Imperial College of Science, Technology and Medicine
University of London

Department of Computing

Model Checking
for

Concurrent Software Architectures

Dimitra Giannakopoulou

A Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of
Philosophy in the Faculty of Engineering of the University of London, and for the Diploma of the
Imperial College of Science, Technology and Medicine

January 1999

Abstract

The design of concurrent and distributed systems is generally complex, with a high possibility
that subtle errors will cause erroneous behaviour. Behaviour analysis is a powerful technique that
can help to discover behavioural anomalies at design time. The main goal of this thesis is to
develop practical and effective techniques for analysing the behaviour of concurrent and
distributed systems. To be readily usable by software developers, we emphasise that analysis
should go hand in hand with system design. Moreover, analysis techniques should be automated,

intuitive, and effective in detecting errors as well as providing guidance for error correction.

The thesis proposes th&®ACTA model-checking approach for analysis of concurrent systems. A
system is modelled as a collection of labelled transition systems (LTSs), which are interacting
finite-state machines. The LTS of the system is computed from the LTSs of its subsystems, and
is checked against desired properties. RATTA, analysis is directed by software architecture
and, thus, it is tightly integrated with system design. In our architecture description language
Darwin, a system is described as a hierarchy of components. This hierarchy is exploited for

performing analysis in an incremental way, using Compositional Reachability Analysis (CRA).

TRACTA proposes the ALTL logic for specifying desired properties of a system. ALTL is based
on the linear temporal logic LTL, but it is specialised for concurrent systems modelled as LTSs.
To check that a system satisfies its properties, ALTL formulas are translated into Buchi
automata, following the standard automata-theoretic approach to verification. The unigueness of
TRACTA lies in the fact that it introduces model checking naturally in CRA, as it proposes
mechanisms addressing issues that arise in this context. In addition to providing a generic
framework for property checking in CRA, the thesis identifies some classes of properties that can
be checked more efficiently. More specifically, practical checking mechanisms are provided for

safety properties as well as for a class of liveness properties, which we refer to as progress.

The thesis provides a simple and efficient way of dealing with fairness. In this context, it

introduces an action priority scheme that allows users to impose adverse scheduling conditions to
a system, during analysis. Action priority can also be used to perform a partial search on a system
that is too large to be exhaustively explored. All property-checking mechanisms discussed focus
on the detection of erroneous behaviour. To assist in error correction, counterexamples are

generated which describe a potential erroneous system execution.

TRACTA is a fully automated approach. It has been implemented in an analysis tool that has been
deployed in our environment for the development of concurrent systems. Finally, the thesis
reports on experimental results that evaluate the succesRAufTR in achieving its goals, with

realistic case studies.

Acknowledgements

First and foremost, | would like to thank my supervisor, Jeff Kramer. Jeff convinced me to leave
investment banking and join the group as a Research Associate, some four years ago. This says a
lot about his enthusiasm, which always gave me confidence in pursuing my ideas. Jeff's constant
guidance helped me keep in focus, and his experience and insight were invaluable for my work.

I am indebted to Jeff Magee for his practical spirit that made our discussions so stimulating. The
ideas we exchanged with Jeff influenced and gave me confidence in my choices. | would also
like to thank Shing-Chi Cheung for our exciting and fruitful collaboration.

| wish to thank Keng Ng for technical advice, but particularly for his friendship, for being such
an excellent office-mate for many years, and for singing tunes which | couldn't help singing
along, even at the most hectic periods. Special thanks to Naranker Dulay for being “next door”.

The feedback of Naranker Dulay, Christos Karamanolis and Stephen Crane on the thesis is much
appreciated. Thanks to lan Hodkinson for interesting discussions on temporal logic, and to lain
Phillips for his comments on some of my theoretical results.

Special thanks to Morris Sloman, Jeff Kramer and Jeff Magee for arranging the computing
facilities which made this work possible, to Paul Dias and Kevin Twidle for providing technical
assistance, and to Anne O’Neill for her efficient help in administrative issues.

| am grateful to my friends and colleagues at Imperial for being such a lively and pleasant group.
In particular, | would like to thank Andréa and Pomme (the best 810 and 808 that an 809 can
get!), Nikos for his protective friendship, Kaveh for the “Vinceeeenzo” joke, Masoud for the
Greek messages on the answering machine, Silvana for regularly reminding me that I'm terrible,
Fox for the custard creams, and Manolis for a copyAké&&ng Zopurdag” on the day he thought

of as “mg¢ Ayiag Anuntpag”. Thanks also to Bashar, Celso, Damian, Douglas, Emil, Nabor, Nat,
Oscar, Poomjai, Roberto, Sue, Tracy, UIf.

I am indebted to my family Eleni, Giorgos, Liana € and Manos, for more than | could ever
express.

Last but not least, | wish to thank Christos for all the support, but also for returning the cooking-
favours he got while he was working on his thesis.

The work described in this thesis has been developed in the context of a general framework for
the design and construction of distributed systems, which is the result of the co-operative efforts
of a number of people. The work of Shing-Chi Cheung and Jeff Kramer on Compositional
Reachability Analysis set the ground for the coupling of analysis and software architecture, and
their work on safety-property checking has been incorporated in the approach presented in the
thesis. Jeff Kramer, Jeff Magee and Naranker Dulay were responsible for the design of the
Darwin language. The LTSA tool was implemented by Jeff Magee, the SAA tool by Keng Ng,
and the Darwin compiler by Naranker Dulay.

Financial support for this work has been provided by the EPSRC Grants GR/J87022 (TRACTA
Project) and GR/M24493 (BEADS Project), by the loannis S. Latsis Foundation, and by the
British Council UK/HK Joint Research Scheme project JRS96/38.

2anv EAévn kai o 'iwpyo, 1008 mpatiotons daokalovs pov

To Eleni and Giorgos, my foremost teachers

Contents

1 INTRODUCTION

17

1.1 Background

17

1.2 Towards usable methods and tools

1.3 Scope of this work

20

21

1.4 Contributions

22

1.4.1 Integrated use — Evolutionary development
1.4.2 Automation — Error detection and correction

1.4.3 Early benefits — Incremental gain

1.4.4 Evaluation of results

22

24

25

25

1.5 Thesis outline

25

2 MODEL CHECKING

2.1 Temporal model checking

27

28

2.1.1 Lineartime

30

2.1.2 Branching time

32

2.2 Automata-theoretic methods

35

2.3 Discussion

36

2.4 Symbolic representation

39

2.5 On-the-fly verification

41

2.6 Reduction

43

2.6.1 Partial-order reduction

43

2.6.2 Compositional minimisation

44

2.6.3 Abstraction

50

2.7 Compositional reasoning

51

2.8 Discussion

52

2.9 Model-checking tools

53

2.10 Summary

56

3 DESIGN & ANALYSIS

59

3.1 Software architecture in Darwin

3.2 Modelling behaviour

59

61

3.3.2 Primitive components

3.3.5 Discussion

3.5 Related work

3.6 Summary

4 MODEL CHECKING OF LTSs

4.2.1 Bichi automata

4.2.2 Therole of alphabets

4.2.3 Blchi processes

4.3 Program verification

4.3.1 Procedure

4.3.2 Example

4.4 Safety and liveness

4.7 Discussion

4.8 Summary

5 ANALYSIS STRATEGIES: SAFETY

10

5.1 Safety properties

3.2.1 Labelled transition systems 61
3.2.2 Describing LTSs in FSP 64
3.3 Associating behaviour with software architecture 66
3.3.1 The alternating-hbit protocol 67
68
3.3.3 Composite components 71
3.3.4 Modelling the ABP protocol 73
74
3.4 Compositional reachability analysis 75
3.4.1 Semantic equivalences 76
3.4.2 Reduction of the state space 77
3.4.3 CRA of the alternating-bit protocol 78
82
84
85
4.1 Expressing properties over actions 86
4.1.1 ALTL - alinear temporal logic of actions 86
4.1.2 Introduction of alphabets into ALTL 87
4.2 Temporal logic and finite automata 89
89
90
92
95
96
98
99
4.5 Checking properties in the context of CRA 101
4.5.1 Observational equivalence and model checking 101
4.5.2 Reasoning about hidden actions 104
4.6 Optimisation of the RD algorithm 107
109
110
113
113
115

5.1.1 Verification

5.1.2 Correctness 117

5.1.3 Non-deterministic safety properties 119
5.2 Alternating-bit protocol revisited 120
5.3 Safety properties as ALTL formulas 125
5.4 Expressiveness and efficiency 127
5.5 Summary 129

6 ANALYSIS STRATEGIES: LIVENESS 131
6.1 Fairness considered 131
6.2 Adding fairness constraints to process behaviour 134
6.3 Fair choice 136

6.3.1 Checking liveness under fair choice 136

6.3.2 Action priority 138
6.4 Progress properties 141
6.5 Example: readers-writers 144
6.6 Discussion 147
6.7 Deterministic Biichi processes 148
6.8 General methodology 150
6.9 Summary 151

7 IMPLEMENTATION & EVALUATION 153
7.1 Environment 153
7.2 Tool implementation 155

7.2.1 System construction 155

7.2.2 System analysis 157

7.2.3 Interface and additional features 158
7.3 Case study: a reliable multicast transport protocol 160

7.3.1 The protocol 160

7.3.2 Structure of the RMTP 161

7.3.3 Modelling component behaviour for the RMTP 163

7.3.4 Property specification 167

7.3.5 Checking the RMTP protocol 169
7.4 Evaluation and discussion 175

7.4.1 Analysis and software architecture 175

7.4.2 The cost of minimisation 177
7.5 Summary 178

11

8 CONCLUSIONS

181

8.1 Contributions 181
8.1.1 Analysis and software architecture 181
8.1.2 Model checking 182
8.1.3 Tools 183
8.2 Critical evaluation 183
8.2.1 Integrated use — Evolutionary development 183
8.2.2 Automation — Error detection and correction 184
8.2.3 Early benefits — Incremental gain 186
8.3 Future work 186
8.3.1 Improvement of current mechanisms 187
8.3.2 Focused application and increased flexibility 187
8.4 Closing remark 188
REFERENCES 189
APPENDICES 201
A Labelled Transition Systems 203
B FSP Quick Reference 209
C FSP Semantics 213
217

D Theorems and Proofs

12

List of Figures

a<b<c<d

Figure 1.1: Tool support for system design and analysis 23
Figure 2.1: Approaches to model checking 27
Figure 2.2: Approaches to controlling state explosion 28
Figure 2.3: Unwinding a Kripke structure into an infinite finitary tree 34
Figure 2.4: Ordered binary decision tree and OBDD fairk)(c(dd) with variable ordering

39
Figure 2.5: Interfacé increases the size of subsystm 48
Figure 3.1: Common structural view with service and behavioural views 60
Figure 3.2: LTS models of a lamp and a student, and LTS of their joint behaviour 62
Figure 3.3: LTSs that demonstrate relabelling and hiding 64
Figure 3.4: Primitive component for a simple counter in Darwin 68
Figure 3.5: Behavioural description of an infinite and a bounded counter 69
Figure 3.6: Primitive component for a “proper” transmitter in Darwin 70
Figure 3.7: Darwin description of the protocol transmitter 72
Figure 3.8: Structure of the ABP component 73
Figure 3.9: Compositional hierarchy for the ABP protocol 77
Figure 3.10: LTS for ABP with infinite retransmissions and infinite channels 81
Figure 4.1: Temporal interpretation defined by an infinite sequence of actions 87
Figure 4.2: Interpretation defined bgriter exit; entep exit,)® 88
Figure 4.3: Biichi automaton and Biichi process for formiftaquest’] ¢ granted 89
Figure 4.4: A Biichi automaton representing formidao(a 0 ©b) 91
Figure 4.5: A Blchi process modelling fair choice between two alternatives 92
Figure 4.6: Transformation of a Blichi automaton into a Blichi process 93

13

Figure 4.7: Minimised ABP protocol, and Biichi processd¢accept.1 0 o- deliver.1) 99

Figure 4.8: Composite LTS of ABP with property L1 99
Figure 4.9: Disappearance ptycles during minimisation 101
Figure 4.10: An algorithm that records divergence 102
Figure 4.11: LTSs with divergence recorded 102
Figure 4.12: Structure of component TRANS _CHNL of the ABP protocol 103
Figure 4.13: After applying the RD algorithm, minimisation preserves violations 107
Figure 4.14: Behaviour of state(represented as —1) during composition 108
Figure 4.15: Optimised algorithm for recording divergence 108
Figure 5.1: Mutual exclusion property 114
Figure 5.2: Image process for mutual exclusion property 115
Figure 5.3: Checking mutual exclusion 116
Figure 5.4: Transformation from non-deterministic to deterministic property LTS 119
Figure 5.5: Property RIGHT_IGNORE of the ABP 120
Figure 5.6: Compositional hierarchy for the ABP protocol 122
Figure 5.7: Bichi process for property WRONG_IGNORE 126

Figure 5.8: Relative expressiveness of ALTL, safety-property LTSs, and Bichi

automata/processes 128
Figure 6.1: A simple client-server system 132
Figure 6.2: Using Biichi processes to impose fairness constraints 135
Figure 6.3: System consisting of a server and two clients, one of which may crash 135
Figure 6.4: Using action priority to obtain various types of channels 139
Figure 6.5: Action priority is not compositional 140
Figure 6.6: LTS for RDRS_WRTRS 145
Figure 6.7: LTS for RW_STRESS 146
Figure 6.8: Biichi process used for checking progress property WRITER 147
Figure 6.9: Classes of properties supported BypdTA 150

14

Figure 7.1: Tool support for design and analysis of distributed systems

Figure 7.2: The Software Architect’s Assistant (SAA)

154

155

Figure 7.3: Interface of the LTSA tool

158

Figure 7.4: Animation of the coin tossing example

160

Figure 7.5: A multicast tree of receivers

161

Figure 7.6: Structure of an ordinary receiver in the RMTP

162

Figure 7.7: Compositional hierarchy for the RMTP

163

Figure 7.8: Safety property for the RMTP

168

Figure 7.9: Liveness properties for the RMTP

169

Figure 7.10: AnimatinddDES REC_Hor deadlock scenario

Figure 7.11: Abstracted LTS obtained for the RMTP after verification

171

173

15

16

Introduction 1

1.1 BACKGROUND 17
1.2 TOWARDS USABLE METHODS AND TOOLS 20
1.3 SOPE AND CONTRIBUTION OF THIS WORK 21

1.4 THESISOUTLINE 25

1.1 Background

With the inevitable increase in complexity of both hardware and software systems, the likelihood
of subtle errors is high. Such errors may have catastrophic consequences in terms of money,
time, or even human life. In general, the earlier an error is discovered, the cheaper it is to fix. In
the industry, there is therefore a growing demand for methodologies that can increase confidence
in correct system design and construction. Such methodologies will result in improved quality, as
well as in a reduction to the total development cost of a system. Additionally, purely on the
theoretical side, there is a need to provide a sound mathematical basis for the design of computer
systems, which can offer practising engineers the confidence of combining their experience with
a solid methodological framework.

The traditional engineering approach to construction of complex systems is to build models.
Models can be studied and modified until confidence is obtained in their correctness. The
advantage is that models are simpler, represent the particular aspects of interest of the system,
and their development cost is negligible when compared to the cost of building the system itself.

Formal verification advocates a similar approach to the construction of computing systems.

Formal verification means creating a mathematical model of a system, using a language to
specify desired properties of the system in a concise and unambiguous way, and using a method
of proof to verify that the specified properties are satisfied by the model. When the method of
proof is carried out substantially by machine, we spealawatomatic verification Two well-

established methods to verification are theorem proving and model checking.

In theorem provingboth the system and its desired properties are expressed as formulas in some

mathematical logic. The system satisfies a property if a proof can be constructed in that logic for

17

CHAPTER 1 INTRODUCTION

the property, from the axioms of the system. This is a powerful approach, which can deal directly
with infinite state spaces. It relies on techniques such as structural induction to prove over
infinite domains. However, the approach involves user interaction in selecting the inference
procedures to be applied. It often involves the generation and proof of a large number of lemmas,
which are likely to discourage even mathematically oriented designers. The following is taken

from the Web page of PVS (http://pvs.csl.sri.com) [Owre, et al. 96], one of the most widely used

theorem provers: “PVS is a large and complex system and it takes a long while to learn to use it
effectively. You should be prepared to invest six months to become a moderately skilled user
(less if you already know other verification systems, more if you need to learn logic or unlearn

Z)". Unfortunately, approaches that involve unfamiliar notations and require expertise before any
benefits can be obtained from their use are unlikely to be appealing to the average software

engineer.

In model checkinga finite model of a system is built and checked against a set of desired
properties. Model checking is more limited in scope than theorem proving, but is fast and fully
automated. The system model is in essence a finite-state machine, which is intuitive to the
average engineer. The system may be expressed directly in terms of state machines.
Alternatively, a subset of some higher-level language may be used, which permits more concise
specifications, while restricting the developer to finite-state models that can be handled by the
model-checking approach. For example, there exist tools that support the CCS and CSP process
algebras [Cleaveland, et al. 93b, Roscoe 94], and standard specification languages such as
LOTOS or SDL [Fernandez, et al. 96].

In model checking, desired properties are usually expressed either in some temporal logic [Pnueli
81] or in terms of automata [Vardi and Wolper 86]. An exhaustive search of the state space is
performed in order to check that the system is a model of its specifications — hence the term
“model checking”. This search is guaranteed to terminate, since the model is finite. When both
the system and its specifications are modelled as finite-state machines, the system can also be
compared to the specification to determine whether its behawiomformsto that of the
specification. Various notions of conformance have been used, such as refinement orderings
[Cleaveland, et al. 93b, Roscoe 94] or bisimulation relations [Cleaveland, et al. 93b, Fernandez,
et al. 96].

Unfortunately, modelling complex systems as finite-state machines has an inherent disadvantage,
commonly known asstate explosionThis problem describes the exponential relation of the
number of states in the model of a system, to the number of components of which the state is

made. As a result, model checking cannot handle efficiently systems that are made up of a large

18

CHAPTER 1 INTRODUCTION

number of (even small) state machines, nor with systems that manipulate data. In general, model
checking is only applicable to systems whose states have short and easily manipulated
descriptions [Wolper 95]. Typically, systems in this category concentrate on control, for instance
hardware, concurrent protocols, process control systems, and more generally what are referred to
as reactive systems [Manna and Pnueli 92]. These are systems whose role is more readily
described by their possible interaction sequences with their environment than by the

transformation they apply to complex data.

The main technical challenge in the area of model checking is to devise methods and data
structures that handle large state spaces. With the advent of new model-checking approaches, the
size of systems that can be handled has increased considerably. For example, [McMillan 93] used
ordered binary decision diagrams [Bryant 86] to represent state-transition systems efficiently.
The approach, also known agmbolic model checkings particularly effective for systems with
regular structure such as hardware circuits [Burch, et al. 94, Clarke, et al. 93b]. Another approach
to state explosion is based oeduction which consists of reducing the size of the state space
that needs to be exploreBartial order reductionis such a technique; it avoids the generation of

all paths formed by interleaving the same set of transitions [Godefroid and Wolper 91,
Holzmann, et al. 92]Reduction by compositional minimisaticmanother; it bases reduction on

intermediate simplification of subsystems [Cheung and Kramer 96b, Yeh and Young 91].

Admittedly, no single approach to formal verification is able to serve all purposes. For this
reason, verification tools are moving towards becoming tool-sets that support various approaches
to model checking [Fernandez, et al. 96, Holzmann 97]. Some of the existing theorem provers are
also moving towards the integration of model checking with theorem proving [Bjgrner, et al. 96,
Owre, et al. 96].

Model checking and theorem proving have been tried in a number of industrial case studies, and
errors have been discovered in protocols and designs [Clarke and Wing 96a]. Thanks to advances
from research in this area, the industry is now gradually introducing such techniques in the
system development process. Model checking is practical, fast and fully automated but inherently
vulnerable to state explosion. Theorem proving is powerful and flexible, but not as intuitive to
apply. We believe that due to its intricacy, theorem proving will be established as a task for
expert users, and for safety-critical systems that cannot be handled by model checking. Model
checking, on the other hand, will become established as a widely accessible method, although of
more limited scope. As this thesis is particularly concerned with the issues of usability and

accessibility of formal verification methods, it only deals with model checking.

19

CHAPTER 1 INTRODUCTION

1.2 Towards usable methods and tools

According to [Clarke and Wing 96a], experience has produced a number of criteria that play a

significant role in making methods and tools attractive to practising engineers. It is important for

such criteria to be taken into consideration if usability is the main goal in developing methods

and tools. In this section, we discuss a set of such criteria that we consider realistic, and which

have motivated our approach to formal verification.

20

Early benefits.In order to encourage practising engineers to use them, methods should
require a minimal effort before engineers realise the benefits from their use. Notations should
be clear and intuitive to the average user. Tools should have friendly user-interfaces that

make them easy to use, and their output should be easy to understand.

Incremental gainDevelopers should obtain increasing benefit as they put more effort into
learning methods and tools in depth. Ideally, tools should support various modes for users
with various abilities. They should be appealing to the beginner, but should also provide

more sophisticated analysis capabilities for experienced and more demanding users.

Integrated use.Analysis should not be an isolated phase in the software development
process. Rather, methods and tools for design, analysis and construction should be well

integrated, and supportrsilar approaches to system development.

Evolutionary developmentMethods and tools should support incremental system

development as well as component reusability.

Automation The higher the degree of automation of a tool, the higher its usability.

Approaches that require user interaction expect the user to have a good knowledge of their
underlying methodology, and are, as a result, mainly addressed to developers with expertise
in the specific approach. Automated tools are more widely accessible, and more readily

usable.

Error detection and correctionlt is not enough for a method to be able to certify
correctness. Rather, it is essential for it to concentrate on error detection and correction. For
correction, methods should support the generation of counterexamples. Counterexamples are
an invaluable guide to debugging because they provide an example execution of the system

that leads to the error detected.

CHAPTER 1 INTRODUCTION

7. Focused applicationAs mentioned, no single method can serve all purposes. Therefore, it is
desirable that methods concentrate on dealing efficiently with at least one aspect of a system,
or on addressing at least one range of applications. Particular emphasis should therefore be
placed on identifying and stating explicitly the strengths and weaknesses of the methods
developed. It is essential to provide potential users with clear criteria for selecting the

method and tool that is most appropriate to their needs.

8. Flexibility. In order to be able to handle complex systems of different kinds, and various
aspects of these systems, it is desirable for tools to accommodate multiple approaches to
formal verification, as well as to support a variety of input notations. It is, however, difficult

to achieve an integration of methods that is meaningful, without being over-complicated.

1.3 Scope of this work

Concurrent and distributed systems are no longer rare, but are widely used in applications from
television sets to train signalling and workflow systems. The order in which events occur in the
execution of such systems is unpredictable and only restricted by synchronisation of individual
processes. As a result, the design of distributed systems is generally complex, with a high
probability that subtle errors will cause erroneous behaviour. Without the assistance of automated
tools, it is particularly difficult for the developers of such systems to be confident about the

correctness of their designs.

Our main goal is the development of practical and effective techniques with tool support for
analysing the behaviour of concurrent and distributed systems. More specifically, we focus on
model-checking methods and tools that can be easily introduced into the system development

process, and are accessible to and usable by practising engineers.

The work presented in this thesis builds on previous experience with design and analysis of
distributed systems, within our research team. In our environment, the design of such systems is
based on the description of their software architecture in Darwin [Magee, et al. 95]. Darwin
describes a system as a hierarchy of components that implement services, and additionally
specifies component interactions. It has been extensively used for specifying the structure of
distributed systems and subsequently directing their construction. The Software Architect's
Assistant [Ng, et al. 96] is a visual environment for the design and development of distributed

software using Darwin architectural descriptions.

21

CHAPTER 1 INTRODUCTION

Concurrent and distributed systems are examples of reactive systems, whose intricacy resides in
the communication between their components. Such systems can be modelled in terms of
Labelled Transition Systems (LTSs). An LTS is an interacting finite-state machine that describes

the behaviour of a process in terms of the communication events in which it may engage.

Our experience with analysis was related to the use of compositional reachability analysis (CRA)
to compute system behaviour [Cheung 94c]. According to this, a distributed system is
decomposed in a hierarchy of subsystems, and the behaviour of each primitive subsystem is
modelled as an LTS. The LTS of the system is then obtained stepwise, by composing and
simplifying the LTSs of its subsystems. As a compositional minimisation approach, CRA may
significantly reduce state explosion. However, it is susceptible to intermediate state explosion, a
problem that occurs when components of a system explode faster than the system itself. When
constrained by activities of their context, these components usually have a much smaller state
space. A way of addressing this problem is to use specific processes, nat@ddces to
constrain the behaviour of subsystems according to their context. [Cheung 94c] proposed

techniques for generating interfaces automatically.

1.4 Contributions

We have developed theRRCTA model-checking approach, which places particular emphasis on
better method and tool usability. The following is an overview of the characteristics and

contributions of RACTA, based on the usability criteria presented in Section 1.2.

1.4.1 Integrated use — Evolutionary development

A major contribution of our work is that we have integrated analysis in a general environment for
the support of distributed systems development. As described below, our methods and tools work
in conjunction with each other, and offer a consistent environment for design, analysis, and

construction of distributed systems.

TRACTA achieves a tight integration of analysis with design in our environment, by using the
hierarchical structure of a system'’s software architecture, to direct CRA. The developer can thus
avoid redundant effort of re-defining system structure for every activity of software development.
TRACTA defines mappings between features of the Darwin language and operators of the LTS
model. In this way, system structure described in Darwin is automatically translated into a form

that can be used directly by our analysis tools.

22

CHAPTER 1 INTRODUCTION

Darwin supports hierarchical system design thus allowing developers to build their systems
incrementally. Our analysis techniques should similarly support incremental generation and
analysis of system behaviour. Indeed, CRA enforces an incremental approach to analysis, since
the behaviour of sub-components of a system can be analysed locally, during intermediate stages

of analysis.

SYSTEM STRUCTURE

™
TRANS TRANS ;

SYSTEM SYSTEM
ARCHITECTURE INSTANCE

REQUIREMENTS PRIMITIVE COMPONENT
CHANGES BEHAVIOUR + PROPERTIES

DARWIN \
COMPILER

Figure 1.1: Tool support for system design and analysis

ANALYSIS
RESULTS

The integration of our design and analysis methods is reflected in our tools, as illustrated in
Figure 1.1. In the diagram, boxes represent tools and depict their basic interface, and arrows
denote the flow of information between these tools. The SAA tool is used for describing software
architecture in Darwin. The software architecture may represent a family of systems, and needs
to be instantiated by the Darwin compiler for analysis and construction. At the same time, the
Darwin compiler generates an expression of the system structure, which is returned, through the
SAA, to the Labelled Transition Systems Analyser (LTSA). The LTSA uses such expressions in
conjunction with LTS models for primitive components, to generate and analyse system
behaviour with CRA.

To deal with intermediate state explosiorRACTA supports both automatically generated and
user-specified interfaces, as proposed by [Cheung and Kramer 95b]. For the case of user-
specified interfaces, our work contributes a theoretical foundation that completes the one

provided by [Cheung and Kramer 95b].

23

CHAPTER 1 INTRODUCTION

1.4.2 Automation — Error detection and correction

As a model-checking approachrACTA is fully automated. The LTSA tool (Figure 1.1), which

currently supports RACTA, has been based on experience gained from the extensive use of a tool
developed as part of this work [Giannakopoulou, et al. 97]. The LTSA has the advantage of being
implemented in Java, and is therefore cross-platform. It also provides an intuitive user-interface

that facilitates the use of our methods.

Our approach contributes a variety of model-checking mechanisms, as described below.

e TRACTA proposes the logic ALTL (Action Linear Temporal Logic) for specifying desired
properties of a system. ALTL is based on the linear temporal logic LTL [Gribomont and
Wolper 89], but it is specialised for reasoning about concurrent systems modelled as LTSs.

 TRACTA adopts the automata-theoretic approach to model checking [Gribomont and
Wolper 89, Vardi and Wolper 86]. It can check properties expressed directly as Buchi
automata, or as ALTL formulas that are translated into Biichi automata for verification. The
unigueness of RACTA lies in the fact that it addresses issues related to model checking in the
context of CRA. It provides efficient model-checking mechanisms that introduce model

checking naturally in our framework, where software architecture is used to direct CRA.

« In addition to generic mechanisms for checking properties expressed as Blchi automata,
TRACTA provides practical analysis strategies for certain classes of properties. Specifically, it
proposes mechanisms for checking safety properties, liveness properties expressed as
deterministic Blchi automata, and a class of liveness properties to which we refer as

progress. All these technigues are integrated in a methodology described in this thesis.

» TRACTA proposes a simple and efficient way of dealing with fairness. In this context, it
introduces an action priority scheme that allows users to impose adverse scheduling
conditions to a system, during analysis. Action priority can also be used to perform a partial

search on a system that is too large to be exhaustively explored by our tools.

Every checking mechanism inRRCTA concentrates on locating system behaviour that violates
desired properties. When errors are detect&hCTA returns counterexamples, which describe a
potential erroneous system execution. The LTSA tool supports the facility of interactive
simulation, which allows the user to examine the effects of any scenario on individual
components of a system. In conjunction with counterexamples, this facility provides invaluable

assistance in the task of diagnosing and correcting errors in the model of a system.

24

CHAPTER 1 INTRODUCTION

1.4.3 Early benefits — Incremental gain

In the LTSA tool, behaviour is specified in terms of a notation called FSP (Finite State
Processes), with LTS semantics. FSP has been developed by our research team [Magee, et al.
97]. The notation is easy to learn and use, and facilitates the translation from Darwin. The LTSA
provides the possibility of checking FSP specifications by graphically displaying the
corresponding LTSs. Initially, our plans involved a graphical input to our analysis tools, but we

soon realised that this becomes cumbersome for systems that contain more than a few states.

As discussed, RACTA supports several model-checking techniques that address users of
different levels of expertise. For simple experimentation with the model of a system, interactive
simulation can be applied. Inexperienced users can also perform default deadlock and progress
checks, and can use templates to specify properties of a system. Users that invest time in learning
the method and tool are given the opportunity of performing more elaborate analysis. They can
express properties in any form supported by the approach, include fairness considerations to
analysis, and apply action priority. They can additionally experiment with alternative checking

mechanisms.

1.4.4 Evaluation of results

The approach advocated in the thesis is evaluated with a humber of case studies. These case
studies concentrate on estimating how successRACTA has been in achieving its main goals.

More specifically, they demonstrate how the phases of design and analysis are integrated with the
use of software architecture. Furthermore, they evaluate the effectiveness of the various model-
checking mechanisms proposed by our approach. Finally, they compat@TA to similar

approaches with respect to the way they handle state explosion.

1.5 Thesis outline

Chapter 2 presents the factors that inhibit the introduction of model checking in the software
development process, especially for industrial applications. The main advances made for
overcoming these problems are analysed. Several successful model-checking tools and the

approaches that they implement are also discussed.

Chapter 3 describes the way in which analysis methods have been integrated in our environment
for the development of concurrent and distributed systems. The basic features of the Darwin

architecture description language are presented, in conjunction with their corresponding features

25

CHAPTER 1 INTRODUCTION

in the FSP language. We then introduce CRA, problems related to it, as well as the way in which

software architecture is used to guide CRA.

Chapter 4 motivates and describes the use of ALTL for expressing properties of LTSs. A
generic mechanism is then provided for checking that a system satisfies properties expressed as
ALTL formulas or Bichi automata. This mechanism is then adjusted to cope with issues that

arise when CRA is used to construct the LTS of a system.

Chapter 5 concentrates on the issue of safety-property checking. Safety properties can be
specified with a less expressive model than Blchi automata. This model is amenable to an
efficient checking mechanism, described in this chapter. A similar technique is presented, for

checking correctness of user-specified interfaces in the context of CRA.

Chapter 6 discusses the notion of fairness, and relates it to liveness property checking. It
proposes efficient strategies for checking liveness properties expressed as deterministic Blchi
automata, and for checking a class of liveness properties termed progress. Such checks are
performed under specific fairness assumptions about the system execution, which can be refined
with the use of an action priority scheme. The chapter concludes with a methodology that users
are advised to follow for analysing their systems. The methodology encourages the gradual
transition from efficient and inexpensive checks that may not detect all possible errors in the

system, to tests that are more expensive but also more thorough.

Chapter 7 describes the construction and use of our analysis tool, as well as the way in which it
interacts with our other tools for the development of concurrent and distributed systems. The
non-trivial case study of a Reliable Multicast Transport Protocol is used to evaluate the
applicability, performance and efficiency of our approach, and to compare it with similar

approaches.

Chapter 8 summarises and evaluates the contribution RAJTA to model checking, discusses

open issues and explores directions for future work.

Appendix A is a formal presentation of the LTS modAbpendix B is a quick reference for the
FSP languageAppendix C provides the semantics of the FSP language. FinAlbpendix D

presents the proofs of some theorems and lemmas used in the main body of the thesis.

26

Model Checking 2

2.1 TEMPORAL MODEL CHECKING 28
2.2 AUTOMATA-THEORETIC METHODS 35
2.3 Dscussion 36

2.4 SrMBOLIC REPRESENTATION 39

2.5 ON-THE-FLY VERIFICATION 41

2.6 RepucTioN 43

2.7 COMPOSITIONAL REASONING 51

2.8 DscussioNn 52

2.9 MODEL-CHECKINGTOOLS 53

2.10 IMMARY 56

As mentioned in the introduction, model checking relies on creating a finite model of a system
and checking that model against its desired properties. The system model is in essence a finite-
state machine. Given that the model is finite, it is possible to perform an exhaustive state-space
exploration for checking that the model satisfies its specifications. System specifications are
typically expressed in some temporal logic or as automata, giving rise to two general approaches
to model checking that are used in practice today [Clarke and Wing 96a]: temporal model

checking and automata-theoretic model checking, respectively (Figure 2.1).

MODEL CHECKING
I

TEMPORAL LOGIC AUTOMATA THEORETIC

Figure 2.1: Approaches to model checking

Any model-checking technique suffers from an inherent limitation commonly knowstaie
explosion This describes the exponential relation of the number of states in the model of a
system, to the number of components that make up the system states. The main technical
challenge in the area of model checking is to devise methods and data structures that handle large
state spaces. A number of methods have been proposed for avoiding state explosion. These

methods fall roughly into four main categories (Figure 2.2).

27

CHAPTER 2 MODEL CHECKING

Symbolic representatiotechnigues try to avoid state explosion by representing state transition
systems implicitly, using binary decision diagrams. Since the model of the system is represented
symbolically, there is no need to construct it as an explicit data strucmethe-fly model
checkingconsists of verifying the system during its generation. It simulates all possible transition
sequences that the system is able to perform in a depth-first traversal of the system graph,
without storing its transitions; the search stops after any error has been located, which is often
well before the whole state space has been exploReduction methods are based on
transforming the verification problem into an equivalent problem in a smaller state space.
Finally, compositional reasonings based on identifying local properties of subsystems that
guarantee desired properties for the global system. In this way, the global state graph does not

need to be generated, since properties of subsystems are checked instead.

This chapter discusses model checking in terms of the above categories. Temporal and automata-
theoretic model checking are described at first. The main approaches to state explosion are then

discussed. Finally, an overview is made of existing model-checking tools.

STATE EXPLOSION CONTROL

SYMBOLIC ON-THE-FLY COMPOSITIONAL
REPRESENTATION REASONING

REDUCTION

PARTIAL ORDER COMPOSITIONAL ABSTRACTION |
MINIMISATION

Figure 2.2: Approaches to contrdling state explosion

2.1 Temporal model checking

Temporal model checking is a technique developed independently by [Clarke, et al. 83], and
[Queille and Sifakis 82]. In this approach, desired properties of a system are expressed in terms
of a propositional temporal logic. Temporal logics have proven to be useful for specifying

concurrent systems, because they can describe the ordering of events in time without introducing

time explicitly [Clarke, et al. 93a]. As it is not necessary to use past operators for program

28

CHAPTER 2 MODEL CHECKING

verification, we restrict our discussion to tense operators that involve the present and future. The

terminology used follows that of [Gribomont and Wolper 89].

A temporal frames a pair § R) whereSis a set of time instants, ariflis a relation onS that
relates each instant with ilmmediatesuccessor(s). The reflexive transitive closur&ptlenoted
ass, represents temporal orders t denotes that instastoccurs before, or s andt correspond
to the same time instant. The nature of Beelation gives rise to two different models of time

and logicsbranching-timeandlinear-timetemporal logic.

Given a seP of atomic propositions, gemporal interpretatiori is a triple § R, 1), where § R)

is a temporal frame, andis aninterpretation functionthat defines a mapping fror8 x P to
{true, falsg. In other words,| assigns a truth-valug(s, p) to each time instant ir§ and
proposition inP. A temporal logic defines semantic rules for the operators of that logic. Given an
interpretation §, R, 1), these rules assign a truth-value to each pair consisting of a time instant in

S and a formula of the logic.

Desired properties of a program can be expressed as formulas in some temporal logic. As
described in the following, the state-transition system that represents a program can be thought of
as a (set of) temporal interpretation(s) in that logic. Temporal model checking then consists of
checking if the properties of the program are true in the interpretation(s) defined by the program.
When violations of properties are detected, the model-checking algorithms return
counterexamples, i.e. examples of system executions that exhibit erroneous behaviour. As such,

counterexamples provide invaluable guidance in debugging the design of a system.

Kripke structures

In this chapter, we assume, for simplicity, that systems are modelled as finite Kripke structures
[Hughes and Cresswell 68]. A finite Kripke structure is a 5-tueq, P, L, R), whereSis a

finite set of statesg O Sis the initial stateP is a finite set of atomic propositionk;S — 27 is a
function that labels each state with the set of atomic propositions that hold at that state, and
ROSxSis a transition relation. Assume that a system is associated with a vector of state variables
(U, Uy, ..., Uy). Then each state = (o, X1, ..., Xn) in its Kripke model represents a specific
assignment of valuesii€x) to the system state variables. Atomic propositions will usually be of

type (equalsa), and will be true in all statex{, x4, ..., X,) for whichx=a.

LetM = (S q, P, L, R) be the Kripke model of a program. We assume that in general, reRtion
is total, which means that for every statél S [0s” such that¢, s) 00 R. A path pin M is an

29

CHAPTER 2 MODEL CHECKING

infinite sequence of statesy(s;, S, ...), such thatli =0, (s, s+1) OR. We say thap=(s, Si, S,

...) is rootedat states,.

2.1.1 Linear time

In linear temporal logic (LTL), time is a linearly ordered set, usually measured with natural
numbers. In a linear frameS(R), R is a functional relation that assigns to each time instant
exactly one immediate successor. The temporal agdarLTL is a total order, i.e. for any two

time instantss, t 0 S eithers<tort < s It is customary to give the semantics of this logic in

terms of the frameN, Sucg, whereN is the set of natural numbers aBdcc(Sucgn) = n+1) is

the standard successor function on that set. In this semantics, an interpretation can also be seen as
an infinite sequence of assignments of truth-values to the atomic propositions [Gribomont and
Wolper 89].

Syntax

The language of linear-time temporal logic (LTL) is that of propositional calculus augmented

with the following fourtemporal operators

o —unary operator, read “at the next time”; U — binary operator, read “until”.

O — unary operator, read “always”; O — unary operator, read “eventually”;

All syntactic rules of propositional logic are also rules of LTL. Moreovef,ahdg are formulas

of LTL, then so areof, of, Of, f U g.

Semantics

A linear-time temporal interpretatioh= (N, Sucg) assigns a truth-value to any formula of LTL

at any time instarg O N in the following way:

o« I(s f)=I(s, 1), OfOP, whereP is the set of atoms

Logical operators:
o I(s fg)= I(s,f) O I(s) o I(s-f)=-1I(sf)

The semantics of the remaining logical operators can be defined in terms of the above.
Temporal operators:

e I(s of) = I(s+1,f)

30

CHAPTER 2 MODEL CHECKING

o I(s,fUQg)=trueiff OjON. I(st, g) =trueand 0<i <j, I(s+i,f) =true
o I(s, af)=trueiff I(s+i,f)=true,di=0
o I(s Of) =trueiff OjON. I(s+j, f) =true

The operatorld that we have defined, is often referred to as “strong until” as opposed to “weak
until”, which we denote ad{y. “Weak until” has similar semantics to “strong until”, with the
addition that { Uw Q) is also true wheth is always true. In fact, it may be expressed in terms of

strong until as follows:f(Uw g) = (f U g) O of. Note that the semantics of operatérando has
been explicitly described here in order to clarify their use to the reader. However, these operators

are simply abbreviations for the following formuld¥:= (trueld f), andof = =0 f.

Verification

Let M = (S q, P, L, R) be the Kripke model of a program. Each patlr (S, S, S, ...) IN M

defines a temporal interpretatiah as an infinite sequence of assignments of truth values to

atomic propositions i, in the following way: at every instamIN, a propositiormP is true
atn, iff mOdL(s,). We say that a path= (%, Si, S, ...) satisfiesa formulaf, if f is true ats, in the
interpretation defined bp. ProgramM satisfies a formuld, if every pathp rooted at the initial
stateq of M satisfiesf. Intuitively, a program satisfies a property of linear temporal logic, if all

the possible executions of the program satisfy this property.

[Sistla and Clarke 85] showed that the model-checking problem for LTL was, in general,
PSPACE complete. [Lichtenstein and Pnueli 85], and [Vardi and Wolper 86] proposed LTL
model-checking algorithms that are exponential in the length of the formuldinbat in the size

of the model. Based on this result, they argued that the high complexity of LTL model checking
might still be acceptable for short formulas. Note that by “length” of a formula, we mean the
number of symbols (propositions, logical connectives and temporal operators) appearing in the

representation of the formula [Gribomont and Wolper 89].

The algorithm proposed by Vardi and Wolper is based on Blichi automata, which are finite
automata that accept infinite words (see Chapter 4). The approach has been used in a number of
tools that perform LTL model checking [Aggarwal, et al. 90, Holzmann 97]. The idea is the
following. It has been established that given an LTL formfiiais possible to build a Bulchi
automaton accepting exactly the infinite words satisffif@ribomont and Wolper 89, Vardi and

Wolper 86]. The translation can be automated with an efficient algorithm [Gerth, et al. 95].

31

CHAPTER 2 MODEL CHECKING

However, as the size of the automaton obtained is in the worst case exponential to the length of

the formula, the method is more suitable for short formulas.

In order to verify that a program satisfies an LTL propektghe Bichi automatoB for —f is

constructed. The product of the system (viewed as an automatonpuistithen computed. The
product automaton accepts those infinite words that belong to the intersection of the languages of
the automata composed. Therefore, checking that the program sdtidtksces to checking that

the product automaton is empty. This can be performed with complexity linear in the size of the
product automaton [Vardi and Wolper 86]. The advantage of this approach is that it essentially

reduces model checking to reachability analysis (see Chapter 4).

The negation~f of a formulaf is used because it yields a more efficient model-checking

algorithm [Courcoubetis, et al. 92]. An additional advantage has to do with the size of the state

space corresponding to the intersection of the system with the autoBdbor f (obtained from

their product). Although in the worst case, the size of this state space equals the size of the
Cartesian product of the system wihin the best case it is zero. This will be the case where no
initial portion of the invalid behaviour represented Byappears in the system, and therefore the

intersection of the system amicontains no states [Holzmann 97].

Fairness constraints can be introduced in a system in terms of Blichi automata. Such constraints
are handled by a simple extension to the model-checking algorithm [Aggarwal, et al. 90].

Fairness is an important issue when checking a system for liveness (see Chapter 6).

2.1.2 Branching time

In linear temporal logic, each time instant has exactly one immediate successor. In branching
temporal logic, the model of time is anfinite finitary tree, i.e. a tree in which every node has a
finite, non-zero number of immediate successors. Linear time is therefore a special case of
branching time. In branching time, the temporal order is a partial order, where the past of each
instant is linearly ordered: for any time instamtss, t, if r < t ands < t, thenr ands must be

linearly ordered [McMillan 93].

A pathin a branching-time frameS R) is a maximal linearly ordered set of time instantsSin
The branching-time model is an inherently non-deterministic model: each time ihs@amthave
many possible futures. Each of these futures corresponds to one path originatjra ath
therefore represents one possible evolution of time into the future. Branching-time logics capture

such non-determinism explicitly, by introducing two branching operators in addition to the linear

32

CHAPTER 2 MODEL CHECKING

ones. These operators are usually denoted as “A” (for all possible futures — expresessity

and “E” (there exists a possible future — expregsassibility).

In the framework of branching-time temporal logic, the reader may often come across operators
G (Generally), F (Future), X (neXtld (Until), that correspond tas, ¢, o, U, respectively. For

consistency, we maintain the notations introduced earlier in this chapter.

In the following, we describe the branching-time logic CTL (Computation Tree Logic). The
syntax rules of CTL ensure that temporal operators occur only in pairs consisting of A or E,
followed by a linear operator. CTL* is a more expressive logic that does not enforce these
restrictions [Clarke, et al. 86, Clarke, et al. 96b]. Although the expressive power of CTL* is high,
the model-checking problem for this logic is PSPACE complete [Sistla and Clarke 85].

Syntax

The syntax of CTL is defined as follows:

e every atomic proposition iR is a CTL formula

« if fandg are CTL formulas, then so aréf, (f 0 g), Ao f, Eo f, A(f U g), EFf U g).

Again, operatorld denotes “strong until”. The remaining operators are derived from the above

according to the following rules [McMillan 93]:

e fg==(-fO~Q) » AOg = A(true U g) » EOg = E(true U g)
*Aof == E(true U —f) *Eaof = = A(true U —f)
Semantics

The semantics of CTL formulas with respect to a branching-time temporal interpretation

I=(SR)) is given below, whers ands range over time instants B i CN:

I(s, f) = I(s,), O fOP, whereP is the set of atoms

© Is~f=-1Isf)

IsfOg=I(sfOI(s0)

I(so, Acf) = trueiff for all paths &, sy, ...), I(sy, f) = true

33

CHAPTER 2 MODEL CHECKING

o I(so, Eof) =trueiff for somepath &, s, ...), I(sy, f) = true

o I(so, A(f U Q) =trueiff for all paths &, sy, ...):

OjON. I(s, g) =trueand0 0<i <j, I(s, f) = true

* (s, E(f U Q) =trueiff for somepath &, s, ...):

OjON. I(s, g) =trueand0 0<i <j, I(s, f) = true

Verification

A branching temporal interpretatioh = (T, R', 1) can easily be obtained from a finite Kripke

structureM = (S g, P, L, R) by starting at the initial statg, and unwindingM into an infinite

finitary tree (see Figure 2.3). For any time inst#df, and propositiormdP, I(t, m) = true, iff

mOL(s), for the states of M at timet. In other words, the interpretation function assigns to each
time instant those propositions that are true at the state of the Kripke structure that corresponds to

this time instant. We say thil satisfiesa CTL formulaf, if I(q, f) = true, that is, if the formula

holds at the initial state of the structure.

CTL model checking can be performed with an algorithm that is linear in the product of the
length of the formula and the size of the Kripke model of the system [Clarke, et al. 86]. However,
we choose to discuss an approach that is based on a fixed-point characterisation of the CTL
operators. This characterisation provides an effective algorithm for the model-checking problem

and also forms the basis of the symbolic model-checking approach (Section 2.4).

A S

g g ¢

Figure 2.3: Unwinding a Kripke structure into an infinite finitary tree

34

CHAPTER 2 MODEL CHECKING

Let M = (S q, P, L, R) be the Kripke model of the system, aRdedS) denote the lattice of
predicates ove§, where each predicate is identified with the set of stateStimt make it true,

and the ordering is set inclusion. Thus, the least element of the lattice is the empty set denoted by
false and the greatest element is the set of all st&eenoted bytrue. A functional F from

PredS) to PredS) is called apredicate transformerlf we view each CTL formulaf as a
predicate identified with the stateslithat satisfyf, then each of the basic CTL operators can be
characterised as a fixed point of a monotonic predicate transformer [Clarke, et al. 96b]. For

example, Bp is characterised as the least fixed point of functiahdp O EoZ], whereZ is a
variable that acts as a placeholder, Zegets substituted inp(d EcZ) when the functional is

applied to a parameter.

For finite domains, least and greatest fixed points of monotonic functionals can be efficiently
computed [Clarke, et al. 96b]. The functional is applied in rounds until a fixed point is obtained:
the first round applies it téalseor true for the least or greatest fixed point respectively, and each
new round applies it to the result of the previous round. Since the do®adnfinite, this
procedure is guaranteed to terminate, in fact it will terminate after at i§asiynds [McMillan

93].

This model-checking algorithm therefore computes, for a given Kripke strubyiend a CTL
formulaf, the set of stateS§,[ISwheref holds. TherM satisfiedf if its initial stateq belongs tdS,.
CTL model checking has also been extended to handle fairness constraints given as Bichi
acceptance conditions. In this context, model checking is restricted to fair computation paths, i.e.

paths along which each constraint holds infinitely often [Clarke, et al. 86, Clarke, et al. 96b].

2.2 Automata-theoretic methods

In automata-theoretic methods, the specification is given as an automaton. Then the system, also
modelled as an automaton, is compared to the specification to determine whether its behaviour
conforms to that of the specification. Several notions of conformance have been explored,

including language inclusion, equivalence, and refinement orderings [Clarke and Wing 96a].

Conformance with respect fanguage inclusiorconsists of checking that the language of the
automaton representing the system is contained in the language of the automaton representing a
system property. [Kurshan 94] describes how language inclusion can be checkeddtymata

(these are finite automata on infinite words, Blchi automata being an example of those). The
approach is similar to checking LTL properties by translating the LTL formulas into Buichi

automata, as presented in Section 2.1.1. In fact, the work of [Vardi and Wolper 86] on model

35

CHAPTER 2 MODEL CHECKING

checking LTL using automata has related the temporal and automata-theoretic approaches to

model checking.

Equivalence checkingonsists of comparing the model and the specification of the system with
respect to some equivalence relation [Cleaveland, et al. 93b, Fernandez 88, Fernandez, et al. 96].
Notions of equivalence that are often used in practice include observational and strong
eqguivalence, observational congruence [Milner 89], trace and failure-divergence equivalence
[Hoare 85], and branching equivalence [Glabbeek and Weijland 89]. Tools that take this
approach typically support several notions of equivalence. Designers can thus select the notion of
eqguivalence of interest, based on the semantics that they wish to attach to the state machines that

are compared.

In refinement ordering§Cleaveland, et al. 93b, Roscoe 94] (also knowrpesorder checking
specifications are treated as minimal requirements to be met by the system (the system is often
referred to asmplementationin this context). Specifications can then be partial, i.e. they may
contain “holes” — these are points where the system designer wants to allow freedom for the
implementation [Cleaveland, et al. 93b]. In this case, an implementétioreds to supply at

least the behaviour demanded by its specificaprwhile adding detail to the parts that are
under-specified. We then say thais more defined thaB, or thatA refinesB, which establishes

an ordering relation between processes, referred toefisementor preorder Refinement

checking algorithms proceed in a similar fashion to equivalence checking.

The idea of refinements gives rise to an approach to system development knewocassive
refinementg[Kurshan 94]. This is a methodology driven by the creation of a succession of
models of increasing detail, all the way to executable implementations. The model of each level
refines that of the previous level, and serves as a specification for the succeeding model. The
requirement is that if a mod#ll; is a refinement of a modéll,, then it must be guaranteed that

M, satisfies the properties that have been provenMear This permits verification of each

property in the simplest model where it can be defined [Kurshan 94].

2.3 Discussion

In general, programs are modelled as non-deterministic transition systems. The non-determinism
comes either from the modelling of concurrency by interleaving, or from the absence of
information about the behaviour of some component of the system or its environment [Wolper
95]. An unavoidable issue is how to handle in a logic the fact that, in non-deterministic models,

each state has multiple successors [Wolper 95].

36

CHAPTER 2 MODEL CHECKING

As seen, the branching approach to temporal logic deals with non-determinism explicitly, as the
model of time is a tree, where each node may have multiple successors. Formulas are interpreted
on the computation tree defined by the finite-state model of the program. Branching-time
operators are used to express the fact that something has to hold for some, or for all possible
futures. On the other hand, the linear approach handles non-determinism implicitly. A program is
viewed as a set of possible executions. Formulas are interpreted on program executions, which

evolve linearly in time.

Let us compare at this point the relative expressiveness of the various property specification
formalisms in model checking. We perform this in terms of the temporal logics LTL and CTL,
and of Blichi automata; these have efficient decision procedures and have been extensively used

in existing verification methods and tools.

There exist properties of CTL that cannot be directly expressed in LTL. For example, assume

CTL property AoEOstart, which states that regardless of what state the program enters, there

exists a computation leading back to the initial state of the program. Neither this property, nor its
negation can be expressed in LTL [Clarke, et al. 97]. On the other hand, a simple and often used

LTL formula o®p, which states thgp must hold infinitely often in every program execution, is
expressed in CTL by the more complicated formutaA®p. CTL formulas tend to be longer and

more complicated, because branching operators must always precede linear ones.

Bichi automata have a number of advantages as compared to temporal logic. Firstly, they are
inherently capable of expressing eventuality and fairness assumptions. As a result, both the
system and its specification are defined in a syntactically uniform fashion. With LTL and CTL
model checking, Blichi acceptance conditions need to be introduced in the system model in order
to handle fairness [Aggarwal, et al. 90, Clarke, et al. 86, Kurshan 94]. An additional advantage of
Bilchi automata is that they can express such propertiep asust hold at every even time
instant” (often referred to as unbounded sequentiality properties), which are not expressible in
the logics presented [Kurshan 94]. To conclude, the expressive power of Blchi automata is
strictly larger than that of LTL [Wolper 83]. As far as CTL is concerned, there are properties

expressible by automata that are not expressible in CTL, and vice versa.

In our approach, properties can be specified either as LTL formulas that are translated into Blichi
automata for verification, or directly as Blichi automata. This choice has been influenced by the

following factors:

37

CHAPTER 2 MODEL CHECKING

e Most properties that the average user of a model-checking tool needs to specify can be
expressed in all formalisms discussed. Therefore our choice of formalism is related more to
the usability of the formalism than to its relative expressiveness. With temporal logic
formalisms, the linear approach is natural when the properties are thought of as related to
executions of the program. The branching approach is well adapted when the properties are
thought of in terms of the structure of the program [Wolper 95]. We have found that it is
more intuitive, and consequently less error-prone, to express properties of programs in LTL.

« As compared to automata, logical notations may be more compact and usable in defining
properties. Admittedly, this advantage becomes less significant as more complicated
properties need to be expressed. On the other hand with automata, the system and its
properties are handled in a uniform way. The syntactic advantage of a logical notation may
also be offset through the use of a library of parameterised common properties. In general,
logical notations and automata both have their respective advantages. It is therefore a useful
feature for a method to accommodate both kinds of formalisms. This can be easily achieved
in the context of LTL model checking, as described in 2.1.1. The automata-theoretic
approach to LTL model checking has been efficiently implemented in a number of
approaches [Aggarwal, et al. 90, Holzmann 97]. Although a similar approach has been
proposed for model checking branching-time logics [Bernholtz, et al. 94], this approach is
not as well-established. Finally, as described in Chapters 4—6, the expression of properties as
automata is essential for the mechanisms that we have developed for model checking in the
context of CRA.

As far as building a system by successive refinements is concerned, we believe that, although
promising from a theoretical point of view, the approach is of limited practical interest. Besides
significantly restricting the choices of designers during system construction, one must understand
the concept well in order to use it correctly. Additionally, it is hard for a developer to gain

benefits early enough to be convinced to use the method.

In general, we believe that it is extremely optimistic to assume that a system can be built in a
provably correct fashion, proceeding formally all the way from specification to construction.
Rather, we view formal verification as a way of checking that the protocols designed and the
algorithms used for achieving a specific goal satisfy the properties required from them. The way
in which these will be implemented is the responsibility of the developer, who must be trusted in
turning the main design ideas into an efficient implementation. As a means, however, of bridging
the gap between design and implementation, our approach uses software architecture, as

described in Chapter 3. We believe that this is a practical trade-off between i) guiding the

38

CHAPTER 2 MODEL CHECKING

development of the system by restrictive formal rules to guarantee correctness and ii) proving

correctness for a model of the system that has no obvious links to the system implementation.

2.4 Symbolic representation

The model-checking algorithms discussed in previous sections suffer from the state explosion
problem. In the following sections, we discuss approaches for alleviating this problem (see
Figure 2.2).

Symbolic representatiois based on representing the finite-state model of a system implicitly
[Coudert, et al. 89, McMillan 93]. The usual implicit representation is an efficient encoding of
Boolean functions known as Ordered Binary Decision Diagrams (OBDDs) [Bryant 92]. OBDD
representations have three main advantages: they are reasonably small for a large class of
interesting Boolean functions, they are canonical for a given ordering of the input variables, and
they can be directly manipulated to perform efficiently all basic Boolean operations [Kurshan
94].

ON

N

Figure 2.4: Ordered binary decision tree and OBDD for @[b)[(c[d) with variable ordering a<b<c<d

An OBDD is similar to a binary decision tree, except that its structure is a directed acyclic graph
rather than a tree, and there is a strict order placed on the occurrence of variables as the tree is
traversed from the root to the leaves. More specifically, the OBDD representation for a Boolean
function f is obtained by reducing a related structure called ordered binary decision tree (see
Figure 2.4). To obtain the truth-value given specific values of the variable®ire traverses the

binary decision tree from the root to the leaves. At each node, the value of the corresponding
variable determines which path will be taken: one descends the left/right child if the value of the

variable labelling the node is false/true (value 0/1), respectively. The variables in the tree occur

39

CHAPTER 2 MODEL CHECKING

in increasing order along any path from the root to the leaves. The binary decision tree is reduced
into an OBDD by combining any isomorphic sub-trees into a single tree, and eliminating any

nodes whose left and right children are isomorphic (see Figure 2.4).

The finite-state model of a system can be expressed in terms of OBDDs as follows. Each state is
encoded by an assignment of Boolean values to the set of state variables associated with the
system. If the state variables are not binary but range over a finite ddnairen an appropriate

binary encoding orD can be used. This process is made transparent to the user in tools that
support symbolic representation (e.g. SMV [McMillan 93]). The transition relation can thus be
expressed as a Boolean function in terms of two sets of variables, one set encoding the current

state, and the other encoding the new state. This function is represented as an OBDD.

Symbolic model checkinghecks temporal formulas directly on the OBDD representation of the
model of the system. The corresponding algorithm for CTL, for example, proceeds similarly to
the algorithm of Section 2.1.2. It uses OBDD representations for the transition relation and the
atomic propositions, and returns an OBDD representing the states of the system where the given
formula holds. All manipulations required by the algorithm — including comparison of OBDDs to
check whether the fixed point has been reached — can be performed efficiently on OBDDs. The
approach has been applied successfully for CTL model checking. However, LTL model-checking
and automata-theoretic approaches can also benefit from representing the model of the system

symbolically [Clarke, et al. 97, Fernandez, et al. 93, Kurshan 94].

To conclude, the symbolic approach avoids constructing the state graph of the concurrent system
explicitly [Clarke, et al. 96b, McMlan 93]. The issue is therefore noriger the size of the state
space but the size of the OBDD representation. As the latter captures some of the regularity in
state spaces, it has been possible to verify systems (hardware in particular) many orders of
magnitude larger than could be handled with an explicit representation of the state space [Burch,
et al. 90, Clarke, et al. 93b].

OBDD-based algorithms have not yet replaced explicit enumeration algorithms, as they do not
perform better in all cases [Kurshan 94]. This is mainly on account of the fact that the size of an
OBDD depends critically on the variable ordering. The problem of finding the ordering that
returns a minimal tree is NP-complete. Several heuristics have been developed for finding a good
variable orderingf such an ordering exists. However, there are Boolean functions that have

exponential size OBDDs faxnyvariable ordering [Clarke, et al. 93a].

40

CHAPTER 2 MODEL CHECKING

2.5 On-the-fly verification

Reachability analysis is a verification technique that performs an exhaustive exploration of all
reachable states and transitions of a system. On-the-fly techniques are based on the observation
that in performing reachability analysis, it is not necessary to store the entire state graph of the
global system (or reachability graph). In fact, state explosion would make this impossible for
most systems of practical relevance. Rather, it is enough to simulate all possible transition
sequences that the system is able to perform. A classical depth-first search can be used to explore
the system “on-the-fly”, i.e. without storing the transitions that are taken during the search. This

reduces substantially the memory requirements [Godefroid, et al. 92].

For a depth-first traversal of the graph, the minimal storage requirement is that of the current path
explored. Such a search reduces memory requirements while still guaranteeing exhaustive state-
space exploration. However, the time needed to perform the verification may grow dramatically
due to the regeneration of already-visited states. At the other extreme lies a depth-first traversal
of the graph where states are stored once they have been visited. This reduces time requirements
to the minimum, while requiring the storage of all reachable states. However, for large
reachability graphs, it may be impossible to store all states. Various methods have been proposed

that attempt a trade-off between these two strategies.

In addition to storing the current pathate-space cachingreates a restrictechcheof selected

visited states [Holzmann 87a]. Initially, all visited states are stored in the cache, until it fills up.
When this happens, old states are gradually replaced with new ones. Several replacement
strategies are studied in [Holzmann 87a]. The effectiveness of state-space caching depends on the
size of the cache, but also on the structure of the state space. The latter is highly unpredictable,
which complicates the task of finding an optimal caching setup, whereas an unsuccessful setup
results in catastrophic increase of execution time [Holzmann 87a, Jard and Jéron 91]. As
mentioned, such explosion of run-time requirements is caused by multiple explorations of
unstored parts of the state space. [Godefroid, et al. 92] describe a method that reduces the number
of times that states are visited during the search, thus increasing the benefits obtained with state-
space caching. This is achieved by avoiding the exploration of interleavings of the same patrtial

ordering of statement executions that lead to the same state (see also Section 2.6.1).

When the problem size is prohibitive for exhaustive verification, Hiestate hashingor
supertracetechnigue performs partial search of the state space [Holzmann 88, Holzmann 95].
Visited states are stored in a hash tatjevhose size depends on the available memory. For each

states, a single bit with addreds(s) is used, wheré is a hash function returning bit-addresses in

41

CHAPTER 2 MODEL CHECKING

H. If the bit at addres(s) has value 1, then the searching algorithm assumessthas already

been visited. Since there is no collision detection, the search is partial. The coverage of the
algorithm can be significantly increased with a sequential bit-state hashing technique [Holzmann
95]. The technique consists of performing multiple runs with statistically independent hashing
functions, until the required coverage level is reached. This is not a problem, because the limiting

factor in reachability analysis is usually space rather than time.

Traditionally, reachability analysis has been used successfully for detecting errors such as
deadlock or unexercised code [Courcoubetis, et al. 92]. However, the applicability of reachability
analysis algorithms has been extended with the development of automata-theoretic model-
checking approaches. For example, as discussed in Section 2.1.1, LTL model checking can be
reduced to reachability analysis (although on a state space that is the product of the original state
space with the state space of the property automaton [Vardi and Wolper 86]). It is then possible

to provide algorithms for performing model checking “on-the-fly”.

[Courcoubetis, et al. 92] and [Godefroid and Holzmann 93] propose memory-efficient algorithms
for checking emptiness of Blichi automata in LTL model checking. These algorithms can be used
for performing on-the-fly verification, and are compatible with complexity-management
techniques such as bit-state hashing and state-space caching. [Gerth, et al. 95] propose an
algorithm that translates an LTL formula into a Blchi automaton, using a very simple depth-first
search. In this way, the protocol verification algorithm obtained constructs both the protocol and
the property automaton (and hence the product automaton) “on-the-fly” during a depth-first
search that checks for emptiness. More recently, algorithms have been developed for on-the-fly

model checking of branching-time logics [Bhat, et al. 95].

An “on-the-fly” approach can also be taken for checking behavioural equivalences and preorders.
[Fernandez and Mounier 91, Fernandez, et al. 92a] describe a technique which, in order to check
equivalence, performs reachability analysis on a particular synchronous product between the
LTSs compared. During the computation of this product, transitions to a specific sinkatate

may be introduced in the resulting state space. When any of the two systems is deterministic,

eguivalence checking reduces to the reachability of the it the product state space.

An advantage of on-the-fly verification is that it needs only proceed until an error is detected, in
which case a counterexample is generated to assist the designer with error correction. Often,
errors are discovered very early during the search, thus avoiding the exploration of the entire

state space. On the other hand, when the system is correct, the search covers the entire state

42

CHAPTER 2 MODEL CHECKING

space. The approach is therefore particularly suitable for early stages of design, which tend to

contain many errors [Kerbrat 94].

2.6 Reduction

Reduction techniques concentrate on building part of, or an abstraction of the state space of a
program, while fully preserving the capability to prove properties of interest. In this section we

describe the main approaches to state-space reduction.

2.6.1 Partial-order reduction

In most model-checking approaches, concurrency is modelled by interleaving, which is a major
factor contributing to state explosion. Partial-order reduction is based on the observation that in
concurrent systems, the total effect of a set of actions is often independent of the order in which
these actions occur. As a result, wasteful generation of all possible interleavings between such
actions can be avoided. Several methods based on this idea have been proposed, which explore a
reduced graph of the system while preserving properties of interest [Godefroid and Wolper 91,
Godefroid and Wolper 94, Holzmann, et al. 92, Peled 94, Valmari 93a].

Partial-order reduction methods perfornsalectivesearch of the system state space. For each
states reached during the search, they compute a subsétthe set of transitions enabled st

and explore only transitions if. This is their difference with classical searches, which, for each
states reached during the search, explore all transitions enabledTato main techniques have

been proposed in the literature for identifying these subsets; they are based on the computation of

persistent setsandsleepsets [Wolper and Godefroid 93].

A persistent set Tfor some states contains transitions enabled at with the following
characteristic: any transition that is reachable fohy performing exclusively transitions not in

T is independenbf (i.e. does not interact or affect) transitionsTin(see [Wolper and Godefroid

93] for more details). One of the basic persistent set techniques is proposed by [Valmari 93a] and
is based on the computation sfubborn setsin the reduced exploration of the system state
space, only transitions in the stubborn set of each state are selected. It has been proven that the
execution of all remaining transitions can be postponed without affecting the verification results.
The aim is therefore for the stubborn set to be as small as possible, in order to achieve a larger
reduction of the state space. The algorithm described by [Valmari 93a] computes stubborn sets

during state-space exploration and can be performed “on-the-fly”.

43

CHAPTER 2 MODEL CHECKING

Thesleepsettechnique exploits information about the past of the search. Used alone, it reduces
the number of transitions explored, but not the number of states. As mentioned in Section 2.5,
this is very useful when sleep sets are combined with state-space caching techniques [Godefroid,
et al. 92]. During depth-first search of the system graph, each sfatassociated with a sleep

set, which is a set of transitions that are enabled it will not be executed froms. Sleep sets

can be combined with persistent sets to further reduce the state space explored. Indeed, when the
persistent set technique cannot avoid the selection of independent transitions in a state, sleep sets
can avoid the exploration of multiple interleavings of these transitions [Wolper and Godefroid
93].

[Godefroid and Wolper 91] propose partial-order technigues for the verification of deadlock

freedom and safety properties. In this work, safety property checking is reduced to deadlock
detection, for which an efficient partial-order technique is described. More recent techniques
have been proposed that extend earlier work on partial orders and bring it to the full capabilities
of model checking. Some of these techniques perform model checking of LTL formulas that do
not contain the “next time” operator [Holzmann and Peled 94, Peled 94]. The technique
presented by [Godefroid and Wolper 94] can handle the full LTL logic, as well as some extended

logics. This approach uses automata-theoretic techniques that include extensiesstomata.

When combined with model checking, partial-order reduction is also tailored according to the
property that is being verified. It is usually the case that partial-order techniques attempt to
compute, mostly during the search, those parts of the state graph that are redundant and can be
skipped. However, [Holzmann and Peled 94] propostasic reduction technique, where some

of the dependency relations between statements of a model are pre-computed, thus avoiding the

run-time and resource overhead that dynamic approaches inevitably introduce.

2.6.2 Compositional minimisation

The task of verification consists of establishing that a sysfesatisfies some properfy Now
consider some semantic equivalemtthat preserves properfy ThenS satisfiesf iff S” satisfies
f, whereS’is the minimal state machine such th&t$) O R. We say thaS’ is thequotientof S
with respect taR. The process of constructir§f from Sis calledminimisation WhenR reflects

the application of an abstraction thenS’ contains fewer states th&

The technique of analysing the minimised state machine corresponding to some system rather
than the system itself, may in principle increase significantly the size of the systems that can be

analysed with given computer resources. Obviously, the objective is to obtain the minimised

44

CHAPTER 2 MODEL CHECKING

graphS” without first generating the complete graph of the syst€mmpositional minimisation

provides a way of achieving this.

Assume a system described by a composition expression that groups together individual state
machines. Such an expression reflects a specific organisation of the system components in a
hierarchical structure. Compositional minimisation then performs minimisation in steps, from the
lowest to the highest level of the hierarchy. The composition expressions of each level define
which state machines must be composed in order to obtain state-machines of subsystems at that
level. The result of each composition is minimised. Several notions of equivalence can be used
with this approach, provided that the equivalence used rgruencewith respect to the
operators in the composition expressions [Milner 89]. This is to ensure that components can
safely be substituted by their minimised versions in those expressions, without affecting the

result obtained.

In the process described above, the state graph for intermediate subsystems is constructed with
reachability analysis. Therefore, this approach of incremental composition and reduction is often
calledCompositional Reachability AnalygiERA for short). [Valmari 93b] provides an excellent

description of some basic prerequisites for CRA methods:

e Combination of lowetevel to uppetlevel systemsA CRA method needs to support
operations for i) composing component behaviour, ii) hiding details from component
behaviour that are not required in the system as a whole, and iii) renaming actions of

component interfaces for using components in different contexts.

» Equivalence notionThe equivalence notion used to simplify intermediate systems must
be strong enough to preserve the properties of interest, and weak enough to achieve a good
reduction of the state space. Moreover, the equivalence must be a congruence with respect to

the operations used to compose higher-level systems from lower-level ones.

* Reduction algorithmThe algorithm for reducing the size of intermediate subsystems
should be reasonably fast and produce as small state machines as possible. If the complexity
of minimisation is too high, an alternative reduction strategy should be considered that

attempts a balance between these two requirements.

The CRA approach is particularly suitable for analysing systems that are likely to evolve, as it
localises the effect of change. When changes are applied to a system, only the subsystems that
are affected by the changes need to be re-analysed. CRA technigues may be combined with

symbolic representation, but are not compatible with on-the-fly verification. This is because

45

CHAPTER 2 MODEL CHECKING

intermediate graphs for the systems need to be generated, rather than simply explored. On-the-fly
technigues may however be used at the last level of CRA, where the global system graph is
explored. Due to the reduction applied to intermediate subsystems, the global graph is expected
to be much smaller than the original graph of the system. The applicability of partial-order
reduction techniques in the context of CRA has not been investigated, to the best of our

knowledge.

One might expect that, with CRA, all intermediate state machines have a smaller size than the
state graph of the global system, and therefore the approach provides an efficient way of dealing
with state explosion. However, intermediate systems may explode faster than the initial system
itself. This phenomenon is known agermediate state explosiolt is caused by the fact that
subsystems may contain many execution sequences that are unnecessary in the context of the
final system; these sequences will be forbidden when the subsystem is combined with the

remaining components of the system (referred to asdhéextor environmenbf the subsystem).

Intermediate state explosion is particularly intense when components that are loosely coupled are
grouped together first. This may sometimes reflect bad structuring of the system, in which case a
better organisation might avoid the problem. However, as re-structuring of the system does not

always work, techniques that are more effective must be provided for addressing the problem.

Controlling intermediate state explosion

In order to address intermediate state explosion, both [Graf and Steffen 90, Graf, et al. 96], and
[Cheung and Kramer 96b] take the approach of usmerfaces which restrict the behaviour of
intermediate subsystems based on their context. An interface is a process representing a set of
authorised execution sequences that can be performed by the subsystem in the specific
environment. The more detailed the interface, the more it restricts the behaviour of the
subsystem, thus avoiding the occurrence of intermediate state explosion. An interface=ds

if its inclusion in the generation of the global system does not modify this system’s behaviour.

Interfaces can bautomatically generatedr user-specified Automatically generated interfaces

are derived algorithmically, by procedures that guarantee their correctness. However, although
automatically generated interfaces can safely be introduced into the system, they may not restrict
the behaviour of intermediate subsystems sufficiently [Cheung and Kramer 96b]. User-specified
interfaces can provide an additional amount of detail. These are interfaces that system developers
specify based on their knowledge of the system. Even though they are expected to be correct in

the general case, they are but “guesses” of the context behaviour. Therefore, a method needs to

46

CHAPTER 2 MODEL CHECKING

be provided to guarantee that, in the presence of such interfaces, the behaviour of the system

remains unaltered.

In [Graf and Steffen 90, Graf, et al. 96], a technique is proposed that allows user-specified
interfaces to be used in CRA. Processes are modelled as LTSs and are combined with a CSP-like
composition operator || [Hoare 85]. The method extends LTSs witlmdefinednespredicate.

This predicate consists of pairs, @), wheres is a state in the LTS, and is a set of actions
which, when executed frorg would allow the LTS to enter an undefined state. During CRA,
every subsysten$ for which an interfacd is provided is substituted b#,(S). M(S is the
projection ofg|l on S, with one difference: whenever at some stgt& can perform a transition

with actiona that is stopped by, then €, a) is inserted in the undefinedness predicatélds).

IM,(S can be constructed in time proportional to the product of the number of transitiéharaf

I. Emptiness of the undefinedness predicate of the global LTS thus constructed guarantees
correctness of all interfaces introduced. Otherwise, some of the interfaces introduced are

incorrect, and therefore the LTS cannot be used for verification.

[Cheung and Kramer 96b] present a similar approactdéserministicuser-specified interfaces.

They introduce arinterface theorenthat provides a number of sufficient conditions for an
interface to be correct. In their approach, LTSs are extended with an erromstaseh user-
specified interface is automatically madeompletewith respect to its alphabet by substituting
missing transitions with transitions tm The resultl” of the transformation is called thimage
interface. During CRA, if an interfackis provided by the user for a subsyst@nthenS is
composed with the image interfate In this way, all transitions o8 that are stopped blyin |,
become transitions to the state ing|l”. If the 11 state is unreachable in the global graph of the
system, then the conditions of the interface theorem are satisfied, and therefore the interfaces
introduced are correct. The approach is however conservative; although no incorrect interface is
used for verification, there is no guarantee that a correct interface will not be rejected. This is
because the interface theorem provides conditions thasufficient but not necessaryfor a

correct interface. In Chapter 5 (Section 5.1.2) we prove that the interface theorem can be

reformulated in a way that makes its conditions both sufficient and necessary.

The above approaches for dealing with user-specified interfaces have a common characteristic:
they do not require a separate proof of correctness for these interfaces (as is the case for [Shurek
and Grumberg 90], for example). More specifically, incorrect interface specifications never lead

to incorrect proofs. They may only prevent the successful verification of a valid statement.

47

CHAPTER 2 MODEL CHECKING

Even with a good knowledge of the system, users may not always be able to provide suitable
interfaces. To this aim, [Cheung and Kramer 96b] have developed an algorithm for generating
interfaces automatically. For a subsystdtn the algorithm applies a simple reduction on
individual LTSsL; in the context ofP. For each.;, the reduction roughly consists of deleting the
transitions labelled with actions that do not belondgPtdf a reduced.; is non-deterministic, it is
transformed into an equivalent deterministic one, and the resulting LTS is minimised. The
interface forP is the parallel composition of the deterministic LTSs obtained by this procedure.
Interfaces thus constructed satisfy the conditions of the interface theorem, and are therefore
correct by construction. The complexity of the algorithm is dominated by the procedure for
converting non-deterministic LTSs into deterministic ones. This procedure is exponential in the
size of the non-deterministic LTS. The authors report that in practice, the computational effort of

performing such transformations in the context of CRA is usually small.

P|I
b

r

R a a

‘b—Q:D
;

Figure 2.5: Interface | increases the size of subsystem

In the techniques proposed by [Cheung and Kramer 96b], the behaviour of intermediate
subsystems may be expanded with the use of interfaces, although the latter are deterministic (see
Figure 2.5). The approach of [Graf, et al. 96] avoids this problem as follows: for a subdsystem

and an interfacé, rather than simply composir@gwith I, it projects the behaviour d®||l on P.

For example, the behaviour of subsystBrin Figure 2.5 remains unchanged by interfac&he
technigues of [Cheung and Kramer 96b] can easily incorporate this idea, in order to avoid

increasing the size of intermediate subsystems when interfaces are used.

[Yeh 93a] proposes a techniqgue where constraints are not specified as separate interface
processes, but througBLEER, WAKEp, and ACTIVATE, transitions (the indices represent
identities of processes). Such transitions are introduced by the developer in the specifications of
individual processes of the system.SAEER transition indicates the transition of procé3so a
sleeping state. WheR is composed with other processes, the execution of any action enabled at

a sleeping state leads tar®AP state, which is an error state. It denotes that the behaviour pruned

48

CHAPTER 2 MODEL CHECKING

out from P with the SLEER mechanism does not correspond to context constraints imposed by
the environment of the procesSLEER transitions are nullified byWAKEp transitions and are
propagated to composite processes WHTIVATE p transitions. Note that such transitions can be
combined only if they have a matching index. Constraints imposed by this mechanism are correct
unless therRAP state is reachable in the global graph of the system The main disadvantage of
this method is that the composition operator is no longer associative. As a result, explicit
description of the order in which the system is to be composed must be provided with the
specifications. Moreover, as separation of concerns enforces clearer modelling, it is preferable

for context constraints to be specified separately from component behaviour.

[Krimm and Mounier 97] adopt the approach proposed by [Graf, et al. 96], but in the framework
of LOTOS parallel composition. They definesemi-compositioroperator, which restricts the
behaviour of a process with respect to some interface, for expressions that consist of the LOTOS
operator §§ (P |t Q is the LTS obtained by synchronisation on the actions that beloig snd
interleaving of the other actions — operators i§ not associative). In their approach, the
behaviour corresponding to any sub-expression in a composite expression can be restricted
according to the behaviour of any sub-expression in its environment, with the use of semi-
composition. Well-defined rules control what makes up the “environment” of sub-expressions.
Interfaces introduced in this way are guaranteed to be correct, although they often prove
insufficient. User-specified interfaces are therefore also supported. The correctness of such

interfaces is checked according to the method proposed by [Graf, et al. 96].

Experience

Promising results have been reported from the use of CRA to generate the state space for a well-
structured concurrent system. [Sabnani, et al. 89] describe an experiment, where CRA is applied
to the Q.931 protocol. The intermediate state spaces generated never exceed 1,000 states
although the global state space given by traditional reachability analysis of the protocol contains

over 60,000 states. Similar observations are made by [Va®3hiiand by [Tai and Koppol 93].

From now on, we will use the terminology introduced by [Graf and Steffen 90] for discussing
results obtained with CRA. According to this, the size of the original state space of a system is
referred to as itsapparent complexity, the size of the minimised state space asrets
complexity, and the size of the maximal transition system encountered by CRAadgaitihmic

complexity.

49

CHAPTER 2 MODEL CHECKING

[Yeh 93a] describes the case study of a remote temperature sensor system. By using CRA
extended with theSLEEP/WAKE/ACTIVATE mechanism, the algorithmic complexity is a few
hundred states. Although the apparent complexity is not computed, its estimated size (obtained as
the product of component sizes) is of the order of°iftates. Various other case studies

demonstrate the advantages of using such an approach.

[Cheung and Kramer 96b] usentextualCRA (i.e. CRA enhanced with the use of interfaces) to
analyse several systems. They show that the algorithmic complexity obtained by their technique
is often significantly lower than the algorithmic complexity of CRA. For a client/server system
the latter grows exponentially with the number of clients included, whereas this problem is
avoided in contextual CRA. Similar results are reported from the case study of a gas station
example and a distributed track control system [Cheung and Kramer 94a]. In these experiments,

contextual CRA also considerably reduces the apparent complexity of a system.

[Krimm and Mounier 97] give experimental results obtained from applying their technique on

two realistic LOTOS examples: an atomic multicast protocol that requires user-specified

interfaces, and a leader election algorithm that is handled automatically. They have performed
their experiments using the CADP toolbox [Fernandez, et al. 96]. In this way, they have been
able to compute the apparent complexity of very large systems by using a symbolic generation
method (based on BDD encoding). Their examples show that their approach largely avoids the
apparent complexity of the system, while sometimes remaining close to its real complexity. In

the case study of the atomic multicast protocol, none of the intermediate LTSs exceeds a million
states, and the resulting LTS is approximately 200,000 states, which is manageable for
verification purposes. The generation process completed in a few hours on a SUN SS 20
workstation. The application to this example of a symbolic generation method leads to an LTS of
about 200 million states (represented by a BDD) obtained in one week of computations using the
same workstation. For these two examples, compositional minimisation also achieves better
results than on-the-fly verification and symbolic minimal model generation [Fernandez, et al.

93]. This, however, is not true of all examples that the authors have considered, which only

confirms the observation that no single verification method can perform best in all cases.

2.6.3 Abstraction

Most reduction strategies rely on applying some kind of abstraction to the system under analysis.
In fact, compositional minimisation can also be viewed as an abstraction technique: it abstracts
details from the system behaviour, based on a description of the system structure and the

specification of how its components interact.

50

CHAPTER 2 MODEL CHECKING

Localisation reductionis an automated, property dependent reduction technique proposed by
Kurshan [Kurshan 94]. It is applied dynamically when checking language inclusion in automata-
theoretic verification methods (see Section 2.2). Language inclusion properties are preserved
when additional processes are included in a model. The algorithm thus initially considers an
abstraction of the system containing only a subset of the system processes, and is recursively
applied to successive approximations of the system until inclusion is proven, or a
counterexample is returned that corresponds to a legal execution of the system. The selection of
processes that are included in each approximation is based on a directed graph of dependencies

among the processes of the system.

A similar approach is proposed by [Bharadwaj and Heitmeyer 97] for checking invariance
properties on abstractions of a system. Such abstractions are generated directly from the system
specification by eliminating state variables that do not affect the property of interest. The abstract
system contains only those variables that belong to the reflexive transitive closure of the set of

variables that appear in the property, under the dependency relation between system variables.

For programs with data-dependent behaviour, [Clarke, et al. 94] propose to perform model
checking onapproximationsof their state spaces, when these state spaces are very large (or
possibly infinite). Approximations are based on mapping the sets over which program variables
range, onto sets of abstract values. They are constructed directly from the text of a program,
without first building the original transition system. This approach is closely relatetisivaat
interpretation techniquelCousot and Cousot 77] that have traditionally been applied to studying
compile-time analyses of programs. [Cousot and Cousot 99a] also suggest ways in which ideas
from abstract interpretation may be used to enable the application of reachability analysis to

finite- and infinite-state systems.

Other approaches to abstraction include exploitiyghnmetriesin the system for state-space
generation [Ip and Dill 93] and for model checking [Clarke, et al. 96c]. In general, abstraction
techniques for programs with data-dependent behaviour are less applicable to concurrent

systems, where, as mentioned, the focus is ommtieeactionsbetween processes.

2.7 Compositional reasoning

Compositional reasonin{pr compositional verification) exploits the natural decomposition of a
complex system into simpler components. Properties of system components are verified first.
These properties are then combined to deduce properties of the global system. Obviously, the

approach does not suffer from state explosion since it does not require the construction of the

51

CHAPTER 2 MODEL CHECKING

system state space. An issue that arises however is that often, properties of subsystems are
satisfied only when specific assumptions are made on their environment. An approach proposed
for dealing with this issue is to use interface processes that model the environment of the

subsystem [Clarke, et al. 89] (in a similar way to CRA techniques — Section 2.6.2).

A great amount of research has been devoted to compositional reasoning — after all, the approach
provides the most promising attack to state explosion [Abadi and Lamport 95, Alur and
Henzinger 95, Grumberg and Long 94, Manna and Pnueli 95, Pnueli 85]. Kurshan's localisation
reduction (Section 2.6.3) can be considered a simplified compositional verification method, since
it attempts to prove global system properties by checking if they are satisfied by some component

of the system. The advantage of localisation reduction is that it can be automated.

In general, it is a complicated task to decompose properties of the global system into local
properties of its components. Moreover, it must be proven that such decompositions are correct,
i.e. that the satisfaction of local properties of subsystems implies the satisfaction of some global
property by the system. The approach needs to be supported by automated tools to a high degree
in order to become widely usable by software engineers. As [Kurshan 94] reports, “finding useful
heuristics to determine decompositions of global system properties into local properties of
subsystems is one of the foremost open problems in the field”. [Clarke and Wing 96a] make a
similar observation: “we need to develop more efficient ways for decomposing a computationally

demanding global property into local properties whose verification is computationally simple”.

2.8 Discussion

Software architecture describes the organisation of a system in terms of its components and their
interactions. In general, the software architecture of a system has a hierarchical structure, with
primitive components at the leaves, and composite components at the non-leaf nodes of the
hierarchy. Software architecture concentrates on the interfaces and interconnections of
components, and is not concerned with their functionality. When the functionality of primitive
components is provided by the designer, the architecture describes the exact way in which these
components are put together, in order to form a complete system. For model checking, the
functionality is described in terms of finite-state machines, and for construction, in terms of some

programming language.

Software architecture can therefore be usedirntegrate the various phases of software
development. Such integration significantly contributes to the usability of methods and tools, as

discussed in Section 1.2. In our approach, analysis of a system is based on its software

52

CHAPTER 2 MODEL CHECKING

architecture. Compositional minimisation and compositional reasoning then become a natural
choice for state explosion control, as they can effectively exploit the decomposition of a system
into a hierarchy of components. This has motivated our use of CRA to generate the finite-state
model of a system, as described in Chapter 3. Our work therefore focuses on developing model-
checking strategies in the context of CRA. An additional motivation for taking this approach is

that it can easily accommodate compositional reasoning, a direction in which we wish to extend

our work.

2.9 Model-checking tools

A large number of model-checking tools have been developed over the years. This section

provides an overview of some well-known model checkers.

CADP

CADP (C&£sAR— ALDEBARAN Development Package) [Fernandez, et al. 96, Fernandez, et al.
92b] is a verification toolbox for the design and verification of communication protocols and
distributed systems, specified in the ISO language LOTOS [ISO 88]. The semantic model is
based on LTSs. CADP accepts low-level specifications in terms of LTSs, and also supports
intermediate formats that allow verification of protocol descriptions written in other languages
such as SDL [CCITT 93]. The toolbox contains several closely interconnected components
accessible through a graphical user-interface. The functionalities offered include interactive or
random simulation, partial and exhaustive deadlock detection, verification of behavioural
specifications with respect to various equivalence relations, as well as verification of branching-
time temporal logic specifications in the logic XTL (eXecutable Temporal Language). LTSs may
be represented either explicitly or implicitly in terms of BDDs. On-the-fly verification can be
applied, and so can compositional state-space generation. Minimisation is supported with respect
to several equivalence relations. Intermediate state explosion is addressed by the use of the semi-
composition operator for composing interfaces with intermediate subsystems [Krimm and
Mounier 97]. A number of case studies have been performed with the CADP toolbox, including
several industrial applications [Chehaibar, et al. 96, Korver 96, Pecheur 97, Sighireanu and

Mateescu 97].

Concurrency Workbench

The Concurrency Workbench [Cleaveland, et al. 93b] is a tool that incorporates several
verification strategies. A system is modelled as a CCS process [Milner 89]. Processes are then

interpreted as LTSs for verification purposes. The tool supports three different approaches to

53

CHAPTER 2 MODEL CHECKING

verification. Firstly, it checks behavioural equivalence between the LTS of the system and that of
its specifications. Various types of equivalence are supported, including Milner’s strong and
observational equivalence [Milner 89], trace, and failure equivalence [Hoare 85]. LTS
minimisation can also be performed with respect to these notions of equivalence. Although
minimisation is a facility provided by the tool, compositional state-space generation is not
mentioned as a possibility in [Cleaveland, et al. 93b], nor is any attention given to the problem of

intermediate state explosion.

Secondly, preorder checking can be performed between the system and its specifications.
Thirdly, the tool supports model checking of specifications written in a modal logic based on the
propositionalp-calculus. Thep-calculus is strictly more expressive than CTL and can also
express a variety of properties of transition systems, such as reachable state sets, state
equivalence relations, and language containment between automata [McMillan 93]. However,
formulas in this logic are unintuitive and difficult to understand [Cleaveland, et al. 93b]. For this
reason, the tool offers the facility of user-defined macro identifiers. In this way, users are able to
code intuitively well-understood operators as macros. The model-checking algorithm has
complexity that is exponential in the length of the formula checked, although for special classes
of formulas it is well-behaved. A linear-time algorithm has been proposed for a particular

subclass of the logic, called “the alternation free madaélculus” [Cleaveland and Steffen 93c].

The NCSU Concurrency Workbench [Cleaveland and Sims 96a] is an extension of the
Concurrency Workbench. Finally, theoncurrency Factory [Cleaveland, et al. 96b] can be
viewed as a next-generation Concurrency Workbench, with a focus on usability. It allows non-
experts to design concurrent systems using GCCS, a graphical version of the process algebra
CCs.

COSPAN

Cospan [Hardin, et al. 96] takes the automata-theoretic approach to verification. It performs this
by checking inclusion of the language of the system in that of its desirable properties. The native
language is S/R (selection/resolution) but interfaces have been written for the commercial
hardware description languages Vérilog [Thomas and Moorby 98] and VHDL [IEEE 87], as well
as the CCITT-standard protocol specification language SDL [CCITT 93]. The semantic model is
founded onw-automata. In general, a system consists of a collection of such automata. To
facilitate property specification as-automata, a library of parameterised automata is provided.
Counterexamples are returned when property violations are detected in a system. COSPAN can

use either symbaolic (BDD-based) or explicit state-enumeration algorithms. The latter invoke

54

CHAPTER 2 MODEL CHECKING

caching and bit-state hashing options (as related to “on-the-fly” verification), as well as

minimisation algorithms. Several other reduction strategies are supported such as automated
localisation reduction, symmetry reduction, and user-defined homomorphic reduction (based on
the idea of abstract interpretation). COSPAN also supports top-down design development

through successive refinements.

FC2TOOLS

Fc2tooLs (the next-generation AUTO/GRAPH) [Bouali, et al. 96] is a verification tool-set that
supports graphical specification of concurrent systems. Reachability analysis, minimisation,
eqguivalence checking, and model abstraction can be performed on automata represented either
symbolically or explicitly. Moreover, compositional minimisation can be applied on a
hierarchical network of processes, although intermediate state explosion is not addressed. The
tool-set also supports the specification of properties in terms of automata, and implements on-

the-fly techniques for checking them.

FDR
FDR [Roscoe 94, Roscoe 98] is a tool based on the theory of CSP [Hoare 85]. FDR establishes

whether a property holds for a system, by checking that the system refines its property in the
traces, failures, or failures-divergences model. The standard model used is that of failures-
divergences, hence the name of the tool (Failures-Divergence Refinement). Both the system and
the property are specified in a machine-readable version of CSP, and their specifications are
translated into finite LTSs. For checking refinement, the property LTS is normalised before
model checking is applied. This can be a problem, as normalisation may increase the size of an
LTS exponentially. Additionally, a system can be developed by a series of stepwise refinements,
starting with a specification process and gradually refining it into an implementation. Finally,
FDR supports compositional minimisation, where intermediate systems can be simplified with a

variety of compression techniques.

SMV

SMV [McMillan 93] is a tool for checking finite-state systems against specifications in the
temporal logic CTL. It supports a flexible specification language and uses an OBDD-based
symbolic model-checking algorithm for efficiently checking whether CTL specifications are
satisfied by the system. The tool has been used to verify several industrial designs such as the

Futurebus+ and the Gigamax protocols [Clarke, et al. 93b, McMillan 93].

55

CHAPTER 2 MODEL CHECKING

SPIN

SPIN [Holzmann 91, Holzmann 97, Holzmann and Peled 96] is a state-based model-checking
tool designed for the verification of distributed systems. Its native specification language is
PROMELA, whereas its semantic model is based on finite automata. By default, SPIN checks a
set of basic properties such as absence of deadlock and unreachable code. It also checks that
user-defined invariants cannot be violated, and that the system can only terminate in user-defined
end-states. Additionally, PROMELA includes two labels that can be assigned to system states,
“progress” and “accept”. SPIN checks that any cycle in the system must contain at least one
progress state, and that no cycle contains an accept state. The former ensures that any infinite
execution of the system will perform a useful step regularly. The latter is used in LTL model
checking (for marking accepting states of Blchi automata — see Chapter 4 for details).
Correctness requirements can be expressed directly in LTL. LTL formulas are automatically
translated into PROMELA “never-claims”, which represent the Blichi automaton corresponding
to the negation of these formulas. SPIN performs model checking “on-the-fly”. To this end, it
uses an efficient depth-first search algorithm that is compatible with all modes of verification
supported by the tool, i.e. exhaustive search, bit-state hashing and partial-order reduction
technigues. These techniques, together with state compression are used for dealing with large

state spaces.

Model checkers for real-time and hybrid systems

More recently, model checking has been extended to real-time and hybrid systems. Real-time
systems must perform a task within strict time deadlines. They are modelled in terms of timed
automata — finite-state machines extended with real variables called clocks used to express
timing constraints on the delays between events. Hybrid systems are digital real-time systems
that are embedded in analog environments. They are modelled as hybrid automata — finite-state
machines equipped with real variables with more general evolution laws, described as differential
eguations. Model checking is decidable for timed-automata, and efficient tools such as KRONOS
[Daws, et al. 96, Yovine 97] and UPAAL [Larsen, et al. 97] have been developed for such
systems. Hybrid system model checking is undecidable in the general case. However, semi-
decision procedures have been implemented in tools such as HyTech [Alur, et al. 96, Henzinger,
et al. 97].

2.10 Summary

In this chapter, we have discussed model-checking techniques in terms of two main

classifications. The first concerns the way system properties are specified. Temporal model

56

CHAPTER 2 MODEL CHECKING

checking and automata-theoretic model checking have been described, as well as the way in
which automata-theoretic approaches to temporal model checking relate the two. These
approaches are expressive enough to cover most types of properties that software engineers
usually need to express. The specific formalism to be used thus becomes a matter of preference.
Our approach supports specifications expressed either as LTL formulas or as Biichi automata.
The advantage is that, while the model-checking algorithms are the same for both formalisms,

the designer may select whichever is more intuitive or compact.

The second classification is related to techniques developed to address state explosion, i.e.
symbolic representation, on-the-fly verification, reduction, and compositional reasoning.
Particular emphasis has been placed on reduction by compositional reachability analysis (CRA),
in the context of which intermediate state explosion and ways of controlling it have been
described. Both CRA and compositional reasoning advocate a divide-and-conquer strategy, a
well-known and generic approach for solving large instances of problems. The idea is natural, in

particular because recent systems design techniques tend to promote hierarchical approaches.

In general, there is benefit in combining techniques for achieving better results. State explosion is
an inherent limitation of model checking and, as a result, no single technique is expected to be
efficient for all kinds of systems. This is also reflected by the fact that most of the existing

model-checking tools support several approaches to model checking. It is important to build on
experience in order to determine what kinds of analyses are appropriate for what kinds of

systems.

57

58

Design & Analysis 3

3.1 SOFTWARE ARCHITECTURE INDARWIN 59

3.2 MODELLING BEHAVIOUR 61

3.3 ASSOCIATING BEHAVIOUR WITH SOFTWARE ARCHITECTURE 66
3.4 COMPOSITIONAL REACHABILITY ANALYSIS 75

3.5 RELATEDWORK 82

3.6 SUIMMARY 84

To increase the usability of analysis techniques, particular emphasis needs to be placed on the
integration of analysis with other activities of software development. Methods that operate in
isolation may discourage potential users who are burdened with establishing a connection, and
achieving consistency, between the activities supported by these methods. Moreover, information
that is relevant to various phases of system development should ideally need to be provided once,
and be available in the appropriate form for all related activities. This requires the integration not

only of software development methods, but also of the tools that support them.

In TRACTA, the basic structure of a system is described in the Darwin architecture description
language. As Darwin advocates a modular and incremental approach to system development, we
follow a similar approach for behavioural modelling and analysis. This chapter proposes a
compositional model for system behaviour. The structural description of the system can thus be
exploited directly for modelling and analysis. Within this framework, compositional reachability
analysis provides a natural and effective way of dealing with state explosion. The proposed

approach is illustrated by a familiar educational example.

3.1 Software architecture in Darwin

Software architecture has been identified as a promising approach to bridge the gap between
requirements and implementations in the design of complex systems [Kramer and Magee 97,
Magee, et al. 97]. Software architecture describes the organisation of a system in terms of its
components and their interactions. It emphasises a separation of concerns; descriptions of
component structure and of component functionality are separate but related activities of

software development.

59

CHAPTER 3 DESIGN & ANALYSIS

Darwin [Magee, et al. 95] is an architecture description language (ADL) that supports a
component-based approach to program structuringcofponentis the unit of structure. A
component hides its behaviour behind a well-defined interfdnterfaces are points of
interaction of the component with its environment (i.e. other components in the system), and
represent services that the component provides or requires. Programs are constructed by creating
instancesof componenttypes and binding their interfaces together. Component types may
themselves have substructure. The general structure of a Darwin program is therefore a tree in
which the non-leaf nodes acemposite componentand the leaves agrimitive componentsA
primitive component has no substructure, and exprdssieaviouras opposed tstructure The
structure of a composite component defines its behaviour based on that of its sub-components. A
composite componentncapsulatesall interactions among its sub-components that are not

connected to its interface.

Structural View

foroi]

Behavioural View Service View
Analysis Qonstruction/
implementation

Figure 3.1: Common structural view with service and behavioural views

Darwin is sufficiently abstract to support multiple views. In this way, software architecture
describes the basic structure behind each view of the system during development
[Giannakopoulou, et al. 99a]. This structure can be enriched with behaviour specifications for
analysis (behavioural view) and service implementations for construction (service view), as
illustrated in Figure 3.1. For example, in the basic structure of the program, component interfaces
are simply sets of names that refer to actions or events shared between bound components. In the
service view these names correspond to services, for which the system designer needs to specify
whether they are provided or required by the component. In essence, the architecture describes
the way in which individual component specifications or implementations can be put together, in

order to obtain a system with desirable characteristics.

Darwin has both a textual and a graphical syntax, with appropriate tool support. The Software

Architect’'s Assistant (SAA) [Ng, et al. 96] is a visual environment for the design and

60

CHAPTER 3 DESIGN & ANALYSIS

development of distributed programs using Darwin architectural descriptions. Facilities provided
include the display of multiple integrated graphical and textual views, a flexible mechanism for
recording design information and the automatic generation of program code and formatted
reports from design diagrams. The SAA interacts with the Darwin compiler to generate system
instances from a software architecture. As discussed, systems thus described typically have a

hierarchical structure.

Darwin has been used extensively for specifying the structure of distributed systems and
subsequently directing their construction [Magee, et al. 95, Magee, et al. 94, Magee and Kramer
96]. Similarly, software architecture can be used to direct system liimgdeand analysis

[Giannakopoulou, et al. 98b, Magee, et al. 98]. In the following, we present the relation between

software architecture and analysis, as established by our approach.

3.2 Modelling behaviour

We use finite labelled transition systems (LTS) to model the behaviour of communicating
processes in a distributed program. An LTS contains all the reachable states and executable
transitions of the process. The model has been widely used in the literature for specifying and
analysing distributed programs [Clarke, et al. 89, Ghezzi, et al. 91, Kemppainen, et al. 92,
Rabinovich 92, Valmari 92]. Appendix A provides a formal description of the LTS model and its

operators. In this section, we present the model in an informal but intuitive way.

3.2.1 Labelled transition systems

Let Statesbe the universal set of state&ct be the universal set of actions, aAdt=Act{1},
wheret is used to denote an action that is internal to a subsystem, and therefore unobservable by

its environment. A finite LTS is a quadruplé$, A, A, gCwhere:

« S[] States is finite set of states;

e A=aP0O{1}, whereaP O Actdenotes the communicatimdgphabetof P;
« A [0 SXAxS denotes a transition relation labelled with elementa;of

e 0O Sindicates the initial state d?.

We say thaP is deterministidff Os, s, s"0S: ((s, a, OA T (s, a, §)0A) O s=s7, otherwise
it is non-deterministicThe term “LTS” will be used to refer téinite LTSs, as we only deal with

such systems in our work.

61

CHAPTER 3 DESIGN & ANALYSIS

As an example, consider the following LTS model of a lamp:

Lamp = {40,1},{switch_on,switch_off},{(0,switch_on,1),(1,switch_off,0)},0 o

Figure 3.2 represents this LTS graphically. Statesd1 correspond to the lamp being off and

on, from which the lamp can be turned on and off respectively, by performing the actions
switch_on andswitch_off . Note that the names assigned to the states of an LTS act simply as
identifiers for those states, and do not carry any meaning (see Appendix A.5). Therefore, an LTS
is not modified if its states are renamed. The convention used in our diagrams is that states are

numbered with integers, where zero identifies the initial state.

A traceof an LTSP is a sequence of observable actions thatan perform starting from its

initial state. We denote the set of possible traceB aftr(P). Traces are denoted as sequences of
actions separated by commas, and enclosed in angular brackets. For example, one possible trace
of Lamp is: <switch_on,switch_off,switch_on> , whereas switch_off,switch_on> does not

belong totr(Lamp) becausawitch_off ~ cannot be performed at the initial stateLafp.

switch_on
switch_on
Lamp
Student
switch_off
sleep read
switch_off
switch_on
Lamp_Stud

sleep

Figure 3.2: LTS models of a lamp and a student, and LTS of their joint behaviour

Composition

We denote that two LTS® and Q run in parallel by P||Q", where “||” is the parallel
compositioroperator P||Q is an LTS that models the joint behaviour®andQ. The alphabet of
P|IQ is aPOaQ, and its states can be viewed as pairs of states: siatg (eflects the fact thalP
is in statep and Q is in stateg. In the joint behaviour o and Q, any of the two LTSs can

perform a transition individually, so long as the action that labels that transition is not shared

62

CHAPTER 3 DESIGN & ANALYSIS

with the alphabet of the other LTS. Shared observable actions have to be performed
simultaneously. Transitions anare never synchronised, since they reprekmal (and therefore

internal) behaviour.

Figure 3.2 illustrates the LT$%amp_Stud=Lamp||Student of the joint behaviour ofLamp and
Student . The states {0,1,2,3,4} of Lamp_Stud represent the composite states
{(0,0),(1,2),(1,1),(1,0),(0,1)} , respectively. We see that iamp_Stud , the student is not
allowed to performswitch_off ~ multiple times before performingeep , which Student may
wish to do when in its local state. Moreover, if the student sleeps without performing
switch_off , Lamp_Stud enters stateg (corresponding to composite stateo)), which is a
deadlock state. In this state, the student wisheswio ch_on the light, but the only action
available byLamp is switch_off . As bothswitch_on andswitch_off are shared between the

two LTSs, neithestudent , nor Lamp can perform them in isolation.

The parallel composition operator is both commutative and associative. The order in which LTSs
are composed is therefore insignificant. As described, LTSs communicate by synchronisation on
actions that their alphabets share, with interleaving of the remaining actions. Modelling

interacting processes with LTSs is therefore sensitive to the selection of action names.

Similarly to CSP [Hoare 85], the LTS parallel composition operator has broadcast semantics.
Broadcast communicatioallows any number of processes to simultaneously participate in a
transition. In such a setting, it is easy to model a process that monitors the behaviour of a group
of communicating processes, by sharing actions in their alphabets, and executing jointly with
them. In TRACTA for example, “monitoring” processes are introduced to check that a system
satisfies its desired properties (as discussed in following chapters). Handshake communication in

the CCS style [Milner 89] cannot handle such processes elegantly.

Relabelling

As mentioned, our models of interacting processes are sensitive to the selection of action labels.
A very useful operator in this context is thmelabelling operator “/”, which allows to change
action labels of an LTS. For an LTS and a functiorf:Act— Act on observable actions, the LTS

P/f is identical toP, but for eachaAct, all transitions labelled witla in P are labelled wittf(a)

in P/f. The alphabet ofP/f is f(aP). Assume, for example, that we wish to model a lamp
Impractical that has no switch, and which is turned on by plugging (agiiof) and turned off

by unplugging (actiorunplug). By defining a functionf such thatf(switch_on)=plug , and

f(switch_off)=unplug , we can modelmpractical ~ as Lamp/ f (see Figure 3.3).

63

CHAPTER 3 DESIGN & ANALYSIS

Hiding

Some of the details included in the LTS model of a process may no longer be of interest when
this process is introduced in a system. To express this, and to avoid cluttering of the name space,
we would like to make such details unobservable in the LTS of the process. We can do that by
using thehiding operator 1 ”. Given an LTSP, and a set of observable actioAsIAct, Pt A is
obtained fromP by substituting all transitions labelled with actionsdf-A with T transitions
(represented as “tau” in our diagrams). The alphabePoA is then aPnA. For example,
Watch_Stud=Lamp_Stud 1{read,sleep} is the LTS of the joint behaviour tudent andLamp,

which hides the actions relateditemp (see Figure 3.3).

tau

plug Watch_Stud

Impractical O_)

unplug

sleep

Figure 3.3: LTSs that demonstrate relabelling and hiding

3.2.2 Describing LTSs in FSP

In the previous section, we have seen that an LTS can be described either graphically, or by
specifying its alphabet, states, transition relation and initial state. However, such representations
become impractical for more than a few states. For this reason, we use a simple process algebra
notation called FSP (for Finite State Process) to specify the behaviour of processes in a system
[Magee, et al. 97, Magee, et al. 98]. FSPhist a different way of modelling a system. It is a
specification language with well-defined semantics in terms of LTSs, which provides a concise
way of describing LTSs. Each FSP expression can be mapped onto a finite LTS and vice versa
(see Appendix C). We udts(E) to denote the LTS that corresponds to an FSP expregsidhe

FSP language and its semantics are described in detail in Appendices B and C, respectively.
The LTSLampillustrated in Figure 3.2 can be expressed in FSP as follows:
Lamp = (switch_on -> switch_off -> Lamp).

In FSP, process names start with uppercase letters while action names start with lowercase
letters. Lamp is defined usingaction prefix "->" and recursion The above FSP definition

expresses thatamp performs actionswitch_on followed by actionswitch_off , and then

64

CHAPTER 3 DESIGN & ANALYSIS

behaves as described by procassnp (itself). Recursion thus allows to model repetitive

behaviour. The LTStudent illustrated in Figure 3.2 can be expressed in FSP as follows:

Student = (switch_on -> read -> Bored),
Bored = (switch_off -> Bored | sleep -> Student).

The student performs actiorswitch_on , followed byread , and then behaves as described by
Bored . Process Bored is aauxiliary process. The scope of auxiliary processes is the definition in
which they are used, and cannot be referred to outside this defiriiiesnl is a process whose
behaviour offers a choice, expressed bytheiceoperator “|".Bored initially engages in either
switch_off or sleep , and subsequently behaves as described Bbied , or Student |,

respectively.

Let x andy range over actions, anel and Q range over FSP processes. In the above

examples we have used the following operators:

action prefix “->": (x->P) describes a process that initially engages in the actiamd then

behaves as described by

choice”|”: (x->Ply->Q) describes a process which initially engages in eithar y, and whose
subsequent behaviour is describedroyr Q, respectively. Note thak->Ply->P) can be
abbreviated tg{x,y}->P).

recursion: the behaviour of a process may be defined in terms of itself, in order to express

repetition.

Composition

FSP processes can be combined withaaallel compositionoperator also denoted as “||”. In

general, if° andQ are FSP processes:

lts(PIQ) = Its(P)[Its(Q)

For exampleLamp_Stud is expressed as:

[[Lamp_Stud = (Lamp || Student).

In FSP, processes that are defined from other noiilianxprocesses are callesbmpositeand

in their definition, their identifiers are prefixed with, for example fjLamp_Stud

65

CHAPTER 3 DESIGN & ANALYSIS

Relabelling
The actions of the LTS corresponding to an FSP prodessan be relabelled by using the
relabelling operator “/” in the following way:

P/{newlabel 1/oldlabel 1,... newlabel nioldlabel n}.

It is implied that action labels that do not appear in the description of the relabelling function

remain the same. In general,

lts(P/f) = Its(P)/f
For examplejmpractical ~ can be expressed in FSP as follows:

[[lmpractical = Lamp/ {plug/switch_on, unplug/switch_off}.

Interface and restriction

In order to hide actions from the LTS corresponding to an FSP prdtese write P@A, where

@ is theinterfaceoperator, and:

lts(P@A)=Its(P)1 A

When it is more concise to describe which actions are hidden rather than which actions remain
observable, the FSPestriction operator “\" may be used, which is complementary to the
interface operator, i.eP\A = P@(aP-A). For example, the LTSHide of Figure 3.3 can be

expressed in FSP in either of the following forms:

[|Watch_Stud = (Lamp_Stud) @ {read, sleep}.
[|Watch_Stud = (Lamp_Stud) \ {switch_on, switch_off}.

Prefix matching: In FSP, the action labels in a restriction or an interface set, and those on the
right-hand side of a re-labelling pair, apply “prefix matching”. That means that they match
prefixesof labels in the alphabet of the process to which they are applied. For example, an action
labela in a restriction set will hide all labels prefixed hye.g.a.b, a[1], axy . Similarly,

the re-labelling pairx/a will replace such labels asb, x[1], x.xy . Prefix matching

simplifies the uniform manipulation of groups of labels when they share the same prefix.

3.3 Associating behaviour with software architecture

This section uses the example of the alternating-bit protocol in order to introduce the main
features of Darwin, and the way these are associated with our model of system behaviour. This

example has been chosen for its familiarity and simplicity, which facilitate the understanding of

66

CHAPTER 3 DESIGN & ANALYSIS

the notation introduced. The protocol is non-trivial while the behaviour of some of its

components is small enough to permit graphical illustration.

3.3.1 The alternating-bit protocol

The alternating-bit protocol (ABP) is a communication protocol designed to ensure reliable
transmission despite unreliable communication lines. In our example, the transmission medium

consists of channels that may lose messages, but not duplicate or corrupt them.

The protocol consists of a transmitter and a receiver that communicate through lossy channels.
The transmitter tags each new message with bits 0 and 1 alternately (hence the name of the
protocol). The bito with which a messagm is tagged characterises a round of interactionsrfor
between the components of the protocol. Within this round, the transmitter sendsthe
receiver and waits for an acknowledgement tagged WwitAny different acknowledgement is
considered a superfluous retransmission from the previous round and is ignored. A time-out
mechanism initiates retransmissions rof until such an acknowledgement is received. The
receiver works in a symmetrical fashion. It expects a message tagged,wtid ignores any

other. When such a message is received, it issues an acknowledgement taggbd Svitih

acknowledgements are retransmitted until a message taggeddvstheteived.
We wish to check the following characteristics of the protocol:
1. The protocol achieves reliable transmission of messages.

2. Alternating the value of the bit that tags messages and acknowledgements allows the
transmitter and receiver to identify correctly which messages correspond to superfluous

retransmissions and must be ignored.

It is sufficient to check the correctness of the protocol for only three distinct values. According to
the data independence property introduced by [Wolper 86], for a program whose behaviour does
not depend on the actual data being transferred, one need only verify three distinct values to

ensure correct data transfer with arbitrary sets of values.

We discuss two versions of the ABP. The first follows a description by Milner [Milner 89],
where there is no upper bound to the number of retransmissions permitted to the transmitter and
the receiver. The second is a version presented by Valmari in [Valmari 93b], where the
transmitter is allowed a maximum number of retransmissions for each message. If no

acknowledgement is received afteretransmissions, the transmitter reports failure to the sender

67

CHAPTER 3 DESIGN & ANALYSIS

of the message. If an acknowledgement is received, the transmitter reports successful
transmission of the message to its sender. Obviously in this case, the protocol does not guarantee
reliable transmission of messages. However, for each message, it is expected to report correctly

whether transmission has been successful or not.

3.3.2 Primitive components

To accommodate the two versions of the protocol in the same architecture, we have decomposed
the transmitter into aproper transmittef, and a “‘countet primitive components. The counter is

used to control the retransmissions of the “proper transmitter”. Before each retransmission, the
“proper transmitter” increments the counter, which may only count up to a maximum value. The
first version of the protocol uses an “infinite” counter, i.e. one that may always be incremented.
The second version uses a counter that counts up to the maximum number of retransmissions

permitted by the protocol.

interface OPERS {inc; reset}
interface WARNING {}

oper COUNTER

full

component COUNTER {
portal
oper: OPERS
full: WARNING

}
Figure 3.4: Primitive component for a simple counter in Darwin

Counter: Figure 3.4 illustrates the Darwin description of component tgp&NTERThe SAA

has been used for the graphical description and has automatically produced the corresponding
textual description. The interfaces of the component are illustrated as grey dots and are called
“portals” in Darwin. Portaloper is of type OPERS which consists of sub-interfacess and

reset . These correspond to the increment and reset operations that may be performed on the
counter. When the counter reaches its maximum value, it issues a warning throughuportal

Unlike OPERS WARNIN&ONtains no sub-interfaces. To model the protocol, the designer needs to

specify each primitive component type in FSP.

Figure 3.5 displays the FSP specification and the corresponding LTS of a counter for the first
version of the protocol. This is an “infinite” counter; it can always be incremented and reset with
actions operinc and oper.reset respectively, and therefore never performs actiah .
However, as illustrated in Figure 3.4, the component offers adgiibn at its interface. In terms

of modelling, this means that, any LTS in the context of the counter should not be able to

perform actiorfull in isolation. Given the broadcast semantics of the LTS parallel composition,

68

CHAPTER 3 DESIGN & ANALYSIS

this means that actioinll must be added to the alphabet of the counter. As illustrated in Figure
3.5, this is expressed in FSP as {full} ", where “+" is the alphabet extensiooperator. For an
FSP expressio? and a set of action®&\ Act, Its(P+A) is identical tolts(P), with the only
difference thati(lts(P+A))=a(Its(P)) JA.

The second version of the protocol requires a bounded counter. The FSP description of a
COUNTERhat counts up to some valueis also provided in Figure 3.5. ThiSOUNTERalways

offers a choice of actionsperinc andoperreset . However, when the counter reaches its
maximum value, it can no longer be incremented, and issues anfeventThe specification of

COUNTEHRS parameterised witR=2, and the corresponding LTS for a counter that counts to 2 is

illustrated.
Counter for ABP version 1 Counter for ABP version 2
oper.inc oper.inc
COUNTER COUNTER

oper.inc oper.reset

oper.reset

oper.reset

oper.reset

/I ABP — version 1
COUNTER= ({oper.inc, oper.reset} -> COUNTER) + {full} @{oper, full}.

/I ABP — version 2

COUNTER(N=2) = COUNTER][O0],

COUNTER(i:0..N-1] = (oper.inc -> COUNTERJ[i+1] | oper.reset -> COUNTER[0]),
COUNTERI[N] = (full -> COUNTER|N] | oper.reset -> COUNTER[0]) @{oper, full}.

Figure 3.5: Behavioural description of an infinite and a bounded counter

As already described, the interface of a component consists of those actions in the component
that are available to its environment. All other actions are local (internal) to the component. In
FSP, the interface of a component is specified using operator “@". The interface of the counter is
therefore @{oper,full ”. Composite interfaces are handled elegantly in FSP with the prefix
matching principleoper represents all actions in the process that are prefixed with this, i.e. both
operinc , andoper.reset . This has been the main motivation for introducing prefix matching.
Note that the interface of the counter contains all actions involved in the model of its behaviour,

and therefore{oper,full} can be omitted from the specifications of Figure 3.5.

69

CHAPTER 3 DESIGN & ANALYSIS

Proper transmitter: A “proper transmitter” (component tygeR_TX) is a transmitter that uses a
counter to restrict the number of message retransmissions that it performs. When combined with
a counter that counts tq it is allowed to perform a transmission and at mest retransmissions

of messages that it accepts. Figure 3.6 illustrates an instange of type PR_TX Only the
description of composite interfacePORTIs included in the figure, because the other interfaces
are simple, except fapPERSthat has already been defined in Figure 3.4. This component accepts
a new message to be transmitted through interfaeept , (re)-transmits this message through
interface send, communicates with a counter through interfacger and ful , receives
acknowledgements for the message transmission through intesfaceand finally reports

successful or failed transmission through interfase

interface REPORT {ok; failed}

res component PR_TX {

PR TX portal
ack = oper oper: OPERS
send full full: WARNING
res: REPORT
accept
ack: MESG
send: MESG

accept: MESG

}
Figure 3.6: Primitive component for a “proper” transmitter in Darwin

The behaviour of componeRR_TXis described in FSP as follows:

range BIT = 0..1
range VALUES = 1.3 //suffices to check ABP for three distinct values

PR_TX = ACCEPTI0],
ACCEPT[b:BIT] = (accept[x:VALUES] -> SEND[b][X]),
SEND[b:BIT][x:VALUES] = (oper.inc -> send[b][x] -> SENDINGI[b][x]
[full -> oper.reset -> res.failed ->ACCEPT[!b]),
SENDING[b:BIT][x:VALUES] = (txto -> SENDIb][x]
| ack[b][v:VALUES] -> res.ok[v] -> oper.reset -> ACCEPT[!b]
| ack[!'b][v:VALUES] -> ignore[v] -> SENDING[b][x]) \ {txto, ignore}.

Indexing: Notice that in FSP, both ailiary process names and action names may be indexed.
This is a syntactic convenience to permit concise descriptions. For example,
SEND[b:BIT][x:VALUES] is used for defining all auxiliary processes obtained by substituting
andx with some value irBIT andVALUES respectively, e.gSEND[0][1] , SEND[1][1] , etc. An

indexed actioract[x] , is translated intactx in the LTS of a process. For example, in the

70

CHAPTER 3 DESIGN & ANALYSIS

definition of the auxiliary processSeEND[0][1] , send[0][1] represents the actiogend.0.1
Finally, actionaccept[x:VALUES] in the definition of ACCEPT[b:BIT] is an abbreviation for

{accept[1], accept[2], accept[3]}

The LTS of PR_TX has 32 states, so its graphical illustration is too large to aid with
understanding. The proper transmitter alternates between two transmission modes, depending on
the value of the bit with which it tags messages to be transmitted. Initially, the transmitter

behaves as processCEPT[0] .

An auxiliary proces\CCEPT[b] , whereb can be 0 or 1, accepts a value x ranging in\gaetUES

and transits into procesSEND[b][x] . Process SEND[b][x] implements the check for
retransmissions. If actiosperinc can be performed, it means that the counter has not reached
its maximum value, and therefore the message tagged with ¢din be (re)transmitted (action
sendb][x]). If action full can be performed, then no retransmissions are allowed by the
protocol. In that case, the process resets the cousiierréset), reports that the transmission
has failed fes.faled), and then behaves as procesxCEPT[!b] (i.e. it changes transmission

mode).

An auxiliary processSENDING[b]x] waits for an acknowledgement tagged with If an
acknowledgementckb][v:VALUES] is received, then it reports successful transmission of
valuev (res.oklv]). Any acknowledgement for a value that is tagged withb is ignored
(actionignore[v]). A timeout fxto) may also occur, which leads to staeND[b][x] where a
retransmission will be attempted. Actiomso andignore are the only actions that do not

belong to the external interface of the component, so we hide them with the restriction operator.

3.3.3 Composite components

A transmitter consists of a proper transmitter and a counter, where the counter is used to control
the number of retransmissions, as required by the protocol. Figure 3.7 describes component type
TRANSMITTERIN Darwin. A TRANSMITTERIS made up of two component instancgsix of type

PR_TX andcnt of type COUNTERwith appropriate bindings between their interfaces. The external
interface of aTRANSMITTERcoNSists of portalsend, ack, accept andres , which are bound to

interfaces of components_tx andcnt .

A composite component does not define additional behaviour: it is simply obtained as the
parallel composition of the component instances of which it is made up. In the LTS model, no
distinction is made between componetypes and instances Component instances exhibit

identical behaviour to that of their corresponding type, although they defiseopefor this

71

CHAPTER 3 DESIGN & ANALYSIS

behaviour. To model this fact, FSP creates instances by using process lakéllifgcdbrding to

that, ‘“instance_name :type_name ", specifies an LTS that is identical to the LTS t9fe_name ,

except that each action in its alphabet is prefixed witktance_name . For example,
cnt:COUNTER denotes thatnt is an instance of typ€OUNTER Componentent has identical
behaviour to that illustrated in Figure 3.5, but with action labelst.oper.inc ,
cnt.oper.reset , ent.full , instead. Components can therefore be modelled independently of
each other, since their instances used in a system contain unigue actions. This prevents undesired

synchronisation in the context of the "||" operator.

Component TRANSMITTER {
portal

send : MESG;

ack : MESG;

accept : MESG;

res : REPORT;

ok failed

inst

pr_tx : PR_TX;
cnt : COUNTER;

oper oper

cnt: COUNTER

bind
pr_tx.oper -- cnt.oper;
pr_tx.full -- cnt.full;
@] res -- pr_tx.res;
ack -- pr_tx.ack;
send — pr_tx.send;

accept -- pr_tx.accept;

}
Figure 3.7: Darwin description of the protocol transmitter

On the other hand, components must interact where portals are bound together. As LTSs interact
through the actions that are shared between their alphabieding in a Darwin description
corresponds tarelabelling in an FSP expression. Actions in the interfaces of LTSs that
correspond to bound Darwin interfaces must be relabelled to a common name for their execution
to be synchronised when behaviours are composed. The following FSP description therefore

corresponds to the Darwin description of Figure 3.7:

|| TRANSMITTER= (pr_tx:PR_TX || cnt:COUNTER)
Hpr_tx.oper/cnt.oper, pr_tx.full/cnt.full, send/pr_tx.send,
accept/pr_tx.accept, res/pr_tx.res, ack/pr_tx.ack}
@ {send, ack, accept, res}.

We conclude that the LTS corresponding to a composite component can be computed as the

parallel composition of the LTSs of its sub-components, after appropriately instantiating and

72

CHAPTER 3 DESIGN & ANALYSIS

relabelling them. Some actions may also be hidden in the resulting behaviour in order to reflect

the interface of the component.

3.3.4 Modelling the ABP protocol

We proceed with the modelling of the remaining components of the ABP. The software
architecture of the ABP component is depicted in Figure 3.8. The notation used in this diagram is
not strictly Darwin since components are illustrated as transparent boxes in order to make their
internal structure apparent. For simplicity, the diagram does not include the substructure of
componentrRANSMITTER Which can be found in Figure 3.7. In this structuring of the protocol, the
transmitter and receiver are combined with their corresponding channels to form an unreliable
transmitter ¢tx) and unreliable receiveruik), respectively. This may not reflect a realistic

structuring of the system, but it introduces an extra level of hierarchy.

urx:REC_CHNL ABP
X:RECEIVER chnAck:CHANNEL
deliver reply .
O—=—=0Odeliver O—on"
deliver
rec out
rec reply

o0—0—0—"0

00—0—0—0

send ack
ack res result
res
in
O—O send accept accept
trans:CHANNEL accept
tx: TRANSMITTER

utx: TRANS_CHNL

Figure 3.8: Structure of the ABP component
We assume that the channels have a capacity of one, and their type is specified as follows:

CHANNEL=(in[b:BIT][x:VALUES] -> lose -> CHANNEL
| in[b:BIT][x:VALUES] -> out[b][x] -> CHANNEL) @ {in, out}.

According to the above specification, a lossy channel receives a message

(in[b:BIT][x:VALUES]) that contains two fields, a tag-bit, and the value. The receipt of a

73

CHAPTER 3 DESIGN & ANALYSIS

message non-deterministically leads the channel either to a “reliable mode” state where the
message will be transmitted (actiont), or to a state where the message will be lost (action

lose). The “reliable mode” state is important in this model. It captures the fact that message loss
is not an available option when the channel operates reliably. This proves important for the

protocol analysis, as discussed in Section 3.4.3.

The behaviour of the receiver is described below. It is symmetrical to that of the proper

transmitter, except that acknowledgements may be retransmitted any number of times.

RECEIVER = REPLY[1][1],

DELIVER[b:BIT][x:VALUES] = (deliver[x] -> REPLYI[b][X]),

REPLY[b:BIT][x:VALUES] = (reply[b][x] -> REPLYING[b][x]),

REPLYING[b:BIT][v:VALUES] = (rxto -> REPLYIb][V]
[rec[!b][x:VALUES] -> DELIVER]'b][X]
[rec[b][x:VALUES] -> ignore[x] -> REPLYING[b][v])
\ {rxto, ignore}.

The composite components of the protocol are described by the following FSP expressions,

based on the software architecture of the system:

[| TRANS_CHNL= (tx:-TRANSMITTER || trans:CHANNEL)
| {tx.send/trans.in, ack/tx.ack, accept/tx.accept, send/trans.out, res/tx.res}
@ {ack, accept, send, res}.

|| REC_CHNL= (rx:RECEIVER || chnAck:CHANNEL)
| {rx.reply/chnAck.in, deliver/rx.deliver, rec/rx.rec, reply/chnAck.out}
@ {deliver, rec, reply}.

[| ABP = (utx:TRANS_CHNL || urx:REC_CHNL)

/ {utx.send/urx.rec, utx.ack/urx.reply, accept/utx.accept,
result/utx.res, deliver/urx.deliver}

@ {accept, result, deliver}.

The interface of the alternating bit protocol consists of actiastept , deliver , andresult
Only the receipt and delivery of a message by the protocol, and the results about the transmission

(successful or failed) are visible at the global level of the protocol.

3.3.5 Discussion

As described in Section 3.3.3, the behaviour of composite components is computed based on the
LTS models of the primitive components, which provided by the system developer. This task

may involve LTS manipulations that reflect such features as process instantiation, binding,

74

CHAPTER 3 DESIGN & ANALYSIS

external interfaces, and others. In our approach, these manipulations are described by FSP
expressions that can be automatically extracted from the software architecture of the system,
without user intervention. This is achieved by the fact that each feature of the Darwin language
has been translated into a corresponding feature of FSP. The mapping between features of
Darwin and FSP is summarised in Table 3.1. Our tools reflect this integration; the Darwin
compiler has been extended to automatically generate FSP expressions that correspond to Darwin
architectural descriptions. The compiler is invoked by the SAA tool, which displays the FSP
expressions generated. In fact, the FSP descriptions of composite components in Section 3.3.4

have been automatically generated by the SAA.

Darwin FSP

type instantiation process labellingrstance_naméype _name

composite component parallel compositiomstance|jnstance

binding relabelling — / fiewlabej/oldlabel, ...}

component interface interface operator — @{actions}
restriction operator — \{actions}

composite interfaces prefix matching

Table 3.1: Mapping of Darwin features onto FSP

Using software architecture to direct analysis significantly simplifies modelling of a system.
Each primitive component can be modelled independently, irrespective of context, so long as it
provides the interface required. The designer is no longer concerned with the fact that LTS
models are sensitive to the selection of action names. Process labelling and action relabelling are
automatically performed so that communication occurs only where components are bound in the

system structure. Moreover, the LTS model of a component may be reused in different contexts.

3.4 Compositional reachability analysis

We have described how features of Darwin and FSP are related, so that the model of a system
can be constructed gradually from that of its primitive components, based on software
architecture. As discussed in Chapter 2, CRA can be applied naturally in such a setting in order
to address the state-explosion problem. The only additional step that contributes to the reduction
of the global LTS is the minimisation of the behaviour of components at intermediate stages of

CRA. Minimisation is performed with respect to some equivalence of interest.

75

CHAPTER 3 DESIGN & ANALYSIS

Various notions of equivalence can be used to compare the behaviours represented by two LTSs,
including strong and weak equivalence [Milner 89] and trace and failures-divergence equivalence
[Hoare 85]. In the context of system analysis, an equivalence must be able to distinguish exactly
those features of system behaviour that are relevant to the analysis. The definitions of strong and

weak equivalence are essential for our discussions and are provided here.

3.4.1 Semantic equivalences

For the definition of strong and weak semantic equivalences, we need to introduce the following
notation. We say that an LTB=[§ A, A, qCtransitswith actionalJA into another LTS = [0S,

A, A, g’J and denote it aglS A, A, qO[IF - OS A A, g0 if (g, a,) O A. Intuitively, a
transition changes the initial state of an LTS thus transforming it into an LTS that is identical,

except for the initial state.

Strong semantic equivaleneguates LTSs that have identical behaviour when the occurrence of
all their actions can be observed, including that of the silent actioit is the strongest
equivalence defined between LTSs, and preserves all kinds of behavioural properties. Formally,
let O be the universal set of LTSs. Then strong semantic equivalenté “the union of all

relationsR O [0 x[] satisfying thatP, Q) O R implies:
1. aP=0aQ;

2. OalAct:

P2 P impliesdQ,Q 2 Q and P, Q) IR.
. Q & Q impliesOP,P & P and P, Q) OR.

Weak semantic (or observational) equivalercgiates systems that exhibit the same behaviour

to the external observer who cannot realise the occurrenaeacofions. Formally, letP® P

denoteP O A _ P', wheret* means zero or more's. Then weak semantic equivalence ‘is

the union of all relation&® O O x satisfying that P, Q) 00 R implies:
1. aP=0aQ;

2. OalActO {€}, wheree is the empty sequence (85 P):

. PE P impliesdQ, Q1 Q andP,Q)0OR.
. QOB Q impliessdP,P[B P andP,Q) IR

76

CHAPTER 3 DESIGN & ANALYSIS

Both strong and weak equivalence amngruencesvith respect to the composition, relabelling,
and hiding operators. This means that strongly or weakly equivalent components may substitute
one another in any system constructed with these operators, without affecting the behaviour of

the system with respect to strong or weak equivalence, respectively.

3.4.2 Reduction of the state space

As discussed in Section 2.6.2, the equivalence notion used for simplifying intermediate systems
in CRA must be strong enough to preserve properties of interest, and weak enough to achieve a
good reduction of the state space. Unlike strong equivalence, observational equivalence is weak
enough to achieve a good reduction of the state space for most systems. Moreover, observational
equivalence captures the notions of encapsulation and interface in a system, inherent in its
software architecture: the environment of a component can only distinguish the behaviour of the
component that is available at its interface. For the above reasons, we have selected observational
equivalence as the default in our CRA approach. Although observational equivalence preserves
safety aspects of a system, it may overlook information necessary for reasoning about liveness,

an issue that is further discussed in Chapter 4.

I I

| utx: TRANS_CHNL | | urx:REC_CHNL |

X: TRANSMITTER trans:CHANNEL chnAck:CHANNEL xX:RECEIVER

pr_tx:PR_TX cnt:COUNTER

Figure 3.9: Compositional hierarchy for the ABP protocol

To summarise, our approach computes the model of a system based on its software architecture,
as follows. In Darwin, a system is organised as a hierarchy of components, with primitive
components at the leaves and composite components at the non-leaf nodes of the hierarchy. For
example, Figure 3.9 illustrates the hierarchy defined by the software architecture of the ABP
component of Figure 3.8. The behaviour of primitive components is modelled in terms of LTSs,
specified in FSP. Moreover, an FSP expression for each composite component is automatically
generated from the Darwin description of the software architecture. CRA is then performed

naturally on a system described in this way. The LTSs of composite components are computed in

77

CHAPTER 3 DESIGN & ANALYSIS

stages, as required by CRA. At each intermediate stage, the FSP expression of a composite
component dictates the way in which LTSs of more primitive porrents are manipulated and
combined for constructing the LTS of its behaviour. Each LTS thus obtained can be analysed
with respect to properties that refer to this component. Subsequently, this LTS is minimised with
respect to observational equivalence, before being used to compute the behaviour of other

components.

We use the two versions of the alternating-bit protocol presented earlier in this chapter to
illustrate how software architecture directs CRA in the generation of system behaviour. In our
evaluation of the reduction achieved with CRA, we use the following terms introduced by [Graf
and Steffen 90] (see also Section 2.6.2):

« apparentcomplexity of a system is the size of its state space before minimisation,
» real complexity of a system is the size of its minimised state space,

e algorithmic complexity of a system is the size of the maximal transition system
encountered by CRA.

3.4.3 CRA of the alternating-bit protocol

Version 1

We first perform CRA on the version of the protocol that allows the transmitter any number of
retransmissions. This version is obtained by using an infinite counter to control these

retransmissions (see Figure 3.5).

Table 3.2 presents the sizes of the LTSs obtained with CRA. For each component type, the LTS
“before minimisation” is the LTS obtained by composing the minimised LTSs of its sub-
components. By minimising this LTS, we obtain the LTS “after minimisation”, which is used by
CRA to compute the LTSs of higher-order components. Additionally, the table displays the sizes
of the LTSs obtained with incremental compaosition without minimisation. The protocol has an
algorithmic complexity of 468 states and 996 transitions (the largest LTS in the “CRA - before
minimisation” column) and a real complexity of 28 states and 59 transitions (the minimised LTS
for ABP), as compared to an apparent complexity of 4,446 states and 11,646 transigens (

computed without intermediate minimisation).

Note that we have performed incremental composition without minimisation in order to illustrate

how the reduction achieved with CRA becomes gradually more significant for higher-order

78

CHAPTER 3 DESIGN & ANALYSIS

components. However, there is no benefit in computing the LTS of a system gradually if
intermediate LTSs are not minimised. The LTS generated in this way has the same size as the
one obtained by composing the primitive LTSs of the system in a single step; of course, for a
single-step composition, action relabelling must be performed on fliteened software
architecture of the system. Therefore, in order to avoid the risk of intermediate state explosion,
the apparent complexity of a system is typically computed as a single-step composition of its

components. This is also the way we compute it from now on.

CRA Incremental composition
Component ™ phefore minimisation after minimisation | Without minimisation
#states #trans. #states #trans. #states #trams.
PR_TX 86 132 32 78 86 132
COUNTER 1 2 1 2 1 2
CHANNEL 13 24 7 18 13 24
RECEIVER 36 72 18 54 36 72
TRANSMITTER 28 68 20 60 74 114
TRANS_CHNL 74 198 68 186 302 624
REC_CHNL 66 128 60 156 168 366
ABP 468 996 28 59 4,446 11,646

Table 3.2: State spaces for ABP with infinite retransmissions and channels of capacity one

Analysis: The behaviour of concurrent and distributed systems typically does not terminate, but
consists of continual interaction of the system with its environment. In the LTS models of such
systems, deadlock is easily identified as a state that has no outgoing transitions. Our analysis tool
detected a deadlock in our model of the protocol, and generated a trace in the LTS of the ABP
that may lead to a deadlock. Such traces, which we refer toasterexamplesare used to show

an example execution of the system that exhibits erroneous behaviour. They provide invaluable

help for debugging a design. The result obtained is the following:

Trace to DEADLOCK: < accept.l >

Since analysis is performed compositionally, we have been able to check that all intermediate
subsystems are deadlock-free. The deadlock is therefore introduced when components
utx: TRANS_CHNL andurx:REC_CHNL are combined. The same trace to deadlock is returned for
the ABP component without hiding (i.e. wher@{accept, result, deliver} "is ignored in its

FSP specification). It can therefore be concluded that the deadlock occurs before any interaction
takes place between componeits andurx . After accepting a message, the only behaviour that

utx is allowed to perform without interacting withx is to forward this message to the channel,

timeout and retransmit the message. However, the channel may have committed to transmit the

79

CHAPTER 3 DESIGN & ANALYSIS

message it contains. In this case, it can only accept a retransmission after sending the message to
urx . Similarly, urx finds itself in a state where the receiver is ready to retransmit an
acknowledgement, but the channel is full and waits for to be able to receive the

acknowledgement.

The deadlock is therefore caused by the fact that the channels have a capacity of one. Assume
that the model of the channel always offered the choice of losing a message after receiving it.
Then the above deadlock would have been concealed by the fact that the channels would simply
lose their respective messages. This is indeed what happens with the model presented by [Blair,
et al. 98]. In order to detect the deadlock, they resort to checking the protocol again with reliable
channels. The non-deterministic channel that we have specified is therefore, clearly, a better

model of a lossy channel.

Corrected version: In order for the protocol to be deadlock-free, the channels used must have
infinite capacity. As our approach only deals with finite LTSs, we model these as channels that

overwrite messages, as follows:

CHANNEL= (in[b:BIT][x:VALUES] -> LOSE
| in[b:BIT][x:VALUES] -> TRANSMIT[b][X]),
LOSE = (lose -> CHANNEL
| in[b:BIT][x:VALUES] -> LOSE
| in[b:BIT][x:VALUES] -> TRANSMIT[b][X]),
TRANSMIT[b:BIT][x:VALUES]=(out[b][x] -> CHANNEL
| in[i:BIT][v:VALUES] -> LOSE
| in[i:BIT][v:VALUES] ->TRANSMIT[i][V]) @{in, out}.

This channel is always ready to receive a new message, and make a new non-deterministic
choice accordingly. Overwriting messages does not introduce a problem in ABP. When the new
message is tagged with the same thias the one currently contained in the channel, it is
considered as a retransmission of the same message. When the new message is tagged with bit
Ib , it means that the round characterised bylias been completed, and messages of that round

will be ignored.

Table 3.3 reports the state spaces of components of ABP when the new model is used for the
channels. Note that CRA needs only re-compute the compormemss_CHNL REC_CHNLand

ABP, which are affected by the change in the behaviour of the channels. The minimised LTS for
the ABP component is illustrated in Figure 3.10, and clearly shows the correctness of the
protocol. In essence, the protocol behaves as a 1-slot buffer, with the difference that it

additionally reports successful transmission.

80

CHAPTER 3

DESIGN & ANALYSIS

CRA
Component before minimisatior_1_ after minimisation _
#states #transitions #states #transitio

CHANNEL 8 103 7 90
TRANS CHNL 74 246 56 168

REC CHNL 66 216 48 138

ABP 108 246 7 9

Apparent complexity: 3,906 states and3,560 transitions

Table 3.3: State spaces of ABP with infinite retransmissions and infinite channels

accept.1

accept.2

deliver.2 deliver.1

ABP

result.ok.3

result.ok.2

result.ok.1

Figure 3.10: LTS for ABP with infinite retransmissions and infinite channels

Version 2

In the second version of the protocol, a bounded counter is used that allows a maximum of two

transmissions of the same message (see Figure 3.5). The channels used are infinite channels, as
introduced in the previous version of the protocol.

CRA
Component before minimisatior_1_ after minimisation _
#states #transitions #states #transitiops
PR_TX 86 132 32 78
COUNTER 6 3 6
CHANNEL 8 103 7 90
RECEIVER 36 72 18 54
TRANSMITTER 64 140 30 82
TRANS_CHNL 96 334 96 334
REC_CHNL 66 216 48 138
ABP 3762 10878 786 2133
Apparent complexity: 35,724 states and16,124 transitions

Table 3.4: State spaces of ABP with bounded retransmissions and infinite channels

81

CHAPTER 3 DESIGN & ANALYSIS

Table 3.4 reports the sizes of the LTSs obtained for the components of the protocol. This version
of the protocol has a real complexity of 786 states and 2,133 transitions and an algorithmic
complexity of 3,762 states and 10,878 transitions, as compared to an apparent complexity of
35,724 states and 116,124 transitions.

Discussion

For both versions of the alternating-bit protocol, compositional minimisation achieves a
reduction of the apparent complexity by at least one order of magnitude in terms of algorithmic
complexity, and by at least two in terms of real complexity. This reduction becomes significant
when the protocol is used as a component of a larger system. The intermediate state machines

obtained do not require the use of contextual interfaces in CRA.

The LTS obtained with CRA for version 1 of ABP is small, and clearly illustrates the correctness

of the protocol (see Figure 3.10). On the other hand, it is impossible to check correctness of
version 2 by simply observing the LTS of its behaviour, since the later contains 786 states and
2,133 transitions. For such cases, one needs to identify properties that guarantee the correctness
of the protocol, and to check the system against these properties. Model checking in the context
of CRA is discussed in Chapters 4 and 5. In Chapter 5, we prove that version 2 of the protocol is

in fact incorrect. It is worth mentioning that the problem is not detected in [Valmari 93b] where

this version of the protocol is described and modelled.

3.5 Related work

Good architectural design is a major factor in determining the success of a software system
[Shaw and Garlan 96]. Analysis can assist in discovering architectural problems early in the
development cycle. Therefore, various existing architectural development environments support
some sort of analysis. For instance, the UniCon environment [Shaw, et al. 95] incorporates the
RMA tool for analysis of real-time properties [Klein, et al. 93]. In UniCon architectural
descriptions, designers can also record real-time characteristics of their systems. These
characteristics are automatically extracted and passed in the appropriate format to the RMA tool,

for analysis of time-dependent properties.

Rapide is an event-based, executable ADL, designed for prototyping system architectures
[Luckham, et al. 95]. Its model of execution distinguishes true concurrency from interleaving: it

is based on partially-ordered sets of events (posets), where events are ordered according to their
time and causal dependencies. Simulating a Rapide architecture generates an execution of the

architecture, as a poset of events. Executions can be illustrated, animated in a graphical, real-time

82

CHAPTER 3 DESIGN & ANALYSIS

environment, and checked against properties. However, for most systems, there are too many
possible executions to be explored with simulation, even at the architecture level. Therefore,
although analysis by simulation can increase confidence in an architecture, it does not perform an

exhaustive check as model checking does.

[Allen and Garlan 97] propose to enrich architecture descriptions in WRIGHT with behavioural
specifications in CSP [Hoare 85]. This permits them to use the FDR analysis tool [Roscoe 94] to
automatically check deadlock freedom for connectors and compatibility of components with the
connectors used. Their work does not currently handle the issue of hierarchical description. A
difference between WRIGHT and Darwin is that Darwin does not have a separate connector
construct: connectors are modelled in exactly the same way as components. For example, the
CHANNELcomponent in our ABP example corresponds to a connector. From the behavioural point
of view, Darwin may simplify the description of a system, due to the fact that connectors do not
need to bealwaysinterposed between components. In this way, connectors can be omitted when
their behaviour is not crucial, in which case the communication primitive of the model is used

instead.

In a WRIGHT architecture description, structural and behavioural specifications are combined.
Therefore, unlike Darwin, WRIGHT does not support a clear separation between the different
views of a system. Moreover, WRIGHT lacks tool support for graphically illustrating
architectures, and for automatically extracting CSP specifications and providing them to the FDR
tool for analysis. In comparison, the integration of our methods and tools is the strongest asset of
our approach. Structural specifications can be provided separately from behavioural ones, but are
exploited directly, and automatically, for system analysis. This includes hierarchical descriptions.
Finally, as described in the following chapters, our approach includes a variety of model-

checking capabilities.

[Naumovich, et al. 97] check the WRIGHT architecture description of a self-serve gas station
system using two existing analysis tools: FLAVERS, based on data-flow analysis [Dwyer and
Clarke 94], and INCA, based on flow equations [Corbett and Avrunin 95]. To perform this, they
manually translate the CSP specifications in the WRIGHT description into Ada code, which is
the input language of both FLAVERS and INCA. In [Magee, et al. 99], we demonstrate that the
gas station system can be checked more elegantly using our approach, due to the efficient

integration of our methods and tools.

Finally, [Inverardi and Wolf 95] describe software architectures using the Chemical Abstract

Machine formalism (or CHAM) [Berry and Boudol 92]. The high level of abstraction and

83

CHAPTER 3 DESIGN & ANALYSIS

conciseness of CHAM descriptions facilitate analysis of software architectures. However, such
analysis is performed manually by the authors. Moreover, the CHAM is not addressed
specifically to software architectures. As pointed out by [Allen and Garlan 97], there are
important methodological reasons for providing specialised notations for architectural
specification. In order to match the architect's informal design practices, such notations must
provide with explicit constructs for describing architectural abstractions (e.g. components and

configurations).

3.6 Summary

For increased usability, analysis methods and tools should be integrated with other activities of
software development. INRIACTA, software architecture is used to bridge the gap between
design, analysis, and construction of distributed systen®ACTA uses Darwin to describe
software architecture as a hierarchy of components. Behaviour is modelled in terms of LTSs,
which are described in the FSP specification language. FSP can be viewed as a specialised
language for our framework; it provides a concise way of describing the behaviour of

components in the context of software architecture.

This chapter has shown how system structure can be exploited for analysis. The approach is

based on the fact that each feature of Darwin has been mapped onto a corresponding feature of
FSP. In this way, the structure of any composite component can be automatically translated into

an FSP expression, which describes how its behaviour can be computed from that of its sub-

components. As advocated by CRA, a smaller LTS will be obtained from this procedure by first

minimising the LTSs of the sub-components.

The behaviour of a system can therefore be obtained from that of its primitive components, by
successively computing and minimising the behaviour of its subsystems based on its software
architecture. We have illustrated our discussions with the familiar example of the alternating-bit
protocol. This example highlights the tight integration between design and analysis in our
approach, and indicates the significant reduction that CRA may achieve on the state space of the

system.

84

Model Checking of LTSs 4

4.1 EXPRESSING PROPERTIES OVER ACTIONS 86

4.2 TEMPORAL LOGIC AND FINITE AUTOMATA 89

4.3 PROGRAM VERIFICATION 95

4.4 S\FETY AND LIVENESS 99

4.5 (HECKING PROPERTIES IN THE CONTEXT O€ERA 101
4.6 OPTIMISATION OF THERD ALGORITHM 107

4.7 DscussioNn 109

4.8 SummARY 110

Model checking consists of constructing a finite-state model of a system and checking this model
against a set of desired properties. As described in Chapter 2, these properties can be expressed
either in some temporal logic (temporal logic approach), or as automata (automata-theoretic
approach). [Vardi and Wolper 86] have proven that temporal logic model checking can be recast
in terms of automata, thus relating these two approaches. Their method is based on translating

LTL formulas into Blichi automata for verification.

A tool may therefore easily provide the choice of expressing properties as automata or as LTL
formulas, since the same checking procedure applies to both. Model checking then consists of the

following basic steps:

1. generate a finite-state model of the system behaviour;

2. express the properties that the system must satisfy in LTL or as Blchi automata;
3. check that the system satisfies its properties;

4. provide counterexamples when the system violates any of its desired properties.

In Chapter 3, we have motivated the use of CRA for creating the LTS corresponding to a system.
This LTS is obtained by successively computing and simplifying the LTSs of its subsystems,
based on the system software architecture. In this chapter, the general mechanisms for model
checking of LTL formulas and Blichi automata are adjusted to our framework, where system

behaviour is described as an LTS that is constructed with CRA.

85

CHAPTER 4 MODEL CHECKING OF LTSs

4.1 EXxpressing properties over actions

In Section 2.1.1, we described a way of expressing and checking LTL properties of a system
modelled as a Kripke structuné. Such structures are finite-state systems, where states are
labelled with atomic propositions from a detthat hold at these states, and transitions are not
labelled. Atomic propositions iR take the form (; equalsv), whereu; is a state variable of the
system and is a value foru;,. A proposition (i equalsv) is true in all states wheng has valuer.

The properties of the system are then expressed as LTL formulas built from atomic formulas in

P, and are interpreted on the paths of the Kripke strudture

In contrast, LTS states do not explicitly hold information related to the local values of the state
variables. Rather, each state is characterised by the actions that may be performed when the
system is in this state, and the state transitions that these actions trigger. This is also reflected by
the notions of strong and weak equivalence associated with LTSs. It is therefore natural to
express properties of LTSs in terms aftionsin their alphabets. To this aim, we introduce a
linear temporal logic ofactions (ALTL — Action LTL). ALTL is a restricted version of LTL:

atomic propositions are actions and the interleaving model of concurrency is a built-in feature of

the logic.

4.1.1 ALTL - a linear temporal logic of actions

The syntax of ALTL is similar to the syntax of LTL (see Section 2.1.1), with the difference that
the set of propositions from which formulas are built is the universal set of observable actions

Act (properties are not allowed to refer to the actiynin this context, an ALTL interpretatiof
is an infinite sequence of assignments of truth-values to the iterstofFor some time instant
sOON and actioraJAct;, I(s, a)=true means thah occurs at time instarg In order to enforce the

interleaving model of concurrency in ALTL, two distinct actions are not allowed to be true

(occur) at the same time instant. Formally, an interpretafi@legal iff:
Oay, gUACt, I(s, &)=true O I(s, a)=true U a = a;.

An infinite word infw over ACDAct; is an infinite sequence of actions & Each infinite word

infw=aga,a,... defines an ALTL interpretatiod as follows:
O sON, JaldAct, I(s, a) =trueiff a = a..

In other words, at timalIN, the only action that is true is the action with orden infw (where

the order of the first action in the sequence is zero). This is illustrated in Figure 4.1, where each

86

CHAPTER 4 MODEL CHECKING OF LTSs

time instantsCN is associated with the action that is truesan the interpretation defined by

word infw.

»
»

N

Figure 4.1: Temporal interpretation defined by an infinite sequence of actions

Infinite words can be represented yregular expressionsw-regular expressions extend regular
expressions with the operataw that expresses infinite repetition. Following the usual
conventions of regular expressions, juxtaposition represents concatematiepresents union,
andOdenotes finite repetition. For exampkebc® represents all infinite sequences that initially
contain a finite number dd actions followed by a single actidn followed by an infinite number

of c actions.

We can extend the above discussion for the case of finite words. A finite fivovdver ACAct;

is a finite sequence of actions & A finite word finw=apa;...a, is associated with the following

ALTL interpretationI:
O sON, JaldAct, I(s a) =trueiff (ssnOa=as).

Definition 1 — An infinite word w satisfiesa temporal formuld, iff f is initially true in the

interpretationl defined byw, that is, iff I(0, f) = true. m

4.1.2 Introduction of alphabets into ALTL

Properties are usually concerned with a small set of actions and the temporal relationship
between these actions. For example, mutual exclusion is only concerned with the actions of
entering and exiting a critical section. As a consequence, any other action that a system is able to
perform can be ignored when checking this system for mutual exclusion. Moreover, as discussed
later in the chapter, a component may be associated with a local property that must be satisfied in
any context where the component is used. In expressing such properties, designers concentrate on
the occurrence of actions of the component itself, and should not need to consider additional

actions from all the systems where the component may potentially be used.

ALTL provides the flexibility of associating alphabets with formulas to specify which actions are
considered when checking a system against these formulas. The alphabet of a formula thus

allows to abstract irrelevant details when interpreting the formula on some word.

87

CHAPTER 4 MODEL CHECKING OF LTSs

Definition 2 — Let M O Act be a set of observable actions, and formula associated with
alphabetM (denoted asM=af). For a wordw, we usew [M to denote the word obtained by
removing fromw all occurrences of actiora IM. Then an infinite wordw satisfies fiff w M

satisfies. m

Example: Assume a concurrent program that uses a binary semagkane order to ensure
mutual exclusion between two procesfesandP,. For each proceds, let p(s); andv(s); denote

the basic operations osem enter and exit be the actions of entering and exiting a critical
section, andts denote that the process is operating in a critical section. In this context, mutual
exclusion can be expressed by the following ALTL formula:

af = {entes, exity, entep, exit},

f=0o((enten O (—enterU, exity)) O(enter O (—enterU, exit))).

The formula is only concerned with the actions of entering and exiting a critical section. It states
that, at any point in time, if a process enters its critical section, then the other process is not
allowed to do the same until the former exits. We use “weak untidy)in this formula, because
mutual exclusion does not require a process eventually exiting after entering its critical section.
Therefore, at some time instamt(— entepU,, exit;) also holds if— entep remains true ever after.

We will show that the following infinite trace of the concurrent program satisfies profierty
w = (p(S); enter; cs; exity V(S): p(s)2 entep ¢S, exit V(s),)”.

According to Definition 2w satisfiesf iff w'=w [&f = (enter exit; entep exit)® satisfiesf. The
temporal interpretatiod defined byw’ is depicted in Figure 4.2. From this figure, and since the
interpretation follows the same pattern for the time instants not illustrated, we can sE&Ihat
I(i, f)=true, wheref;=(enter, O (- entepll,, exit)) O (entep O (—enterlly exit)). Therefore,
of; holds at time instanD. But f = of;, which means thatv satisfiesf, and therefore this

particular trace of the program satisfies mutual exclusion.

ente; exit; entep exit .
@ @ @ L g >
0 1 2 3 N

Figure 4.2: Interpretation defined by (enter, exit; enter, exit,)®

Note that for an infinite wordv, w M may be finite. For example, lat = ab(cde®, andf an
ALTL formula whereaf={a, b} and f = o(alJ Ob). The wordw [&f is finite, and defines an

interpretation whera is true at time0, b is true at timel, and all actions irAct, are false at any

88

CHAPTER 4 MODEL CHECKING OF LTSs

other moment in time. In this interpretatios [I Ob) is true at time0, and trivially true at all

other times becausgis false. Consequentlyy satisfies formuld. On the other hand, formulg

whereag={a, b} and g = (o¥a O oob) is not satisfied byv.

Note: From now on, when the alphabet of a formula is not explicitly defined, it is implied that it

consists of the actions that appear in the formula.

4.2 Temporal logic and finite automata

In this section, we present a part of the theory of LTL that is of particular interest to this thesis:
the relation between LTL and finite automata. This relation forms the basis of the automata-
theoretic approach to program verification, which has been adopted by several existing methods

and tools [Aggarwal, et al. 90, Alpern and Schneider 89, Gerth, et al. 95, Holzmann 97].

4.2.1 Buchi automata

Bilchi automata are finite automata on infinite inputs. The expressive power of this class of
automata is strictly larger than that of LTL. More specifically, any LTL formula can be
algorithmically translated into a Biichi automaton that accepts exactly those infinite words over
its alphabet that satisfy the formula [Vardi and Wolper 86]. In this section, we introduce the
theory of Blichi automata as related to program verification, and as adapted to reflect their use in
the TRACTA approach.

Definition 3 — A Biichi automatorB is a 5-tuplel$, A, A, qo, FLlwhereSis a finite set of states,
A=aB0{1} is a set of actions wheraBAct denotes thalphabetof B, A 00 SxaBxSis a set of

transitions on observable actiomg[ISis the initial state, an80Sis a set of accepting statea.

In the representation of Blichi automata, accepting states are distinguished by a double circle. For
example, Figure 4.3 depicts a Blchi automagoant_reqwith accepting staté. Blichi automata
are defined similarly to finite automata on finite words, but their accepting condition is different

in order to deal with infinite inputs.

granted request
A request
grant_req q’@
granted

Figure 4.3: Bichi automaton and Buchi process for formulac(requestd ¢ granted

89

CHAPTER 4 MODEL CHECKING OF LTSs

An executionof B=[§ A, A, qo, FOon an infinite wordw=asa;a,... over aBis an infinite
sequence=0gpaothas02..., Where ¢, a, g..1)04, i 20. An executiono is acceptingiff it contains

some accepting state @& an infinite number of times. As Blchi automata may be non-
deterministic, there can be several alternative executions of an automaton on a given infinite

word. An infinite wordw is accepteddy B iff there exists an accepting executionBbnw.

We will denote ad.(B) the languageaccepted byB, which is the set of infinite words ovexB
accepted byB. The languages accepted by Blchi automata are usually referredidaeggilar
languages, and they correspond exactly to the languages that can be describeddwar
expressions [Gribomont and Wolper 89]. Among the most interesting propertiesr@fular
languages is that this class is closed under the operationsinafn, intersection and
complementationThis means that given two Blchi autom&aandB, over an alphabeh that
accept languagds(B,) andL(B,) respectively, it is possible to build Bichi automata that accept
the languagek (B1)OL(B,), L(B1)nL(By), andA®\ L(B,) [Gribomont and Wolper 89, Sistla, et al.
87].

According to the above discussion, automatgrant reqof Figure 4.3 accepts the language
(request* grante)!, i.e. all infinite sequences for which requests can only occur finitely often
before one of them is granted. Any other sequence of actions results in an execution of the
automaton that does not contain the accepting state infinitely often. The languggenbfreq
defines exactly those infinite sequences ovagiest granted that satisfy the ALTL formula

o(request] Ogranted. This formula states that, at any moment in time, ieguestevent occurs,

then it is eventually followed by grantedevent.

Emptiness: An automatorB is calledemptyiff L(B) = @, i.e. iff it does not accept any word over

its alphabet. A Blichi automaton is non-empty iff at least one cycle in its graph contains some
accepting state [Gribomont and Wolper 89]. This can be explained intuitively as follows. For
finite-state systems, an infinite execution can be obtained by following a path to some state
some cycle, and then indefinitely following the path froro r defined by the cycle. If the cycle

contains some accepting state, then the execution is accepting.

4.2.2 The role of alphabets

Traditionally, the language of a Blichi automaton does not contain words that are not over its
alphabet [Gribomont and Wolper 89]. However, iRACTA, the alphabet of a Blichi automaton

plays the same role as the alphabet of an ALTL formula; it expresses which actions in an infinite

90

CHAPTER 4 MODEL CHECKING OF LTSs

word must be checked by the automaton, in order to decide if the word is accepted or not. All
remaining actions are of no relevance to the property that the automaton expresses, and therefore
their occurrence is ignored. This is achieved by a simple extension that we have made to the
definition of an “execution” of a Blichi automaton (the definition of an “accepting execution”

remains the same):

Definition 4 — An execution of a Blchi automatoB = [$, A, A, qo, FOon an infinite word

W=aga1a,...0ver AjJaB is an infinite sequence = geaghai ..., Where:
0i=0, (g, & g+) OAif a0aB) and G-+ if alJoB). m

A Blchi automatorB with alphabetaB accepts an infinite wore iff there exists a traditional
execution of the automaton am[&B that: — is accepting whew [&B is infinite, or — leaves the
automaton in an accepting state whenaB is finite. The extension described in Definition 4
covers exactly these cases. Blchi automata can thus perform similar abstractions as ALTL
formulas do. In general, an ALTL formula may be algorithmically translated into a Buchi
automaton with the same alphabet, which accepts those infinite word#&\oléhnat satisfyf. The
automaton foff is the result of translating viewed as an LTL formula, into a traditional Blchi
automaton with alphabetf. The construction of the Blichi automaton must take into account that

at most one action can be true at any time instant.

Figure 4.4: A Biichi automaton representing formulaf = o(a 0 Ob)

For example, consider an infinite womd = ab(cde®, and an ALTL formulaf=o(al] Ob) with
af={a, b}. In Section 4.1.2, we showed thatsatisfiesf. The same result is obtained by using the
Bichi automatomB corresponding té, which is illustrated in Figure 4.4. According to Definition
4, the execution oB on w is d=0a1b@c0d0e(®; the actionsc, d, e that occur infinitely often in

w do not belong to the alphabet Bfand therefore leave the automaton in statés accepting

state0 is contained iro infinitely often, B accepts the word.

Emptiness: Definition 4 allows Blchi automata to accept words that may contain actions outside
their alphabets. We then say that an autom&demptyiff it does not accept any word ovés
own alphabet, i.e. iffL(B)naB®” = @. Again, a Blchi automaton is non-empty iff at least one

cycle in its graph contains some accepting state.

91

CHAPTER 4 MODEL CHECKING OF LTSs

4.2.3 Blchi processes

As discussed, LTS states do not explicitly hold information related to the local values of the state
variables. Rather, each state is characterised by the actions that may be performed when the
system is in this state, and the state transitions that these actions trigger. Following the principle
of the LTS model, our work introduces a new type of automata called Blichi processes, which are
similar to Blichi automata, but where accepting states are distinguished in terms of transitions

that may be triggered at these states.

Definition 5 — A Buichi processB is a 5-tuplel$, A, A, do, LL whereSis a finite set of states,
A=aBO{1} is a set of actions wheraBAct denotes thalphabetof B, A 00 SxaBxSis a set of
transitions on observable actiomp[JSis the initial state, andJaB is a set ofaccepting actions

(such actions are prefixed with the special symbol “@"). The transition relatisrsuch that:
O(s,a)OdA: adL O (s=t).

In other words, transitions labelled with accepting actions (cadllecepting transitions can

relate a state only to itsel

Executions of Blichi processes are defined as for Blchi automata (Definition 4). A Blichi process
B=1[8 A A ¢ LOacceptsan infinite wordw, iff there exists an executiom of B onw such that

all accepting actionkL are enabled infinitely often io. An actiona is enabledin executiono

iff o contains a state wherea is enabled. An actior is enabledat a states]S, iff [5'JS such

that 5, a,s) OA.

Note that in our approach, actions prefixed with the symbol “@” are reserved for use as
accepting actions; they dwt appear in infinite words or in LTSs. Therefore, words that belong

to the language of a Blichi processlut contain accepting actions.

fair,
@8\ ™ !
° choose ° choose a
dol do2
Figure 4.5: A Blchi process modelling fair choice between two alternatives

For example, Figure 4.5 illustrates a Blichi process that models a fair selection between action
doland actiordo?2 Its set of accepting labelsis equal to {@B,, @B;}. The procesdair accepts

only infinite words that contain botbhooseland choose2an infinite humber of times. This is
because®B, and @B, are enabled only at statésand?2 respectively, and therefore an accepting

execution of the automaton must contain both statsd?2 infinitely often.

92

CHAPTER 4 MODEL CHECKING OF LTSs

Emptiness: A Blchi processB is emptyiff it does not accept any words ovés ownalphabet,

i.e. iff L(B)naB® = @. Given the accepting condition of Biichi processes, a Biichi process is non-
empty iff all acceptingactions in its alphabet are enabled in at least one cycle of its graph (an
actiona is enabled in a cycle iff the cycle contains a state wheerie enabled). Of course,
transitions on accepting actions are not considered when searching for cycles in the graph of a
Bichi proces®. As mentioned, such transitions simply mark accepting states, and do not appear

in executions oB.

Relationship with Blichi automata

Any Blchi automaton can be translated automatically into a Blchi process that accepts the same

words overAct;, as follows:

Definition 6 — A Blchi automatonB = [§ A, A, qo, FOis mapped to a Bulchi proce&=
BAO{ @B}, 4", qn, {@B}Oby adding a new globally unique accepting acti@B and new

accepting transitions, such that:
e @BOA and
e N=A0{sOf- s|sOF. =

A Blchi automaton is translated into an equivalent Blichi process by marking its accepting states
with accepting transitions. These transitions are all labelled with the same a@iamé’, where
“name”’ is the unique identifier of the Bilchi automaton. For example, the Biichi automaton

grant_reqof Figure 4.6 is transformed into the Blchi procgsant_red in the same figure.

granted request @grant_req request
grante request
,
grant_req—» grant_req—» —>
granted granted

Figure 4.6: Transformation of a Blichi automaton into a Blichi process

Note that not every Biichi process can be viewed as a direct translation of some Biichi
automaton. That is, we could not use the inverse procedure from that described in Definition 6 in
order to map any Blichi process into an equivalent Biichi automaton. The reason is that for some
Bichi processs, A, A, qo, LEIL may contain more than one accepting actions (see Figure 4.5). In
fact, Biichi processes directly correspond to a generalised form of Blichi automata, which has the
same expressive power as standard Bichi automata, but allows more concise definitions
[Gribomont and Wolper 89]. The benefit from allowing multiple accepting actions in a Buchi

process is apparent when such processes are composed, as described below.

93

CHAPTER 4 MODEL CHECKING OF LTSs

Composition of Blchi processes

In the following, we define a parallel composition operator for Blichi processes, which is based

on the corresponding operator on LTSs.

Definition 7 (Parallel Composition) —Consider two Blchi processBs = [$, A, A1, q1, L.Cand

B, = 5, Ay, Ay, O, Lo0Jand the LTS$; andP, obtained from the first four components of each,
i.e. Py =[5, Ay, Ay, gilandP, = [H, Ay, A, gpL] respectively. The parallel compositi@i| B, of

B; andB; is the Blichi procesB = [§ A, A, g, L wherel$ A, A, qCE Py ||P,andL=L; 0 L, =

From Definition 7, it is clear that during their joint execution, Blichi processes do not proceed in
lock-step synchronisation, which is the standard way in which Blichi automata are composed
[Gribomont and Wolper 89]. This is due partly to the fact that Blchi processes are allowed to
have different alphabets, and partly to the extended notion of an execution that our approach has

introduced (see Definition 4).

The theorem that follows forms the basis of the ALTL verification procedure, and is based on a
similar theorem for Blichi automata (Theorem 4.4 in [Gribomont and Wolper 89]). However, our
theorem applies to Blchi processes, and therefore takes into account the particular way in which

Bichi processes are composed.

Theorem 4.1— The parallel composition of two Biichi processes accepts the intersection of their

languages. That is, for any two Biichi procesBeandB,, the following holds:
B= Bj_”Bz 0 L(B) = L(Bl) N L(Bz)

Proof. Let B; = [§, Ay, Ay, g, LifaANd By = [H;, Ag, Ay, O, Loldbe two Biichi processemnd
B=B,||B.. Assume thaB = [§ A, A, g, L1 Then, from Definition 7, we know thdt = L; O Ly,
and($, A, A, qCE [8, Ag, Ay, o] B, Ao, Ay, gl Therefore, the states 8fcan be represented as
pairs of states 0B, and B,. From Definition 5, a wordw belongs toL(B) if there exists an
executiono of B on w which contains infinitely often, for each accepting actlpin L,00L,, a

state wherd; is enabled. From the semantics of the composition operator and Definition 4, the
projectiono; of executiono on the states dB; coincides with an execution &; onw. Since for
eachl;d Ly, liis enabled iro, o, is an accepting execution Bf onw. This means thaw O L(By).
Similarly, w O L(By), and thereforewJ(L(B1)nL(B2)). We have thus proven thatIL(B) O
W(L(B)nL(Bo)).

To prove the inverse, assume thefl(L(B,)nL(By)), and thatw=aga;a,.... Then, there exists an

accepting executioro; of B; on w, and an accepting executiom, of B, on w. Let 0; =

94

CHAPTER 4 MODEL CHECKING OF LTSs

rodof 14l >... ando, = Ssasa1S,... We argue that executiom = (ro, So) ao (r1, S) a1 (2, &)... is a
possible execution dBy||B, on w. We prove this by showing thafi=0, (r;, S) a (ris1, S+1) is a
legal step oB,|B,, when executing omw. Let us callt; the transition (i, S), &, (ri+1, S+1)). In the
case where actioad (aB;naB,), and given that; ando, are executions dB; andB, on word
w, (ri, &, ri.1) is a transition oB,, and &, & ,S.1) is a transition oB,. Thereforef; is a transition
of By||Bz, and, by Definition 4(r;, s) a (ri«1, S+1) is @ legal step in an execution B||B, on w.
Whena O (aB,—aBy), (ri, & ,ri+1) is a transition oB,, whereas = s.1. S0,t; is again a transition
of B4||B.. We argue similarly for the case whesgl (aB—aBy). Finally, whenaO(aB;daBy), r;
=r., and s=s.1. Moreover, according to Definition 4B,||B, does not change state when
executing on actiom;, which proves thafr;, s) a (ri-1, S+1) IS a legal step in an execution of
B1|B. on w. We can therefore conclude thats a possible execution @&;||B, on w. It is easy to
prove that, in additiong is an accepting execution. The projectionocobn states oB; andB; is
identical too; ando,, respectively. Since; anda, are accepting executions Bf andB,, andL

= L,0L,, each accepting actidiiiL is enabled infinitely often i, which makeso an accepting

execution. We conclude thatd(L(B,)nL(By)) O wL(B), which completes the proo

4.3 Program verification

When a program is executed on a computer, a sequence of machine states is generated. This
sequence, enriched with the program statements whose execution causes the transition of each
state to the next, is called an execution. If program statements are mapped to actions, then the
sequence of statements in a program execution defines a word, which may be checked against
ALTL properties. Concurrent programs usually admit several executions due to the fact that, at a
given state, more than one statement may be selected for execution. Obviously enough, such
programs are correct with respect to some ALTL propertgliftheir possible executions satisfy

this property. For a program modelled as an LTS, this is formally described as follows:

An LTS satisfiessome ALTL formulaf, iff all its possible executions satisfy An
executionof an LTSP = [§ A, A, qolds an infinite sequence = qoaggia10p..., where:
0i=0, (g, & g+1) O A. An executiono = geaothai0p... satisfied, iff its corresponding

infinite word w=aga;ay... satisfied.

Intuitively, properties expressed in ALTL are interpreted and checked on the infinite sequences
of actions that an LTS can perform. To simplify our discussion, we assume that LTSs do not
contain transitions on the actian Later in this section, we show that the verification procedure

that we present can also be applied to LTSs that contain such transitions.

95

CHAPTER 4 MODEL CHECKING OF LTSs

4.3.1 Procedure

Let Prs= [A, A, qlbe the LTS model of a concurrent system, which does not contain
transitions. This LTS can be viewed as Blichi autome®en($, A, A, g, SOwhich, among the
infinite words overaP, accepts exactly those that correspond to executio@f[Gribomont

and Wolper 89]. Formally,
L(P)naP“={wdaP® | w corresponds to some infinite executionRpfs}.

Let P” be the Bichi process for this automaton (that.i®)= L(P)). To check thaP_rs satisfies

some ALTL propertyf, we proceed as follows:

Step 1. Build a Buchi process.; = [, A1, Ay, 01, { @B} Cfor —f.

Commernt In general, it is more efficient to build a Blchi automaton for the negation of a

formula, than to build and then compute the complement of the automaton for the formula itself.
Complementation of Blchi automata is an expensive operation [Gribomont and Wolper 89],
whereas there exist efficient algorithms for constructing an automaton corresponding to some

LTL formula [Gerth, et al. 95]. The same holds for Biichi processes and ALTL formulas.

Step 2. Compute the Biichi procdss P’||B-+.

Comment Let W be the set of infinite words ovenl accepted by, i.e. W=L()nal®. By

Theorem 4.1,al=aP"0aB-s, and sinceaP=aPO{@ P}, it holds that al=aPO{@P} JaB-+.
However, formula-f expresses an (undesired) propertyPgofs, soa(—f) O aPrs=aP. We also
know thataB-; =a(-f)0{@B}. Therefore,al = aPda(-f)0{@P, @aB} = aPO{@P, @aB}.
But since words irL(1) cannot contain accepting actions, we conclude Wit (1) naP®.

By Theorem 4.1L(1) = L(P")nL(B.¢) = L(P)nL(B.y), and sON=L(P)nL(B-f)naP®. This means

that the set of infinite words thdtaccepts over its own alphabet contains exactly the executions
of P.rs (L(P)naP®) that are accepted B¢, i.e. that satisfy-f.

Step 3. Check thdtis empty.

CommentThis means that there exists no executioRak that satisfies f, i.e. P 15 satisfiesf.

The set of accepting actions of Biichi processequal to {@} 0{@ B}={@ B, @P}. So process
| accepts a word iff there exists an execution dfon w where both @ and @P are enabled
infinitely often. But @P is enabled at all states &, so it is also enabled at all states lof

Therefore, since condition Bis trivially satisfied, the set of accepting actions lotan be

96

CHAPTER 4 MODEL CHECKING OF LTSs

reduced to {@}. We conclude that the LTS of a concurrent program can be used directly for

verification; it is not necessary to add accepting transitions to it.

Checking emptiness:Step 3 in the above procedure requires checking if the Blchi pradess
empty. | is non-empty iff @B is enabled in at least one cycle of its graph. This is known to
reduce to checking that there existsnan-transientstrongly-connected component In(see
Definition 8) where @ is enabled [Gribomont and Wolper 89]. The latter can be performed with

time complexity linear in the size of the graph [Tarjan 72].

Definition 8 — A strongly-connected component is a maximal set of states such that every state in
the set is reachable from any other state in the sétadsientstrongly-connected component has

only one state and there is no transition from that state to itself other than accepting transitions,
which are prefixed with the special symbol @. Any other strongly-connected component is called

non-transientm

Note that accepting transitions are ignored when deciding if a strongly-connected component is
transient, since they are simply used to distinguish accepting states. For example, the graph of
Figure 4.8 contains the following strongly-connected componefs;6} and {2,3,4} which are

non-transient, and} which is transient.

Counterexamples:Assume that step 3 of the model-checking procedure detects a violation, i.e.
@Bis enabled in some strongly-connected compois€ of procesd. A counterexample can

then be provided to help uncover the error in the design. A counterexample describes an infinite
word corresponding to some violating executionPpfs. In TRACTA, such counterexamples are

of the formseq(se@)®, where:

e seqis atrace of to some state of SCCwhere @B is enabled, and

e segqis a trace from state corresponding to a cyclic path inNote that action @ does
not occur inseg.

Terminating executions: Our approach is focused on concurrent and distributed systems, where
terminating executions are typically considered as deadlocks. However, verification with Blchi
automata can also cover cases where terminating executions are legal. A common practice is to
turn terminating executions into infinite ones by adding a transition labelled with a “terminate”

action from each terminating state to itself.

Unobservable actions:In the above discussion, we assumed, for simplicity, that the LTSs that

we check do not contaimtransitions. Now leP be an LTS that contains metransitions A be a

97

CHAPTER 4 MODEL CHECKING OF LTSs

set of actions i P that must be hidder®” be the result of hiding actions i from P, andB be

a Buchi process used for checkifgagainst some property, such tr@BnA = &. From the
semantics of the parallel composition operator, it is clear that the graphs correspon&ifig to
andP|B have a single difference: all transitions on actions that belorgitoP||B, are transitions

on the actiort in P’||B. However, the structure of the two graphs is identical, and therefojB,

is empty iff P|B is empty. In other words, the verification procedure that we have described can
also be applied to LTSs that contaifiransitions. Such LTSs are checked against properties that

are only concerned with their observable actions.

Similarly, Bichi processes can be extended to allowransitions. This often facilitates
modelling, as it allows a Blichi process to perform an internal, non-deterministic, change of state.

For instance, we use such a Biichi process in one of our examples of Chapter 6 (see Figure 6.8).

Note that, sinca-actions are considered unobservable RATTA, they do not explicitly appear
in counterexamples. However, their existence is implied when it plays a role in a violation. For
example, in a counterexample of the forseq(seq)®, if seg contains no actions, then it

obviously describes &cycle in the system behaviour.

4.3.2 Example

Consider version 1 of the alternating-bit protocol presented in Chapter 3. We restrict the values
that the protocol transmits to a single value in order to be able to illustrate graphically the
verification process with Biichi automata. The minimised LT3w®# is illustrated in Figure 4.7.

We wish to check propertl/= o(acceptl O ¢ deliver.1), which states that it is always the case

that if a message is accepted, it is eventually delivered. We proceed according to the model-

checking procedure described earlier in this section:

1. We build a Biichi processi corresponding tenf = O(acceptl 0 o—deliver.l), illustrated in

Figure 4.7.
2. We construct the Blichi procesBpP||L1 . The result is illustrated in Figure 4.8.

3. We check thatsP||lL1 is empty. Figure 4.8 clearly shows that this is the case, s@cas
not enabled in any non-transient strongly-connected component of the graph. We therefore

conclude thanBpsatisfies the property. Given the LTS &P, this result was expected.

98

CHAPTER 4 MODEL CHECKING OF LTSs

The automata-theoretic approach thus reduces model checking to a reachability problem,
although in theproductof the state spaces of the system and the property. For example, the LTS
corresponding t@aBP||L1 has 7 states, as compared to 3 states of the LT &Her

accept.1 deliver.1 accept.1 deliver.1
ABP L1 ;_.F ;_;_
@ accept.1 accept.1 accept.1
deliver.1 @L1 deliver.1
result.ok.1

Figure 4.7: Minimised ABP protocol, and Biichi process forQ(accept1 Oo= deliver)

accept.1

accept.1 deliver.1 result.ok.1 accept.1 deliver.1

deliver.1

result.ok.1

Figure 4.8: Composite LTS of ABP with property L1

4.4 Safety and liveness

Various classifications of program properties appear in the literature, where each class is usually
characterised by a canonical temporal formula scheme [Lamport 94, Manna and Pnueli 92]. In
our work, we consider two popular classes of properties, safety and liveness, also referred to as
invariance and eventuality [Lamport 94].

Informally, asafetyproperty claims that “something bad” does not happen. For example, mutual
exclusion is a safety property that specifies the absence of a program state where a common
resource is simultaneously accessed by more than one clieliweessproperty claims that
“something good” eventually happens, i.e. that a program eventually enters a desirable state. For
example, the assertion that a program eventually closes a file after opening it is a liveness
property. Safety and liveness properties can also be characterised more formally as follows
[Manna and Pnueli 92]:

99

CHAPTER 4 MODEL CHECKING OF LTSs

« fis a safety property iff any sequence of actions violafimgntains a finite prefix, such

that all infinite extensions of this prefix violafe

« fis a liveness property iff any arbitrary finite sequence of actions can be extended to an

infinite sequence satisfyinfy

Therefore, when a bad situation occurs at some point in an execution, there is no meaning in
exploring the execution any further. On the other hand, an execution of a program may at any
moment evolve in such a way as to satisfy a liveness property. So we can never judge, by any
finite prefix of the execution, if the liveness property is violated or not. [Alpern and Schneider

87] have shown that any property modelled as a Bichi automaton can be decomposed into a

safety and a liveness property whose conjunction is the original.

Safety properties usually claim that some propétiglds at every program state. Thus, they take
the formof, where the truth-value df at any states depends solely on the values of the state

variables ast. The following are some examples of safety properties [Lamport 94]:

» deadlock freedonf asserts that the program is not deadlocked.
« mutual exclusionf asserts that at most one process is in its critical section.

Assume that properties for a system can be expressed as state formulas. Then mutual exclusion
between two processes could be expressen(agh_CS [0-in_CS), wherein_CS denotes that

the process s in its critical section. As discussed, LTS states do not explicitly hold information
related to the local value of state variables. Properties are therefore expressed in terms of
sequences of actions. In such a setting, a safety property expresses the fact that subsequent to
specific scenarios, the occurrence of some actions must be prevented if undesirable states in the
system are to be avoided. The example of Section 4.1.2 shows how mutual exclusion can be

expressed in terms of actions.

The following are typical examples of liveness properties [Lamport 94]:

« service if a process requests a service, it is eventually semesfliest] Oserve

 message deliverya message sent often enough is eventually delivered, where often

enough is translated as infinitely oftem®sendd <deliver.

If the service and message delivery properties must hold at any point in a program execution,

then their formulas must be prefixed with In the LTS model, liveness properties enforce the

100

CHAPTER 4 MODEL CHECKING OF LTSs

eventual occurrence of actions following specific scenarios. In this context, scenarios express the

conditions that make these eventualities necessary.

4.5 Checking properties in the context of CRA

As discussed in Chapter 3RACTA constructs the LTS of a system by successively computing
and minimising the LTSs of its subsystems, based on the system software architecture.
Intermediate systems are minimised with respect to observational equivalence. In this approach,
the key to reduction is to employ a modular software architecture and hide as many internal
actions as possible in each subsystem. Two issues arise when checking properties on the LTS of
a system generated with CRA. The first is that minimisation with respect to observational
eguivalence does not preserve liveness properties of a systdoegipreserve safety properties).

The second is that the properties that can be checked on the system may only contain actions that

are globally observable in its LTS. These issues are discussed below.

45.1 Observational equivalence and model checking

A t-cycle(i.e. a cycle that may be formed by performing onlransitions) in the LTS of a
system indicates that the system ntliyerge[Hoare 85]. This means that when the system is in
some state of such a cycle, it may engage in an infinite sequenteactions, and thus never
again be available to its environment. We call such behawdoawerging As illustrated in Figure

4.9, minimisation of an LTS with respect to observational equivalence does not presetve the
cycles in its graph. This may result in concealing liveness property violations. For example,
before minimisation, the LTSsycandcyciof Figure 4.9 violate formulaa(al 0b), since they

can both perform ara followed by an infinite sequence afs. As illustrated, minimisation

removes tha-cycles thus concealing the violations.

a tau a
CyC minimise CyC
— >
b tau b
a b

a b
CYC1i minimise CYC1
4’
tau

Figure 4.9: Disappearance oft-cycles during minimisation

101

CHAPTER 4 MODEL CHECKING OF LTSs

In order to preserve liveness property violations, we propose a modification to the CRA
procedure. This consists of transforming each intermediate LTS before minimising it as
described by the RD algorithm of Figure 4.10. The RD algorithm computes-gteongly-

connected component$ an LTS; these are the non-transient strongly-connected components in
the projection of the LTS on itsrelation. The strongly-connected components of a graph may be

computed with time complexity linear in the size of the graph [Tarjan 72].

RD Algorithm (Recording Divergence):

Let P=[§ A A, gibe the LTS obtained at some step of CRA, &k the projection ofA on

thet relation. Then:

for directed graph G = <S, N> do /I G does not need to be connected
compute the set SCCs of non-transient strongly-connected components;

for every strongly-connected component C with root r in SCCs do {
if (no action prefixed with ~ is enabled at any state of C in A)

add ((r, ~P, r) to A in P; /I divergence transition

Figure 4.10: An algorithm that records divergence

In an LTS, all states of a-strongly-connected compone@t are observationally equivalent to
each other since, when in some stateCinthe LTS can transit into any other state ©fby
performing onlyt-actions. As a result, the states 6f are mapped to a single state in the
minimised LTS. In order to preserve the diverging behaviour of the system at these states after
minimisation, the RD algorithm adds a spealalergencedransition to the root o€ (i.e. the first

state of C encountered by the algorithm during graph exploration). Divergence transitions are
“looping”, i.e. they connect a state to itself, and they are labelled ditbrgenceactions named

as “~pr_name ". The prefix “~" identifies divergence actions from simple actions in an LTS, and
“pr_name " is the identifier of the LTS where such transitions are added by the RD algorithm. For
example, the processeycandcyci of Figure 4.9 are transformed with the RD algorithm as
illustrated in Figure 4.11. The information that systemacandcyc1 may diverge at state is

no longer lost after minimisation.

CcyC CcyCci

~CYC
~CYC1

Figure 4.11: LTSs with divergence recorded

102

CHAPTER 4 MODEL CHECKING OF LTSs

Divergence actions are never hidden during CRA. Moreover, the naming of these actions
guarantees that they never synchronise. In this way, all divergence transitions survive across
levels of a compositional hierarchy, unless the states where they are enabled become
unreachable. Therefore, a state in an LTS does not need to contain more than one divergence
transition. For this reason, the algorithm doext add diverging transitions to the root ofta
strongly-connected compone@itwhen some diverging action is already enabled at some state of

C. That reflects the fact that, in selecting among divergence transitions that apply to the same
state, the RD algorithm shows preference to the one that corresponds to a more primitive

component in the compositional hierarchy.

Assume that, when CRA completes, a diverging actipnrmame is enabled at some state of the
global LTS of the system. This means that the system may diverge at this state, because its

subsystempgr_name ” may engage in an infinite sequencetedictions.

Example: In the example of Section 4.3, Biichi automata were used to check that a simplified

version of the ABP protocol satisfies liveness propefty o(acceptld <deliverl). The

simplification refers to the fact that a single value can be transmitted by the protocol. In the
current example, we check the propeftyn a similar way. However, the LTS of the ABP
protocol is generated with the modified CRA procedure, which applies the RD algorithm to every
intermediate system before minimisation. The LTS thus constructed violates prdpditig
counterexample obtained from our tools represents the following infinite trace:
accept.1(~TRANS_CHNL) ©. This counterexample indicates that component ty&NS_CHNImay

diverge after the protocol performs actiattept.1

send ack
j\:

out

o—0

res

Q
Q
~

res

N @——O send
accept

trans:CHANNEL accept
X TRANSMITTER

utx: TRANS_CHNL

Figure 4.12: Structure of component TRANS_CHNL of the ABP protocol

Figure 4.12 illustrates the structure of compon@mANS CHNL(the entire structure of the
protocol is illustrated in Figure 3.8). From the counterexample obtained, we know that
TRANS_CHNUmMay diverge after performingccept.1 . This is not due to divergence in its sub-

components otherwise the RD algorithm would have recorded this fact; as mentioned, the

103

CHAPTER 4 MODEL CHECKING OF LTSs

algorithm shows preference to divergences of more primitive components. Divergence is
therefore introduced whei®: TRANSMITTER andtrans:CHANNEL are combined, and actions that
model interaction between these components are hidden (see Figure 4.12). This interaction takes

place between portabnd of tx TRANSMITTER and portain of trans:CHANNEL .

Divergence thus occurs when the transmitter keeps sending messages to the channel, without
receiving any acknowledgement from the receiver (we know that divergence occurs before the
receipt of acknowledgements, because 4hle actions are observable IMRANS_CHN)L. This

happens when the transmitter re-transmits a message, times out, and keeps executing these two
actions, without checking if an acknowledgement is waiting to be received. It is easy to detect

thatREC_CHNLdiverges in a similar way.

This example also shows that software architecture may significantly assist in understanding

counterexamples and effectively using them to find the sources of problems in the design.

45.2 Reasoning about hidden actions

Although CRA techniques may significantly reduce the system state space, the LTS generated
can only be utilised to validate behavioural properties involving actions that are globally

observable [Cheung, et al. 97, Cheung and Kramer 96a, Giannakopoulou, et al. 99a]. However,
as described below, the desired properties of a system may sometimes involve internal actions of

its subsystems.

A complex system typically contains several subsystems that may be independently developed or
extracted from software libraries. Each of them often assumes a set of predefined communicating
protocols at its interface. These protocols express conditions for the correct use of the
component. For a subsystem to function properly, its protocols must be respected by its
environment. These protocols can therefore be conceived as local safety properties that have to

be satisfied in the composite system.

Similarly, it may be useful to express local liveness properties of subsystems, which must be
respected by the subsystem’s environment. One such case is where one needs to identify if some
component of a system is deadlocked in the context of the system. Assume that a system does not
deadlock, nor do its components when analysed individually. Still, in the system, any one of
these components may, after a certain point, no longer participate in the system behaviour. This
may reflect the failure of this component, as modelled by the developer. In other cases however,

this situation may indicate some synchronisation problem in the design. Another case is where

104

CHAPTER 4 MODEL CHECKING OF LTSs

the usefulness of a component in a system relies on the fact that some basic local liveness

properties of the component are preserved in the context of the system.

Such local properties of components may involve actions that are not globally observable.

Checking them may therefore lead to a need of exposing these actions at the global level of a
system. This contradicts the key philosophy of CRA techniques, and limits their effectiveness in

avoiding state explosion. As the reduction achieved by CRA becomes less significant, the extra
cost incurred by minimisation of intermediate subsystems is no longer justifiableRAGTR,

this would additionally introduce changes to component interfaces, thus undermining the tight

integration of analysis with design.

Proposed solution

The objective is to retain the freedom of abstracting (sub-)system behaviour at the various levels
of the system hierarchy, without compromising the effectiveness of analyRiCTR achieves

this as follows. When a Biichi process expresses a local property of some subsystem, it is added
in the compositional hierarchy as a component of this subsystem. In this way, the Blichi process
may observe internal actions of the subsystem, even though these actions are not globally
observable. More specifically, assume that a propkergfers to some subsystdmof systemS

and contains actions that are not observable ifihen TRACTA performs analysis as follows:

1. ABiuchi proces® is constructed forf.

2. B is included in the compositional hierarchy 8fas a component oP. As a resultB
participates in the behaviour 8fand makes it able to record violations of its local propérty
in any context. Alternatively, ifB contains actions at the interface Bf only, it can be

included in the hierarchy to be composed with

3. CRA, enhanced with the RD algorithm, is performed based on the new compositional
hierarchy of the system. Note that the RD algorithm can also be applied to a Blchi process.

Accepting and divergence actions are not hidden during CRA.

4. If the global Blichi process thus obtained contains a non-transient strongly-connected

component where @is enabled, then the propelftis violated.

Proof of correctness

With the new mechanism, intermediate systems in CRA can be viewed as Bichi processes, since

one of their sub-components may be a Blichi process. To prove the correctness of our approach,

105

CHAPTER 4 MODEL CHECKING OF LTSs

we show that a Blchi process preserves its violations when transformed as required by CRA. Let
S be the Buichi process for some intermediate system, wiagddbelongs to the alphabet &
This reflects the fact that one of its sub-components is a Biichi autonitotroduced for

checking some local property(i.e. B corresponds te~f). By hiding internal actions of we

obtain S, which is transformed by the RD algorithm infg which in turn is minimised with

respect to observational equivalence, thus obtaifing

We prove thatS violatesf iff T" violatesf. A violation of f is realised by the fact that Bis
enabled in a non-transient strongly-connected componer®. df is straightforward thatS”
contains exactly the same violations@¥ecause hiding does not alter the structure of a graph. It

is therefore sufficient to prove th&t violatesf iff T violatesf.

if S violatesf, then so doe3": S violatesf iff (Ja non-transient strongly-connected component

Cin S, where @ is enabled. With the application of the RD algorithm, and since divergence
actions are not hidden, a non-transient strongly-connected compoie is mapped to a non-

transient strongly-connected compon€hin T . If @B is enabled irC it is also enabled ilC".

if T” violatesf, then so doe§': A non-transient strongly-connected compon@hin T” can only
correspond to a non-transient strongly-connected compddéntS. Assume thatC” contains
some transition @, but C does not. Then @ must be enabled at some staféC in S, where
states is mapped to some state @i with minimisation. For this to happen, it means thatSin
states either leads to, or is derived frong with 1-transitions (assC, it cannot be that both
hold). First assume that staddeads toC. Thens is not equivalent to any state @, because we
have assumed th&®B is not enabled irC. Therefores cannot be mapped to some state0n

with minimisation, which contradicts our assumption.

Assume thas is derived fromC with 1 transitions. IfC is a t-strongly-connected component,
thenC’ consists of a single statethat is connected to itself with a divergence transition. $ist
only mapped to statein T if the same divergence action is also enabled at stéfiest case
illustrated in Figure 4.13). So the violation introduced ir€o also exists inS, since both a
divergence and an accepting action are enabled. df C is not a t-strongly-connected
component, thes is mapped to some state @1 iff the behaviour starting at is observationally
eguivalent to the behaviour of some stat€ifisinceC is mapped tdC"). This is only possible if
s belongs to a non-transient strongly-connected compo@€énthat is equivalent t&C. But then
C” contains a violation, and therefore the violation introducedCiralso exists inS (second

case of Figure 4.13

106

CHAPTER 4 MODEL CHECKING OF LTSs

tau
minimise
— @
~S

tau a

@B

a

a Lo
minimise . u
‘
b

b
b

Figure 4.13: After applying the RD algorithm, minimisation preserves violations

4.6 Optimisation of the RD algorithm

The verification approach presented in this chapter assumes that one property is introduced in the
system at a time. After proving that the system satisfies a desired property, the verification
procedure is repeated for a different property (in Chapters 5 and 6, we discuss the possibility of
checking multiple properties at a time for certain classes of properties). In this context, a property
is satisfied by an LTS, if the product of the LTS with a Blich