepts are repres by
syntactically similar code. For example, in vehicle natiga soft-
ware, frames of reference are used to represent differemticate
systems within which the position and orientation of olgeate
measured. Transformations between different frames can be rep-
resented by a direction cosine matrix (DCM) [23]; Figure 8wsh
the different structure of two example DCMs transformingnfrthe
NED frame into two different target frames.

-cos \ sin¢ -sin A -cos A cos¢ cos(H-A)
-sin A sing cosA -sin A cos¢ -sin(H—A)
0

sin(H-A) 0
cos(H-A) 0
cos ¢ 0 -sin ¢ 0

1

Figure 3. DCM matrices: (aNED-to-ECERb) NED-to-Nav

For the certificationframe safety (i.e., all measurements are
transformed into the right frames before they are procesaex
need to be able to distinguish between the two different DCMs
but the code generated by Real-Time Workshop uses temporary
variables to store the elements, and the matrix (repredeasea
vector) is updated using these (see Figure 4(a)). Note duktianal
temporaries are used to factor out common subexpressioosdér
to identify the sequence of array updates as B@&V-NED-to-
ECEFidiom, and to distinguish it from the structurally equivaie
DCM-NED-to-Navidiom, we thus need to match tkententof the
variablesv0 to v8 (and thus the content of the meta-variabtes
to xg) against the respective patterns.

cO0:=-1
V\D =cos(i n5)
wl: =si n(i n4)
W2: =si n(i n5)
vO =c0*w0*wl;
v1: =cO*wl*Ww2;
v8 =c0*wl;
a[O] 1 =v0; (A[0]:=xg) :: (xo "= — cos(L) * sin(P));
a[ 1] : =v1, (A[1]:=21) & (x1 7= — sin(L) * sin(P));
.a'[.8] HEVER .(1'4'[8} =xg) 11 (zg 7= — sin(P))
@) (b)

Figure 4. DCM-NED-to-ECEFcode fragment (a) and pattern (b)

Rather than using arbitrary meta-programs to analyze the pr
gram structure, we introduce a specific constraint opetasirtrig-
gers a simple, approximate data-flow analysis to infer fbessiym-
bolic values of program variables that are then checkednagai
the constraint pattern. Figure 4(b) shows the actual patised
to capture the idiom. The schema itself is shown in Secti@n 5.

3Here we consider the vehicle-centered systems North{Basta (NED)
and wander azimuth (Nav), and the earth-centered systents-Eantered
Inertial (ECI) and Earth-Centered Earth Fixed (ECEF).



The structural core of the pattern is simply the sequencearaf/a
updates, but each right-hand side is constrained by an pppro
ate lookback. When an update sucha@®] : =vO0 is matched, the
meta-variablesi andz are instantiated wita andv 0, respective-

ly, and then the data-flow lookback constraint on the ingioh

of x¢ is checked. The data-flow analysis thus looks back through
the program to find possible values foB. The preceding assign-
ment yieldsc 0= wO* wl for which a match is attempted against the
constraining pattera-cos(L) * sin(P). This attempt fails, which
triggers further lookbacks to values of the variables ogogrin the
value found for the original variable0, i.e.,c0, w0, andwl. Us-

ing the theory matching described below, the lookback exaiyt
succeeds, with the meta-variablBsand P instantiated with n5
andi n4, respectively. Note that a “plain” lookback (i.e., a rewers
lookahead) would remain insufficient in such situationacsithe
required value ok is only constructed in several steps and several
different locations.

The dataflow lookback is only an approximation, since it ig-
nores control flow predicates and CFG back edges. Howeuvsr, th
approximation remains safe, as all matches are checkedbyGls
and thus ultimately by the ATP.

Match procedure The match procedure traverses terms first top-
down and then left-to-right over the direct subterms, meituy as
result triples where the first two arguments are the roottjuwsi
and length of the match of the top-level pattern, and thalthsr
a substitution with bindings for the pattern meta-variabl€he
meta-variables are instantiated eagerly (i.e., as closigetooot as
possible) but instantiations are undone if the enclosirntepafails
later on. List patterns follow the usual “longest match agtgy
used in traditional regular expression matching. Lookdhaad
subterm matching are implemented in a straightforward \eay,
the performance of the pattern matcher has been sufficiefarso
Constraints are checked whenever a match for the baserphtisr
been found. However, the dataflow lookback requires intenac
with the CFG construction and the term traversal, as trakisrms
need to be pushed on a stack for later inspection.

The match procedure also supports a limited form of matching
modulo theory: users can specify how tree literal patteanrs loe
mapped onto terms. We use this to handle some irrelevaraayat
variance in the programs, for example, to handle commuativ
operators such as addition and multiplication by simplyockimeg
all possible permutations of the operands, or to identifgchl
patterns of the form{x; P; » } with single statements matching
P. This feature has proved very useful, but it has to be usel wit
care, since the indiscriminate use of such mappings caeaser
the search space for matching substantially and can alsbtéea
unintended matches and hence a loss of control; in the wasgt, ¢
the theory implementation may not terminate, which will oficse
cause the non-termination of the entire matching procedure

4. Annotation Schema Representation and
Compilation

An annotation schem a declarative representation of all knowl-
edge required to handle a class of specific certificatioragdns.
A schema includes a code pattern that describes both theigtu
of the object program fragments to which the schema is agipléc
and where the annotations will be added, and two lists oftime-
guards and actions that will be first executed when the patter
matched against the object program, and then used to cortipute
actual annotations that are added. In practice, howevargdglare
rarely required, and none of the schemas shown here uses them
The AUTOCERT annotation schema compiler takes a collection
of annotation schemas tailored towards a specific code gtmer
and safety property, and compiles it down into a customized a

schema(f or_assi gn
, SP
, def (A
, (for (I := _to )@ Indexdo
((A[*Z1; 1; *ZI1])QAI := _Z A) « &(postSO
) « &(inv Inv, post Pos)
, default

[]
, [safe(SP, Al, SO,

i nd_schenma(stepl, SC, [Index],
) :- SP=init ; SP=range(.).

[Inv,Post])]

Figure 5. Annotation scheméor _assi gn

notation inference algorithm. Since we are reusingTACERT'S
core annotation inference algorithm outlined above and riteed
in more detail in our previous work [10], which is implemedtia
Prolog, the output of the compiler is simply a set of Prolaguses.

4.1 Schema Representation

An annotation schema bundles together all knowledge theg-is
quired by the annotation inference algorithm to handle asclaf
specific certification situations. In addition to the paitand the
run-time guards and actions this also includes the safdtgypor
policies under which the schema is applicable and the naakes cl
that will be attached to the matched object program fragment
Since the schema compiler is implemented in Prolog, we simpl
represent schemas by Prolog facts or clauses. This allows us
use arbitrary Prolog code as compile-time guards and action
the schemas and thus to further simplify their formalizatitn
the examplé or _assi gn shown in Figure %,which comes from
Simulink, we can thus use the same schema (with appropriatel
parametrized actions) for two of the different safety pmipsinit
andrange(a vector satisfiemngeg(dim(A, N)) if all its entries are
within the bounds of théVth dimension of arrayd), although we
concentrate omit here. The schema clauses also contain some ad-
ditional information that is used by the schema compilemely
the schema name (for reference purposes), and the name 6tf a pa
tern pre-processing predicate (helef aul t ), which can be used
to simplify the description of the patterns and the advie= (Sec-
tion 4.3 for details).

Thef or _assi gn schema is designed to annotate loops that
initialize arrays element by element. For example, in otddacil-
itate a proof that

fori:=1toNdo
ai] := fi];
actually initializes the array, the schema needs to construct an

appropriate loop invariant and post-condition, resultinghe an-
notated loop

fori:=1toNinvV1< j<i -amf[y] =it do
ai] := bfi];
post ain[i] = INIT

postV1< j < N - am[j] =T

The first step in designing this schema is to specify the core
pattern that will be used to identify instances of the genlexap
structure in the program. Here we are looking for sinfgleloops
with arbitrary lower and upper bounds, where the loop body-co
sists of an update of an arbitrary arrdy in which the loop’s index
variable I is used as index. We allow additional indices left and

4Here, and in the rest of the paper, we type-set the patteing aencrete
syntax to improve the legibility of the schemas. Our impletagon uses
standard Prolog terms.



right of I, provided they contain no further occurrenced dthus
restricting the schema to arrays effectively used as veytand
require that the right-hand side of the assignment contaantir-
ther occurrences of the array/that is being initialized. This can be
expressed concisely in our pattern language:

forl:=_to_do
A2 L L 1= _3A

The second step is to addoperations to splice the construct-
ed annotations into the appropriate locations. As outliabdve,
we need an invariariv and post-conditiofoston the loop itself.
However, we also need to specify the post-condition on tde in
vidual array-update, which will be used to prove the loopistp
condition. This yields

(for 1 := _to _do
(AI*Z1; 1; *21]1:= _ 2 A) « &(post PostAl
) « &(inv Inv, post Pos})

Since this schema requires no guards, the final step is tchadd t
actions that actually construct the annotations. Here atit®ons
consist of calls to the safety predicataf e and the annotation
construction predicatend_schena (see Section 4.2) to construct
the post-condition for a single array-update and the loopriant
and post-condition, respectively. The predicates regaoeess to
specific parts of the actual program fragment matched agtias
pattern, e.g., the complete left-hand side of the arrayatgpdSince
this is not bound by a pattern meta-variable—note thabnly
contains the name of the array, not the entire access—therpat
used in the schema contains additional variables Hiethat are
bound to the relevant subterms and then used to pass thethénto
predicates (see Figure 5). In the above example, we thushget t
annotationsSC= aw[i] = INIT, INV=V 1 <j <1 - am[j] = INIT,
andPost=V 1<j< N - am[j] = INIT, as expected.

4.2

Schemas can make use of arbitrary specialized meta-progiragn
in order to construct annotations but, in general, most ttioms
encapsulate general induction principles, so we use a iggred-
icatei nd_schena to construct them. This takes the form of in-
duction to use, the base formula (usually the safety préslimathe
hot variable), and the indices (i.e., bound variables anthtls) to
induct over, and returns the list of annotations.

Several types of induction are currently supported. Theses
discussed here use singlest @pl) and doubly-nested induction

Induction Schemas

(st ep2), which constructs the necessary inner and outer invariant

and post-conditions. There is also a schema that handlgerdih
matrix traversalsli ag.

schema(for for_assign.lin
, init
, def (A
, (for (I := 0to N)@ Indexldo
(for (J := 0to )@ IndexJdo
(((A[*N'+J])@ AlJ : : N+1=N’):= _Z A) « &(post SO
) + &(inv InvJ, post Post)
) « &(inv Invl, post Postl)
, default
.
, [safe(init, AJ, SO,
i nd_schena(step2, SC, [Indexl,
[Invl, Postl, InvJ,

I ndexJ],
Post J] )]

Figure 6. Annotation scheméor _f or _.assi gn_lin

notates two nestefibr-loops initializing a single matrix4 that is

represented as a vector; here, the constraing 1 = N’ sym-

bolically evaluates whether the multipliéé’ has the right value.
This schema should also apply in situations where the ootgy |
contains additional statements before or after the innep,land

similarly for the inner loop, e.qg., if, as the result of a lofysion,

two matrices are initialized at the same time.

Extending the schema to cover these cases requires twao steps
First, the junk statements need to be “matched away”, whachbe
achieved by adding list wildcards to the arguments of thieestant
patterns. Some care must be taken to ensure that these do not
conflict with the proper pattern; we thus add additional ¢t@ists
to the wildcards (see Figure 7). However, the junk fragmeats
also contain statements that match barrier patterns asdéouire
annotations as well. These fragments will not be annotateithgl
the CFG traversal because they have become part of the tefmit
Consequently, the junk fragments must in the second stage be
annotated by the definition schema as well.

The entire process can be automated because the annotations
quired for the different junk positions can be derived systtcally
from the annotations given in the original pattern usingrtbon
of current annotation

e On entry to a loop pattern, the current annotation is setéo th
invariant attached to the loop (or to true, if no invariargiigen),
and its old value is saved.

e On exit from a loop pattern, the current annotation is restor
to the saved value, and the post-condition attached to the lo
(if any) is added to it.

We keep the induction schemas separate from the annotation ® FOr any other pattern, the attached post-condition (if dsy)

schemas themselves for two main reasons. First, the irafucti
schemas encapsulate general induction principles thak var
multiple annotation schemas so that very few of them areetted
Second, an annotation schema does more than an inductemach
The latter just constructs some annotations, but the forsags
where to put those annotations, how to pre-process therpatte
under what conditions (i.e., guards) they should apply,wanether
there are any dependent variables (see Section 4.4).

4.3 Pattern Pre-processing

Often, even auto-generated code does not exactly fit the pat-

tern specified in a schema, but contains “junk”, i.e., addi
statements that are irrelevant to the current hot variaSlech
junk can be part of the original program structure, or it can b
introduced by optimizations (e.g., loop-invariant congtigns
that are hoisted out of an inner loop). Consider for exambpée t
for _for_assign.lin schema shown in Figure 6, which an-

added to it.

The current annotation is then used to start annotating amjels
that are contained in the junk fragments. The annotatioerseh
compiler simply keeps the current annotation while it preggsses
the patterns, and whenever it inserts a list wildcard to matok
fragments, it also splices in a recursive update (i.e.,guie &&-
operator) with the current annotation. Figure 7 shows thtepa
that results from applying this default pre-processingh®pattern
specified in Figure 6. Of course, the default can be overridae
specifying the full pattern.

The definition of current annotations, and their use in thmk ju
fragments, reflects the role loop invariants play in the ldear
calculus. Since the loop invariant contains all informatiequired
to prove the body, all irrelevant loops (i.e., barriers) Ire toody
need to maintain it, and all relevant loops (i.e., nestegp$dmeed
to contain a complete invariant as well as a sufficient postition
by themselves.



(for (I := 0to N)@ Indexldo {
(* #for J:=0to _do{
(* 2 ((A[I*N'+J])@ AlJ : : N+1=N") = _Z A);
(((AIFN'+I])@ ALJ : : N+1=N') := _Z A)

1) « &&(inv Invl);

(for (J:=0to _)@ IndexJdo {
(* 2 ((AIFN'+ID@ ALY = : N+1=N") = _Z A)
) & &&(inv Invl A InvJ);
(((A[*N'+J])@ Al : : N+1=N’):= _Z A) « &(postSQO
* « &&(inv Invl AInvdA SO

1 « &(inv InvJ, post Post)

* « &&(inv Invl A Post)

1) « &(inv Invl, post Postl)

Figure 7. Pre-processed version of the pattern used in the
for _for_assign.inschema

schema(nt rans_ nt
, frame
, def (A
, (C:=0;
((for (I := 0to N)@ Indexldo
(for (J := 0to M)@ IndexJdo {
(((A[I+N™J])@ AlJ : : N+1=N’) :=T[C)]);
C++
1) « &(inv C=J+N"™ A FPre A InvJ,
postC=M+1+N"*l A FPre APost)
) « &(inv C=N" A FPre A Invl, post FPre A Postl)
) « &(postFPre A A=trans(T))
) « &(pre FPre, post FPos)

, default

[Tl

.

, [FPre = has_frame(T, dcm(F2, Fl)),
FPost = has_frane(A, dcm(F1l, F2)),

ind_schema(step2, AIJ=T[J+N *I1],
[ I ndexl, | ndexJ],

[Invl, Postl, Invd, PostJ])]

Figure 8. Annotation schemat r ans_i nt

4.4 Dependent Hot Variables

The inference first passes over the program to determinedhe h
variables before it proceeds along every path from everyuset
until either a definition or the beginning of the program iaagked.
Sometimes, however, a definition will trigger further hotighles
that could not be (efficiently) detected on the first passs Tiaip-
pens, intuitively, when one variable is computed from aantkor
example, in the scheme r ans_i nt shown in Figure 8, the vari-
able A is computed as the transpose Bf so that its frame de-
pends onI”s frame® Thent r ans_i nt schema uses a syntactic
variant, where the additional (sixth) argumént] indicates that
T is a dependent hot variable fat. Inference will thus proceed
past this definition fordA and restart, looking for a definition for
the new hot variabld’. Specifying the dependent hot variables is
straightforward using the schemas, which shows the powéneof

5Note that the schema has three nested post-conditionsr¢hg.&., on the
outer loop) states the element-wise definition of the traaspthe second
“lifts” this to an explicit transpose operator; and the thirses this to derive
the appropriate frame information.

approach. In the previous system version using manual atioot
clauses, computing the dependent hot variables could restjué
implementation of complex term decomposition.

4.5 Schema Compiler

Since we are building on ATOCERT's existing, large infrastruc-
ture code base, the actual annotation schema compiler psisur
ingly small—approximately 1000 lines of Prolog code. Ityioes
two top-level functions, corresponding to the phases CEG con-
struction and traversal) of our analysis. Both functiorietas in-
put a list of annotation schemas, but not necessarily the sahis
allows us for example to use a schema with a more refined pat-
tern to construct the CFG, but to re-use a more general sckema
actually construct the annotations. The first function $jmpe-
processes the patterns and uses the pre-processed péitettmes
CFG-construction. The second function is the compiler proBor
each schema, it produces a correspondingot at e clause that
is called from the existing inference algorithm when it iginig to
annotate a CFG-node (Section 2.3). Each clause consisksyes
eral phases:iJ check that the program fragment corresponding to
the CFG-node matches the schema'’s pre-processed pattisris(t
necessary because the two phases can use different schéias)
select the program fragment and bind the pattern’s metablas,
including those introduced by pre-processing;)( evaluate the
schema'’s guards, to ensure applicabilitys)(execute the schema’s
actions, to construct the annotations) éxecute the update actions
specified in the pattern; and finallyi) processes the dependent
hot variables, if any are specified. In addition, the compék

S0 generates several auxiliary functions required by tferémce
algorithm, e.g., extracting the overall post-conditiotaahed to a
pattern. This is the same structure as the manually implésdeam-
notation clauses, which is hardly surprising, since bothaalled

in the same context. However, the schema compiler elimériie
tedious term-operations in stepg)(and @) above, which are a
source of errors that are difficult to trace and clutter uprttaual-

ly implemented annotation clauses. Consequently, thensahare
significantly more compact and on average amount to only tabou
35% of the manual versions.

Since we took care to generate code that is compatible with
the existing code base, only minor modifications were reglto
the rest of AITOCERT in order to interface it with the schema
compiler. The other extensions described here, in pasictiie
data-flow lookback and the dependent hot variables, redjnirare
substantial changes to the system. However, these extsnsiere
designed to handle a wider range of certification problentsaag
orthogonal to the schema compiler itself.

The annotation schemas could also be interpreted at irderen
time, rather than being compiled upfront. However, the ddero-
log as AUTOCERT's implementation language means that we could
simply compile the schemas on-the-fly, and thus achievedhees
effect as with an interpreter. Moreover, an interpretatiauld re-
guire more substantial modifications to the existingT®CERT
implementation, and minimizing such modifications was theérm
motivation for choosing the compilation approach.

5. Evaluation

We have evaluated the schema compiler and its interactitim wi
AUTOCERT's core inference engine on code generated by two in-
house code generatorsUAOFILTER and AUTOBAYES, as well

as a COTS generator, Real-Time Workshop, which generatis co
with distinct characteristics from several modeling langes. Here

we look at code generated from Simulink and Embedded Matlab
models.



5.1 AuToBAYESand AUTOFILTER [Spec. [[[P] [JA] N|VC Tw Ticc Tur]
We originally developed the annotation schema compilenfs segm 182 1521 3105 43 4.8 8§
with our AUTOBAYES and AUTOFILTER generators. Both gener- segny || 178 1495 2107 46 5.0 8¢
ate numerical code that uses many vector and matrix opagatio segm 172 1512 2107 45 48 9
and has complex control flow with nested loops, but they waork i orb 326 398 2 22 22 33 24
different domains: ATOBAYES generates statistical data analysis orbj 2 378 424 2 22 2.7 3.8 2%
code, while AITOFILTERIs tailored towards state estimation prob- OrDj 2yer|| 447 2106 3 53 5.2 53 71

lems. Tables 1 and 2 summarize the evaluation of both systems

For AUTOBAYES, we use three different program versions
segma.3 generated from the same model, by using different
initialization methods for an iterative clustering algbm. These
programs have been applied to an image segmentation problem

Table 1. Annotation inference: results famit-property

for planetary nebula images taken by the Hubble Space Talesc [Spec. [1P] [A] NVC T Tics Tire|
They have been used in our previous work on annotation infer- segm 182 125 @ 0 01 03 -
ence [10], which allows us to compare the results of the anno- segm /178 129 1 4 03 04 3.1
tation schema compiler with manually implemented annotati segm [[172 148 1 4 03 04 34
code. For this application, certifying different safetyoperties is orb 326 78 O 0 01 16 -
not required; however, it increases our confidence in theatdive orbj 2 378 96 (0 0 0.2 1.8 -
correctness of the ATOBAYES system. orbj 2ue || 447 208 (@ 7 0.2 23 44

For AUTOFILTER, we used a series of idealized models of the
orbital dynamics of the Crew Exploration Vehicle using a gien
aiding sensor for position and velocfyor b assumes that the
earth is a perfect ellipse and is formulated as a two-bodplpro
using Kepler's Laws [23]. ATOFILTER generates Kalman filter
based state estimation code from this, which estimatesttie s
of the CEV from the sensor readingsr bj 2 extendsor b by
adding so-called J2 perturbations. These are additiomakte the
differential equations of the process model of the vehigigatnics
which account for irregularities in the earth’s gravitati field.
or bj 2, represents the same model but where the generator
is configured to select a different algorithm, namely therBign
measurement update. This uses LU matrix decompositionderor
to represent matrices in a more numerically stable form e®aing
code for these models required extension W@rAFILTER, which
rendered obsolete the manually implemented annotatiamseta
used in our previous work.

Table 2. Annotation inference: results farray-property

The next column gives the number of verification conditions
generated from the annotated program. The additional itgoic
complexity foror bj 2. is reflected in a substantially larger num-
ber of VCs, although it requires only one more pattern. THeseu
guent columns list the times taken to infer the annotatitms\p-
ply the VCG (which includes simplification) and to prove th€a/
Inference time is clearly negligible in comparison to pnotiene,
which dominates the overall run-tirfeSince we trust the Hoare-
rules of the safety policy, the axioms of the domain theang the
theorem provers, the fact that all VCs are proven indirectij-
dates our schemas.

Array Safety Table 2 shows the results of applying the inference
engine for thearray safety property to the same models and gener-

Initialization Safety Table 1 shows the results of applying the ator configurations. This property is significantly simpleaninit,
inference engine for thimit safety property to the code generated and this is reflected in both the number of definition patteamsi
from the above models by WroFILTER and AUTOBAYES. the number of VCs. In fact, for most of the cases here, theraar
The first two columns give the size of the generated programs definitions required. This is a consequence of no uses beisigd
and the size of the inferred annotations, both in non-blamés| nated hot [10]. There are, however, still some annotatiemeated
of code. Note that the annotations are as large as, and in some(simple loop bounds which do not require patterns). In seveas-

cases substantially larger than, the program itself. Tind dolumn
gives the number of schemas used to generate the annotfdions
each program. This is, in contrast, quite small—in each base,
only either 2 or 3 schemas are required to handle the programs
This is partly because the junk mechanism allows a singla-hig
level pattern to capture much of the variability presentia ¢ode,
and confirms our intuition that the schema language is a yighl
concise means of encapsulating the knowledge requiredowepr
safety properties. In total, we needed only 8 and 6 schenras fo
each of AITOBAYES and AUTOFILTER, respectively, to formalize
initialization safety; 5 of these are shared between bostesys.
Translating the existing manually implemented annotatiaises
into new schemas was straightforward. Adapting the systeting
new or b- andor bj 2-code required only a few iterations to get
the annotations right and the VCs proven. In our experietigs,
adaptation process has now become much simpler and faater th
it had been in the old approach using the manually implendente
annotation clauses.

6These models were developed by the first author together Juitann
Schumann, and are based on a model of the orbital coasting wifdithe
Space Shuttle developed by the second author.

es, the VCs are simplified away entirely before the provespha
The only cases which require definition patterns asgm

and segmy, which make use of array indirection, and so require

annotations to give bounds on the values of matrix elemé&matsh

example requires a single schema, which was again straiglafd

to formulate.

5.2 Real-Time Workshop: Simulink

We used AITOCERT to generate a customized verifier for show-
ing frame safety of C code generated from Simulink models by
Real-Time Workshop. We then used this verifier on a navigatio
subsystem currently under commercial development for NASA
which transforms the coordinate frames of various signéle
signals represent state information using quaternionstagoft-
ware converts the quaternions to and from direction cosiatioges
(DCMs), so that matrix algebra can be used to perform thestoan
mation. Several DCMs (NED-to-Nav, NED-to-ECEF, and EGI-to
ECEF are constructed directly using standard trigonomé&rimu-

7 All times here are wall-clock times in seconds, measuredrootaerwise
idle 2.2GHz standard PC with 3GB RAM running Red Hat Enteeptiinux
WS release 4. We used the SSCPA system [22] to run the E (aed899)
[21] and SPASS (version 3.0c) [25] theorem provers in pekall



schema(dcmned_ecef

, franme

, def (A)

, ((A[0]:=20) : : (20 "= -cos(L) * sin(P));
(Al1] :=21) : : (21 "= -sin(L) * sin(P));
(Al2]:=22) : : (2 "= cos(P));
(Al3]:=23) : : (3 "= -sin(L));
(Al4]:=24) :: (x4 "= cos(L));

(A[5] :=5) : : (25 ~= 0);

(Al6] := 6) : : (26 “= -cos(L) * cos(P));
(A[7]:=27) : : (7 "= -sin(L) * cos(P));
(A8] :=28) : : (8 "= -sin(P))

) « &(posthas frame(A, dcm(ned, ecef))
pre 3\, ¢ - hasunit(\, geolong A hasunit(¢, geola)
AxO=-cos A sin¢ A xl=-sin A sin ¢
ANx2=cos¢p N x3=-sin A A xd=cosA A 5=0
A x26=-cos A cos pAx7=-sin \ cos pAx8=-sin ¢)
none

[]

~— - - -

Figure 9. Annotation schemdcmned_ecef

las and taking various physical quantities either as inpunfthe
signals or as constants, namely, geodetic latitude, lodgittime,
true heading, platform azimuth, and the Earth’s rotatioeddcity
[23].

nav 3 andnav5 represent two different conceptual components

of the navigation subsystem that carry out specific tramséions.
nav5;s is generated from a model equivalentrtav5, but using
different Real-Time Workshop configuration settings; ensent-
ly, the generated code is quite different. There are nunseobloer
subsystems not discussed here that use the same basic @mtgon
nav3 andnav5 were chosen to minimize functional overlap, so
that they actually comprise most of the blocks in the sulesystn

all cases, ATOCERTWas provided with assumptions on the frames

and physical units of the input signals, and the aim of théieer
tion was to establish that the output, a quaternion stattoreis
in the correct coordinate frame. Table 3 shows the resultdée N
that the size fonav3 andnav5 includesboth components, since
Real-Time Workshop merges them into a single program.

nav5 andnavbs use the schemdcmned_ecef shown in
Figure 9, whereasav 3 uses a similar schentdcmned_nav (not
shown here, but see Figure 3 for the structure of the reqiiiekt).

In total, frame safety requires 15 schemas. Of these, 7 describe

specific transformations likec mned_ecef , which could be tran-
scribed directly from the literature. The remaining scheritamal-
ize the effects of the applied matrix operations, includsogne of
Matlab’s built-in functions. These schemas represent atankial
domain analysis effort in a mathematically challenging dom-

it took approximately one month to analyze the given codepas
to understand the domain concepts and their implementediuch
to formulate the patterns and the required annotations. édeny

|Spec. |||P| |A| N|VC Tt Tucs TATP|

nav3 || 807 383 4 33 2.2 20.6 35
nav5 || 807 307 § 31 2.2 10.6 31%
nav5.|[ 309 298 § 27 1.6 7.6 284

Table 3. Annotation inference: results frame property

here. However, the development of this logical theory in anfo
that was suitable for the automated provers was actuallynbst
labor-intensive aspect of the certification.

5.3 Real-Time Workshop: Embedded Matlab

Embedded Matlab is a mathematical scripting language wdlich
lows the use of functions and equations in models. Variablése
equations typically represent vectors and matrices andfibre the
generated code is heavily loop-based, and quite differecitarac-
ter from code generated from “pure” Simulink.

Here we illustrate thénit certification of code generated from
an Embedded Matlab model consisting of four matrix equation
from a Kalman filter. The generated code is about 150 LOC and
could be certified using just two schemas, of which one covéthe
be reused from ATOBAYES/AUTOFILTER. The other schema
neededf or _f or _assi gn. i n (cf. Figures 1(c) and 6), is spe-
cific to Embedded Matlab.

fori0:=0to N
invv0<i<i0, 0<j< N -xim[i+j*2] =T do
foril:=0toN
invv0o<i,j <N-
(i<i0V(@E=140A j <il)) = xml[i+j*2] =T do
x11= 0;
fori2:=0to N
invv0<i,j <N -zllipm = INIT A
(i<iOV (i=i0 A j < i1))= xmli + j * 2]=miT do
x11 +:= bv([i2+i1*2] * dvO[i0+i2*2];
X[i0+i1*2] := x11+Ri0+i1*2];
postV0<i<i0, 0<j< N -xmf[i +j*2] =INIT
postV 0 <4,5 <i0 - [t + 7 * 2] = INIT

x11:= x[0];

d:= x[1]*x[2] - x11*x[3];
X[0] := x[3] /
X[3]:=x11/¢

x[1] := -x[1] / d;

X[2] := -x[2] / g

postV0<:<3 - zim[i] = INIT

Figure 10. Annotated Embedded Matlab code

In Figure 10, we show the fragment which uses the two
schemas, including the annotations generated by the sshevea
omitted constraints on the loop variables to simplify theganta-
tion. The arrayx, which represents a 2x2-matrix, is first assigned
via a doubly-nested for-loop and then inverted via a seqeiarfic
assignments. Since inference works backwards through B@®, C

about 90% of the effort was related to the domain analysis and the assignment sequence is annotated first. By settagits own

would have been required for a one-off safety proof of theecod
base as well; only the remaining 10% was directly relatechio t
schema formulation.

The proof times shown in Table 3 are substantially longen tha
for init andarray, reflecting the more complex mathematical rea-
soning that is required. As before, the inference time idigiade

dependent variable, inference can then proceed on to tipe loo

5.4 Optimizing Generators

One of the advantages of the annotation schemas is thetyabil
specify patterns at a high-level and let the machinery retia
variability in the code. Since we consider the code gener@tea

in comparison to the proof times. The proofs of these VCs also black box, and make no assumptions about the way the code is

require a logical theory of matrix and frame algebra but thier-
thogonal to the development of the schemas, and is not disdus

generated, but only rely on its final form, our approach i® ap-
plicable, therefore, to optimizing code generators. Ifipalar, the



existing patterns are—in combination with the default grattpre-
processing—insensitive to many commonly applied optitizes,
including common subexpression elimination, loop hogstiand
loop fusion.

We have exploited this to handle optimizations in the Real-
Time Workshop generators for Simulink and Embedded Matlab.
Consider for example the unoptimized fragment on the lefiicty
is optimized (using loop hoisting and loop fusion) as showrire
right:

fori:=1toNdo fori:=1toNdo

for j:=1toM do v = 1/i;
ai,jl = 1/i*i; forj:=1toM do
fori:=1toNdo ai,jl:=v;
forj:=1toM do bli,j]:= v+1;

bfi,j] := &[i,j]+1;

In both cases, theor _f or _assi gn schema (which is a gen-
eralization of thef or _assi gn schema to nested loops) is ap-
plicable. The reason thdtor _f or _assi gn remains insensitive
to the optimization is the list wildcard patterns added dgrpre-
processing. These absorb the code fragments introducedwadn
into a new location by the optimizations. In the unoptimizede,
each pair of loops will become a definition node for the retipec
initialized variable (with the other pair becoming a barn®de),
and the list wildcards will be set to empty. In the optimizexbe,
the fused loops will become the definition for both variablkesd
the list wildcards will be matched against the assignmentsand
the other array-variable. Note that this causes the proragment
(i.e., the fused loop) to be annotated multiple times (wiffecent
annotations), but this is also possible for unoptimizedecadd the
case of Embedded Matlab, ther _f or _assi gn.l i n schema is
also able to absorb the effects of these optimizations irstimee
way.

6. Related Work

Annotation inference, or invariant generation, is an &ctesearch
area. Approaches use both static and dynamic program amalys
methods, and can further be distinguished according to dibe- c
gory of the inferred annotations: we can contrast type atiuts,
where properties are checked by special type systems, ogfih |
cal annotations, which are usually processed by a VCG andahe
general-purpose theorem prover. Our work is in the lattéega

ry. However, these approaches generally hard-code spdoifi@in
knowledge and cannot be customized simply, if at all, in tae
way our approach allows.

Early approaches [11, 24] are based on predicate propagatio
and use inference rules similar to a strongest post-camddalcu-
lus to push an initial logical annotation forward througle §bro-
gram. Loops are handled by a combination of different héoss
until a fixpoint is achieved. However, these methods stiichan
initial annotation, and unlike our approach, the loop hagdktill
induces a search space at inference time. Moreover, théraotis
ed annotations are often only candidate invariants and tebéd
validated (or refuted) during inference, because theyeiase the
search space.

Kovacs and Jebelean [16] use techniques from algebraie com
binatorics and polynomial algebra to compute polynomitstiens
between variables that are assigned to within loops. ThetaBans
are then turned into annotations and supplied to a VCG. Time ai
is to characterize the behavior of loop variables in ordepr/e
the functional correctness of numeric procedures. Thewhle to
precisely characterize the class of loops for which they ioéer
annotations, although users must manually add any noralige
assertions (e.g., inequalities) which are required. Austinterpre-
tation has also been used to infer annotations in separktga

for pointer programs [17] although the techniques requiteste
are fairly specialized and elaborate compared to our peter

Generate-and-test approaches use a fixed pattern catalmgue
construct candidate annotations and then try to validatesfate)
them, using static or dynamic methods. Houdini [14] is aistat
generate-and-test tool that uses ESC/Java to staticélienavalid
candidates. Houdini starts with a candidate set for theeptio-
gram and then iterates until a fixpoint is reached. This ia®es the
computational effort required, and in order to keep the appn
tractable, the pattern catalogue is deliberately kept Isrhi@nce,
Houdini is incomplete, and acts more as a debugging tool #san
a certification tool. Daikon [12] is a dynamic annotationeirgnce
tool. Its tester accepts all candidates that hold withostffeation
but with a sufficient degree of support over the test suiteorin
der to verify the candidates, Daikon has also been combirgd w
ESC/Java [20]. However, like all dynamic annotation getiena
techniques, it remains incomplete because it relies ort atés to
generate the candidates and can thus miss annotationshatipat
are not executed often enough.

The specific problem of frame safety has been addressed by
Lowry et al. [18], who used a domain-specific type system to
verify the safety of abstract geometric calculations. Tdreguage
analyzed was quite simple, however, so that annotationks! dm
restricted to the declarations of the input variables, withneed
for the inference of patterns or intermediate annotatidthough
the underlying domain knowledge is similar to what we useliier
frame example, this is a very specific solution, in contrasbar
“retargetable verifier”.

AOP is usually concerned with dynamic properties of proggam
but Morgan et al. [19] give a language, inspired by desaiptog-
ic, for describing static properties of programs. Theirtgat lan-
guage has some similarities to ours, but is used to definet-poin
cuts that match against violations of design rules, and dhéea is
simply the corresponding error message. Since they areecoed
with localizing errors, there is no need to infer annotagion prop-
agate information throughout the program. Our pattern Uagg
also captures static properties but, in contrast, is esslgnised to
match against fragments which establish the specified prope

Antkiewicz et al. [4] use code queries, which are approxima-
tions to structural and behavioral patterns, in order t@eres engi-
neer framework-specific models from framework code. Itisikir
to our work in the sense that we use patterns to reverse efrgine
“logical structure”.

Conventional static analysis tools based on abstractprets-
tion, such as PolySpace [2], are notoriously inaccuraténchigh
improvements have been made (e.g., with Astree [7]), suals to
can only handle relatively simple safety properties, arduarable
to produce the detailed explanation& POCERT provides in the
form of proofs, safety cases [5], and safety documents (virork
progress).

Coccinelle [6] uses model checking over the CFG to identi-
fy source code fragments that need modification in respomse t
patch. The underlying logic CTL-VW allows both universa#ipd
existentially quantified variables (compared to the exiséé inter-
pretation of the meta-variables in our pattern language),itbis
restricted to control flow only, and does not take any data floo
account.

7. Conclusions and Future Work

We have presented a declarative annotation schema language
a schema compiler which, together with a generic annotatien
ference engine, forms theuxoCeRT system. We have developed
a set of schemas which customizes ®OCERT for certifying the
frame safety of navigation code generated from Simulink elad
Other sets of schemas support the certification of code gener



ed from Embedded Matlab, as well as the entire range of models [9] E. Denney and B. Fischer. Certifiable program generatidn

and configurations (i.e., algorithmic variants and optetians) for

AUTOBAYES and AUTOFILTER. The underlying inference tech-

nique is independent of the generator, but relies on theridix
structure of the generated code. For the examples repartdds

paper, we were able to identify the necessary code idioms: ho
ever, more work is necessary to determine how well the tegleni

works for other properties and other generators.

This paper continues previous work [10] and represents-a sig

nificant advance in both power and expressivity of the tegini
By raising the level of abstraction at which annotation kienlge
is expressed, we are able to concisely capture many varsatb
the underlying code idioms. In particular, we can easilyl déth

optimizations which obscure low-level code structure.

GPCE'05 LNCS 3676pp. 17-28. Springer, 2005.

[10] E. Denney and B. Fischer. A generic annotation infeeealgorithm
for the safety certification of automatically generated ecodin
GPCE'06 pp. 121-130. ACM Press, 2006.

[11] N. Dershowitz and Z. Manna. Inference rules for progr@motation.
ICSE-3 pp. 158-167. IEEE Press, 1978.

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. NotkinyBamically
discovering likely program invariants to support progravolation.
IEEE TSE 27(2):1-25, 2001.

[13] B. Fischer and J. Schumann. AutoBayes: A system for igeing
data analysis programs from statistical modeld. Functional
Programming 13(3):483-508, 2003.

Our system currently comprises approximately 50 schenas fo [14] C. Flanagan and K. R. M. Leino. Houdini, an annotatiosistant for

thearray, init, andframesafety properties. We are developing ad-
ditional sets of schemas and extending the schema langtssdie i

to support the certification of other properties and of coeleagat-

ed from a wider range of models. There are various physicdl an

geometric properties that can be analyzed similarly to dioate

frames, such as the correct use of Euler angles, quatersiod-h
edness, and so on, and we plan to adapt the frame schemas for

those properties. Currently, the inference is restrictedn intra-
procedural analysis, although it can handle calls to anedti-
brary procedures. This is sufficient for the generators we hesed

so far, but we are planning to extend the system towards an-int

procedural inference.

Finally, although our emphasis so far has been on certifying
safety, the schema language and inference engine are ritgdim
to this and, in fact, several of the schemas we have presented

here are actually verifying full functional correctness a#rtain
fragments in order to establish safety. For example, in rotde
verify frame safety for the examples above, we need to vehiéy
correctness of the underlying matrix transformations. iirly, the
various DCM schemas are effectively functional verificatioof
those constructions. We intend to further explore the [igtes
for functional verification. Likewise, there is no need tctrect

AUTOCERT tool to automatically generated code—it can just as

well be applied to manually written code, with the provisattthe
less idiomatic the code is, the less accurate the analyBiseyiand
we intend to explore this avenue as well.
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