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Abstract. The liveness characteristics of a system are intimately related to the
notion of fairness. However, the task of explicitly modelling fairness constraints
is complicated in practice. To address this issue, we propose to check LTS (La-
belled Transition System) models under a strong fairness assumption, which can
be relaxed with the use of action priority. The combination of the two provides a
novel and practical way of dealing with fairness. The approach is presented in
the context of a class of liveness properties termedprogress, for which it yields
an efficient model-checking algorithm. Progress properties cover a wide range
of interesting properties of systems, while presenting a clear intuitive meaning
to users.

1 Introduction

Our research objective is the development of practical and effective techniques for
modelling and analysing the behaviour of concurrent systems. We aim to support
analysis based on the software architecture of a system, and believe that the analysis
techniques need to be both accessible to practising software engineers, and supported
by powerful automated tools. In particular, our approach is based on the use of La-
belled Transition Systems (LTS) to specify behaviour and Compositional Reachability
Analysis (CRA) to check composite system models. The architecture description of a
system drives CRA in generating the model of the system based on its components
[14, 22, 23]. The model thus generated can be checked against the properties required
of it.

Previous papers have addressed the problem of verifying safety and liveness prop-
erties in the context of CRA [6, 7]. Our work on liveness property checking [6] takes
the automata-theoretic approach to verification [30], adopted in a number of existing
methods and tools [1, 15, 16]. The approach is based on the use of Linear Temporal
Logic (LTL) formulas or Büchi automata to represent liveness properties. The LTS of
a program is converted into a Büchi automaton and the LTL formula for some prop-
erty F is translated into the Büchi automaton for¬F. The automaton corresponding to
the intersection of the system and the automaton obtained for¬F is then constructed.
If the resulting automaton is empty then the propertyF is not violated.



The tractability of the method is significantly affected by the fact that the Büchi
automatonB is composed with the system. The size of the system can thereby increase
by m times in the worst case, wherem is the size ofB. Moreover, the size of a Büchi
automaton may increase exponentially as a function of the length of the LTL formula
that it represents [16]. Although efficient algorithms exist for the automatic translation
of LTL formulas into Büchi automata [12], none of these algorithms can guarantee to
generate the minimal automaton. In such a setting, fairness is usually represented in
terms of constraints introduced in the form of Büchi automata, which are also com-
posed with the system [1, 16]. Besides complicating the task of modelling, this may
further increase the size of the system to be analysed.

To avoid burdening the users with modelling fairness constraints explicitly, we
propose an optional predefined fairness assumption on the executions of an LTS
model. Under this assumption, we have found that a specific class of liveness proper-
ties, which we have termed progress, can be checked on the unmodified LTS of the
system. This is an advantage compared to methods that may increase the state space of
the system by the introduction of property and fairness automata. As the fairness as-
sumption may be too restrictive in some circumstances, we introduce an action prior-
ity scheme that relaxes it. This combination provides a simple, practical and effective
way of dealing with selected types of liveness, and of taking fairness into account
when performing liveness property checks. Most importantly, the technique is widely
accessible since it requires little or no experience with temporal logic.

Note that the class of liveness properties that can be expressed as progress proper-
ties is a subset of those that can be expressed with LTL. Consequently, we do not see
progress as supplanting the need for general LTL model checking. We simply propose
it as a more accessible alternative to Büchi automata, whenever it covers the particular
needs of the system developer. As discussed later in the paper, our experience and that
of others [11] indicate that a large number of interesting properties of systems can be
expressed and checked in terms of progress properties.

The LTSA tool. The results of our work have been incorporated in an analysis tool –
the Labelled Transition System Analyser (LTSA) [22, 23]. The examples used in the
paper to illustrate progress checking were developed using the LTSA tool. We will
briefly present how models of system behaviour are described for the LTSA. The tool
uses a simple process algebra notation, called FSP for Finite State Processes, to define
the behaviour of processes. As an aid to understanding, the LTSA supports the facility
of drawing the LTS corresponding to an FSP specification.

Fig. 1 gives the FSP specification and corresponding LTS of a server that may be
accessed by two clients,A andB. The server may receive requests by either clientA or
client B (actionsa.req and b.req, respectively). After receiving a request, the server
processes it and produces a corresponding reply (actionsa.reply and b.reply). The
behaviour ofSERVERis defined using action prefix (“-> ”), choice (“|”) and recur-
sion. In the interests of brevity, we will not formally define their semantics here; the
meaning in the example should be clear from the associated LTS diagram.



Structure. The next section describes how progress properties are specified, and how
they are checked under the proposed fairness assumption. Section 3 introduces the
concept of action priority and its use in progress analysis. Section 4 presents the Read-
ers/Writers example that is used to illustrate and evaluate our approach. Finally, sec-
tion 5 discusses related work, and section 6 closes the paper with conclusions and
plans for future work.

SERVER

a.req

b.req

a.reply

b.reply
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FSP: SERVER = ( a.req->a.reply->SERVER
| b.req->b.reply->SERVER ).

Fig. 1. FSP specification and LTS for processSERVER

2 Progress Properties and the Need for Fairness

The regular occurrence of some actions in a system execution indicates that system
behaviour progresses as desired or expected. We would therefore like to be able to
check on the model of a system that, in all possible executions of the system, such
actions occur regularly. In the context of an infinite execution, regularly means infi-
nitely often. A property that asserts that an actiona is expected to occur infinitely
often in every infinite execution of the system is expressed in LTL asÿ◊a. We call
properties of this typeprogress. Often, progress is not determined by a single action
but by one of a set of alternatives. For example, a system may be considered to make
progress if it outputs one of a set of values. Consequently, we define progress proper-
ties in terms of a finite set of actions as follows:

progress P = {a 1,a 2..a n} defines a progress propertyP
which asserts that in any infinite execution of a target system, at
least one of the actionsa1,a 2..a n occurs infinitely often.

The LTL formulation of the progress propertyP is ÿ◊(a1 ∨ a2 … ∨ an). Consider a
very simple systemS that consists of the server modelled in Fig. 1, and two clientsA
andB accessing it. The system can be expressed as the parallel composition of the two
clients and the server, as illustrated in Fig. 2. Processes assembled with the || parallel



composition operator run concurrently by synchronisation on actions that are common
to their alphabets and interleaving of the remaining actions. The LTS for systemS is
identical to the LTS of Fig. 1.

A = (a.req->a.reply->A).
B = (b.req->b.reply->B).

||S = (A || B || SERVER).

Fig. 2. FSP specification of a system with two clients accessing a server

For systemS it is likely that a designer would expect both progress properties
SERVE_AandSERVE_Bto hold, where:

progress SERVE_A = {a.reply}
progress SERVE_B = {b.reply}

The reason is that an execution where the requests of some client are ignored indefi-
nitely is clearly undesirable.

These properties do not hold forS (its LTS is identical to that of Fig.1). For exam-
ple,SERVE_Bis violated becauseScan generate an infinite execution that only listens
to the requests of clientA by always choosing the transition leading to state (1) when
at state (0). This violation corresponds to a scheduler that is consistently biased against
a specific enabled transition when given a choice. However, any reasonable scheduler
should implement some notion of fairness when choosing between sets of possible
transitions. As it is not possible to express fairness explicitly in the standard LTS
model, we make the following fairness assumption in order to check progress:

Fair Choice: If a choice over a set of transitions is executed infinitely
often, then every transition in the set is executed infinitely often.

As discussed in section 5, fair choice corresponds to a strong fairness assumption on
the system transitions. Under fair choice, progress propertiesSERVE_AandSERVE_B
hold for systemS. Consider now the case where in systemS, client B is substituted by
client B_FAULTYthat may crash as modelled by the following FSP expression:

B_FAULTY = (b.req->b.reply->B_FAULTY | b.crash->STOP).

For simplicity, we assume thatB_FAULTYdoes not crash while waiting for a reply.
The LTS of systemS in this case is illustrated in Fig. 3. We can see that in this system,
progress propertySERVE_Bis no longer satisfied: actionb.reply can only occur
finitely many times in anyfair infinite execution that reaches states (1) or (2) at some
point. The set of states {1,2} is called a terminal set of states, because each state is
mutually reachable, but no state outside the terminal set can be reached from any of
those states. We will prove later that in finite state systems, any fair infinite execution
reaches a terminal set of states. As a result, the only actions that are repeated infinitely
often in such executions are actions that label transitions between states of the termi-
nal set.
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Fig. 3. System consisting of a server and two clients, one of which may crash

The LTSA tool reports the violation as follows:

Progress violation: SERVE_B
Trace to terminal set of states:

a.req
b.crash

Actions in terminal set:
{a.req, a.reply}

This violation does not correspond to a real problem with the system. It is obvious that
reply actions cannot occur infinitely often if, after some point, requests are no longer
being issued. So the desired property is in fact that, if requests fromB occur regularly,

then replies toB must also occur regularly, i.e.ÿ◊b.req ⇒ ÿ◊b.reply. We call this
form of progress propertyconditional progress, which we define as follows:

progress P = if {a 1,a 2..a n} then {b 1,b 2..b n}
defines a progress propertyP which asserts that in any infinite
execution of a target system, if any of the actionsa1,a 2..a n

occurs infinitely often then at least one of the actionsb1,b 2..b n

also occurs infinitely often.

Progress propertySERVE_Bcan therefore be restated as follows:

progress SERVE_B = if {b.req} then {b.reply}

This property is satisfied by systemS, since afterB_FAULTYcrashes, it stops making
requests to the server. The property therefore makes sure that, whenB_FAULTYis



alive, its requests are never consistently ignored, which is what the user wishes to
check1.

In the following, we formally describe and prove the checking mechanism for prog-
ress properties for a system executing under fair choice.

Labelled Transition Systems:
Let Statesbe the universal set of states,Act be the universal set of observable action
labels, andActτ = Act ∪{ τ}, where τ is used to denote an action that is internal to a
subsystem, and therefore unobservable by its environment. An LTS of a processP is a
quadruple〈S, A, ∆, q〉 where:

• S⊆ Statesis a finite set of states,
• A = αP ∪ { τ}, whereαP ⊆ Act is the communicatingalphabetof P,
• ∆ ⊆ S × A × S, is a transition relation that maps a state and an action onto another

state,
• q ∈ S indicates the initial state ofP.

For an LTSP = 〈S, A, ∆, q〉, we say that actiona∈A is enabledat a states∈S, iff ∃
ś ∈Ssuch that (s, a, ś )∈∆. Similarly, we say that a transition (s, a, ś )∈∆ is enabled at
a statet∈S iff t = s.

We call anexecutionof P an infinite sequenceq0a0q1a1… of statesqi and actionsai

such thatq0=q and ∀i≥0, (qi, ai, qi+1) ∈ ∆. A trace of P is a sequence of observable
actions thatP can perform starting from its initial state [17].

A stater is reachablefrom a states in an LTSP= 〈S, A, ∆, q〉, iff (( r = s) or (∃ a∈A
and t∈S, such that (s, a, t) ∈ ∆ and r is reachable fromt)). For a states∈S, Reach-
able(s, P) denotes the set of states that are reachable froms in P, i.e. Reachable(s, P)
={ r∈S | r is reachable froms in P}. An LTS of P = 〈S, A, ∆, q〉 transits into another
LTS of P´ = 〈S, A, ∆, q´ 〉 with an actiona ∈ A iff ( q, a, q´) ∈ ∆. That is:

• 〈S, A, ∆, q〉 →a 〈S, A, ∆, q´ 〉 iff ( q, a, q´) ∈ ∆. 

Definition – A terminal set of states C⊆S in an LTS P = 〈S, A, ∆, q〉 is a strongly
connected component with no outgoing transitions i.e.

• ∀ s ∈ C, C ⊆ Reachable(s, P)), and
• ∀ s ∈ C, Reachable(s, P) ⊆ C. �

It follows directly from the above definition thatC is a terminal set of states in an LTS
P iff ∀ s ∈ C, Reachable(s, P) = C.

Terminal Set Theorem –Let P = 〈S, A, ∆, q〉 be a finite-state process that executes
under “fair choice”. Ifw is a legal infinite execution ofP, then the set of states that
appear infinitely often inw forms a terminal set of states inP.

1 If in addition we wanted to check that a reply is received foreachrequest, we would combine
the progress property with a safety property [7], which would ensure that a reply must occur
in any interval defined by two requests.



Proof: Let S1 ⊆ S be the set of states that occur infinitely often inw. SinceP consists
of a finite number of states, thenS1 is not empty. With fair choice, the fact that states
in S1 are repeated infinitely often inw implies that all transitions that are enabled at
these states also occur infinitely often inw. This means that all states that are reach-
able from states ofS1 in P occur infinitely often inw. We conclude that∀s∈S1, Reach-
able(s,P) ⊆ S1. It is also straightforward that since all states inS1 are repeated infinitely
often in w, then every state inS1 is reachable from any other state inS1, and therefore
∀s∈S1, S1 ⊆ Reachable(s,P). We conclude that∀s∈S1, Reachable(s,P) = S1 and there-
fore S1 is a terminal set of states.�

From the Terminal Set Theorem we conclude that a fair infinite executionw is ob-
tained by repeating infinitely often states in a terminal set of states. As a result, the
actions that occur infinitely often inw are exactly those actions that are enabled at
states in the terminal set. Therefore, a property “progres s P = {a 1,a 2..a n} ” is
satisfied iff for each terminal set of statesC in the LTS of the system, the following
holds:∃s∈C, such that some actiona∈{a 1,a 2..a n} is enabled ats (we say thata is
enabledin C). Similarly, a property “progres s P = if {a 1,a 2..a n} then
{b 1,b 2..b n} ” is satisfied iff in the LTS of the system, there is no terminal set of
states where some action in{a 1,a 2..a n} but no action in{b 1,b 2..b n} are enabled.

The algorithm that decides whether a progress property is satisfied is therefore
based on the computation of the terminal sets of states of a system. Terminal sets are
found by computing the strongly connected components in the LTS graph and apply-
ing the additional criterion that no transition exists to a state outside the strongly con-
nected component. Tarjan [29] showed that strongly connected components can be
computed in linear time. Consequently, the check that progress properties hold is effi-
cient. Note that it is only necessary to compute the terminal sets once to check any
number of progress properties. As diagnostic information in case of progress viola-
tions, the LTSA tool displays a trace of actions leading to the terminal set together
with the actions enabled in the set (see sample LTSA output above).

The LTSA performs a default progress check when no progress properties are ex-
plicitly specified. This consists of checking progress with respect to all actions in the
alphabet of the system. For a systemS, this is equivalent to checking that∀ a∈αS,
progress P a={a} . If no actions inαSare missing from terminal sets of states inS,
then liveness is guaranteed in the system, since all actions always eventually occur.
However, the liveness guarantee is with respect to the assumption of fair choice. We
will see in the next section that liveness problems related to scheduling only become
apparent when the system model is augmented to reflectadverseconditions.

3 Action Priority

The progress checking mechanism proposed in the previous section is based on the
assumption of fair choice. This assumption corresponds to strong fairness on the sys-
tem transitions, which is often too restrictive to be practical [27]. In fact, practical
schedulers in computing systems do not implement fair choice [2]. This means that



some executions that may be exhibited by the system will be ignored by the checking
mechanism as unfair. To find problems with such executions, we propose a simple
action priority scheme that allows the user to “stress” a system by applying adverse
scheduling conditions. With our scheme, a set of actions in a process is given higher or
lower priority than the remaining ones in the process alphabet. We introduce the fol-
lowing abbreviations:

P a→ to mean that∃ P´ such thatP a→ P´
P ⁄a→ to mean that⁄∃ P´ such thatP a→ P´

The low (high) priority operators >> (<<) take as arguments a processP = 〈S1, A1, ∆1,
q1〉 and a set of actionsK ⊆ Act, and return processP>>K = 〈S1, A1, ∆, q1〉 (P<<K =
〈S1, A1, ∆, q1〉), where the semantics for∆ are given by Rule 1 (Rule 2) below:

Rule 1: Let a ∈Actτ. Then:

KPKP

PP
a

a

>>′→>>
′→

if ((a ∉ K) or (∀ b ∈ (A1 – K), P ⁄b→ ))

Rule 2: Let a ∈Actτ. Then:

KPKP

PP
a

a

<<′→<<
′→

if ((a ∈ K) or (∀ b ∈ K, P ⁄b→ ))

Intuitively, P>>K expresses the fact that actions inK have lower priority than the
remaining actions inαP. As a result, at any state where multiple actions are eligible,
actions inK are ignored unless it is not possible to execute any action inαP-K instead.
In contrast, inP<<K, actions inK have high priority, so actions inαP-K are only se-
lected when it is not possible to execute some action inK instead.

Action priority is thus used in our approach to force specific transitions to be taken
when a choice is possible. LetP be the original system to be checked, andP´ be the
result of applying action priority toP. Then selected unfair executions ofP will corre-
spond to fair executions ofP´. These unfair executions ofP can therefore be checked
with our mechanism by checking systemP´ under fair choice.

4 Example: Readers/Writers

To illustrate our approach to progress analysis using action priority, we will use the
well-known Readers/Writers problem. This is concerned with access to a shared data-
base by two kinds of processes. Readers execute transactions that examine the data-
base while Writers both examine and update the database. For the database to be up-
dated correctly, Writers must have exclusive access to the database while they are
updating it. If no Writer is accessing the database, any number of Readers may con-
currently access it. Access to the database is controlled by a read/write lock which
processes must acquire before accessing the database. The FSP model for such a lock,



together with the processes that acquire and release it, is defined in Fig. 4. The system
consists of the parallel composition of the user processes with the lock. The process
READWRITELOCKis defined as a choice among a set of guarded actions controlled
by the variableswriting andreaders. The action for a reader to acquire a lock is only
permitted whenwriting is false indicating that the lock has not been acquired by a
writer. The action for a writer to acquire the lock is only permitted when the lock has
not been acquired for either read or write access (readers==0 && ! writing). The LTS
generated for the compositionREADERS_WRITERSis depicted in Fig. 5.

The progress properties of interest in this system are that writers can always acquire
the lock and that readers can always acquire the lock. These properties can be speci-
fied as:

progress WRITER = {writer[W].acquire}
progress READER = {reader[R].acquire}

The progress propertyWRITERis satisfied if anywriter in the rangeW acquires the
lock. The propertyREADERis satisfied if anyreaderin the rangeR acquires the lock.
A progress check of these properties against theREADERS_WRITERSsystem discov-
ers no violations. Now we will examine the behaviour of the system under adverse
conditions. For theREADERS_WRITERSsystem, these adverse conditions occur
when there is always competition for the lock. This happens when either the lock is
requested frequently or the lock is held by processes for long periods. To model these
conditions, we give release actions for both readers and writers lower priority than

const Nread = 2 // Maximum readers
range R = 1..Nread
const Nwrite=2 // Maximum writers
range W = 1..Nwrite
range ReadR = 0..Nread
range WriteW = 0..Nwrite

READWRITELOCK = RW[0][False],
RW[readers:ReadR][writing:Bool] =

( when (!writing && readers<Nread)
reader[R].acquire -> RW[readers+1][writing]

| when (readers>0)
reader[R].release -> RW[readers-1][writing]

| when (readers==0 && !writing)
writer[W].acquire -> RW[readers][True]

| when (writing)
writer[W].release -> RW[readers][False]).

USER = (acquire -> release -> USER).

||READERS_WRITERS =
(reader[R]:USER||writer[W]:USER||READWRITELOCK).

Fig. 4. Readers/Writerssystem model



acquire actions. Consequently, in any choice between acquiring and releasing the lock,
acquiring it will have priority. This is described by:

||RW_PROGRESS = READERS_WRITERS
>>{reader[R].release,writer[W].release}.

Progress analysis of this system results in the following violation:

Progress violation: WRITER
Trace to terminal set of states:

reader.1.acquire
Actions in terminal set:

{reader.1.acquire, reader.1.release,
reader.2.acquire, reader.2.release}

This is the writer starvation situation in which writers do not get access because the
number of readers with read access never drops to zero. In this simple example, the
terminal set of states (3,4,5) causing the violation can be seen in the LTS of
RW_PROGRESSdepicted in Fig. 7.

reader.1.acquire

reader.2.acquire

writer.1.acquire

writer.2.acquire

writer.2.release

writer.1.release

reader.1.acquire

reader.2.release

reader.1.release

reader.2.release

reader.1.release

reader.2.acquire

0 1 2 3 4 5

Fig. 5. LTS for READERS_WRITERS

The problem of writer starvation can be fixed by making readers defer to waiting
writers. To detect waiting processes, we modify the definition ofUSERprocesses such
that they request access to the lock before attempting to acquire it:

USER = (request-> acquire -> release -> USER).

The revised definition of the lock that uses this information is listed in Fig. 6. The new
version keeps a count of waiting writersww. Readers only acquire access if there are
no writers waiting (!writing && readers<Nread&& ww==0). This new version of the
lock when checked under the same conditions no longer detects a violation of the
progress propertyWRITER. However, it is now possible for readers to starve:



Progress violation: READER
Trace to terminal set of states:

reader.1.request
reader.2.request
writer.1.request
writer.2.request

Actions in terminal set:
{writer.1.request, writer.1.acquire,
writer.1.release, writer.2.request,
writer.2.acquire, writer.2.release}

The problem of reader starvation can of course be fixed by introducing a “turn” vari-
able that lets readers and writers run alternately when competition exists for the lock.
Such a system should satisfy both theREADERand WRITERprogress properties.
Examples of conditional progress properties related to theREADERS_WRITERSsys-
tem are shown below:

progress WREL[i:W] =
if {writer[i].acquire} then {writer[i].release}

progress RREL[i:R] =
if {reader[i].acquire} then {reader[i].release}

The progress properties assert for each writer and for each reader that, if they regu-
larly acquire the lock, they must also regularly release it. None of these properties is
violated by the two versions of the system presented.

The checking mechanism that we have proposed has a number of advantages when
compared to the approach based on Büchi automata. In theREADERS_WRITERS
example, each of the progress properties has to be checked separately if Büchi auto-
mata are to be used for verification. The Büchi automaton for the negation of property

WRITER(◊ÿ¬(writer.1.acquire∨ writer.2.acquire)) is illustrated in Fig. 8. The tran-
sition @WRITERis used to mark the accepting state (1) of the automaton [6]. Note
that when fair choice is assumed, a complete automaton must be used for verification.
This is necessary since when a transition is undefined in the automaton, a non-terminal
set of states may become terminal. A Büchi automaton can always be made complete
by adding one state.

READWRITELOCK = RW[0][False][0],
RW[readers:ReadR][writing:Bool][ww:WriteW] =
( when (!writing && readers<Nread && ww==0)

reader[R].acquire -> RW[readers+1][writing][ww]
| when (readers>0)

reader[R].release -> RW[readers-1][writing][ww]
| when (readers==0 && !writing &&ww>0)

writer[W].acquire -> RW[readers][True][ww-1]
| when (writing)

writer[W].release -> RW[readers][False][ww]
| when (ww<Nwrite)

writer[W].request -> RW[readers][writing][ww+1]
| reader[R].request -> RW[readers][writing][ww]).

Fig. 6. RevisedREADWRITELOCK



reader.1.acquire
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Fig. 7. LTS for RW_PROGRESS

The systemREADERS_WRITERS|| WRITERconsists of 18 states. The size of the
system has therefore increased by 3 times, which corresponds to the size of the Büchi
automaton. For large systems, such an increase is significant. Additionally, in our
approach, a single graph exploration is sufficient to check any number of progress
properties, which is not the case with Büchi automata.

Finally, it should be noted that safety analysis must be performed on a system be-
fore action priority is applied for progress analysis purposes. Since action priority
removes transitions, it may remove erroneous system behaviour.

WRITER
tau

writer.1.acquire
writer.2.acquire

writer.1.acquire
writer.2.acquire

@WRITER writer.1.acquire
writer.2.acquire

0 1 2

Fig. 8. Büchi automaton used for checking progress propertyWRITER

5 Related Work

Progress.Manna and Pnueli classify properties of programs into a hierarchy, where
each class is characterised by a canonical temporal formula scheme [24]. They associ-
ate the termprogresswith several classes of this hierarchy. These formulas do not
always correspond to liveness properties in the safety-liveness classification. Their
work gives a detailed description of the differences between the two classifications. In
fact, our progress properties are a subclass of the properties referred to in [24] asre-



sponse. The notion of progress also appears in Unity [5], where selected types of for-
mulas are handled, and classified as safety and progress. Their progress properties

correspond to LTL properties of the typeÿ(a⇒◊b) (leads to) andaUb (ensures),
whereU denotes strong until.

SPIN [18] uses the notion of progress in a similar context to ours. The tool provides
the facility to mark selected states of processes as progress states. It then checks that
ÿ◊progress, whereprogressis true in a system state if at least one of the system proc-
esses is in a progress state. The SPIN liveness checks also incorporate a weak fairness
assumption with respect to processes. The different fairness assumption and the fact
that we specify progress in terms of actions rather than states are largely determined
by the difference in analysis approaches. SPIN uses an on-the-fly approach to analysis,
which preserves information about states in individual processes, whereas we use
CRA, where this information is not preserved under composition.

Our approach differs significantly from that of SPIN both in terms of expressive-
ness, and algorithmically. Currently, SPIN performs progress checks by introducing a
pre-defined Büchi automaton for progress. As a result, the state space of the system is
affected (this also holds for the original algorithm presented in [18], where a two-state
demon process was added to the model to determine different modes for the checking
algorithm). Unlike our approach, SPIN’s progress mechanism can deal neither with
the conjunction of a number of progress properties, nor with conditional progress. For
example, it cannot check if at least one progress state fromeachcomponent process
must occur infinitely often in the executions of a system. In SPIN, such properties are
supported by the LTL model-checking mechanism. Further, we provide the option of
action priority that permits a system to be checked under adverse scheduling condi-
tions.

Fairness. The issue of fairness has been extensively investigated. Lehmannet al.
introduced three notions of fairness that are useful in practice [21]. An infinite execu-
tion is unconditionallyfair if every transition is taken infinitely often,strongly fair if
for every transition, if it is enabled infinitely often it is executed infinitely often, and
weaklyfair if for every transition, if it is enabled continuously from some point on, it
is taken infinitely often. The term transition can be substituted by process or action to
obtain the same fairness conditions with respect to processes [8] or actions [20].
Weak, strong, and unconditional fairness are also referred to as justice, fairness (or
compassion) and impartiality. Based on these definitions, our assumption of fair
choice corresponds to strong fairness with respect to the system transitions. Different
notions of fairness are appropriate for different system models. Apt et al. [3] present
some criteria of effectiveness and utility of adopting some notion of fairness in a com-
putational model.

Queille and Sifakis [27] stress the importance of defining fairness with respect to
specific actions or predicates of the system, which they call relative fairness. Natara-
jan and Cleaveland [25] take such an approach, and propose a notion of weak fairness
with respect tosuccess, in order to determine when a process passes a test. The
framework presented by Manna and Pnueli [24] supports the specification of weak and
strong fairness with respect to specific system transitions.



A way of dealing with fairness in model checking is to add Büchi acceptance con-
ditions to the system. For example in [1], all components of the system are Büchi
automata, and therefore only executions that are acceptable by the product Büchi
automaton are checked for correctness. Gribomont and Wolper [16] describe how a
Büchi automaton can be used to express a fair process scheduler. Clarkeet al. [8]
extend their model with a set of predicates, so that fair paths are defined as paths in
which each predicate holds infinitely often. This is equivalent to turning the model of
the system into a generalised Büchi automaton. In this way, they can express both
weak and unconditional fairness on processes. However, this requires the user to
modify the initial model of the system. Finally, in Unity [5], the notion of fairness
requires that every statement is selected infinitely often in any infinite execution.

Priority. Priority has been introduced as a means of assigning more importance to
some actions than others. Examples of actions that require special treatment are inter-
rupts and timeouts. In [26], Phillips performs a study and comparison between various
approaches to introducing priority in process algebra. Relative vs. absolute and condi-
tional vs. exclusive forms of priority appear in the literature. Recently, dynamic prior-
ity has also been proposed in the context of real-time systems [4]. In our approach,
priority is not used as a modelling operator. Rather, it is simply used as a way of
eliminating transitions, and obtaining system executions that would otherwise be con-
sidered unfair. Therefore, we do not need to consider whether the semantic equiva-
lence of our model remains a congruence with the introduction of a priority scheme.
As a result, we have taken a very simple approach to priority, similar to the initial one
proposed by Cleaveland and Hennessy in [10].

6 Discussion and Conclusions

The work presented in this paper was motivated by a desire to achieve a balance be-
tween expressive power, accessibility and efficiency of analysis methods. Despite
their expressive power, Büchi automata may exacerbate the state explosion problem.
Moreover, they are not easy to specify without the use of an automated tool [19]. In
general, this approach to verification is appropriate for experienced users of an analy-
sis tool, that can use effectively a formalism like LTL or Büchi automata to specify
properties or fairness assumptions of the system. The effort of using such a mecha-
nism should only be required by the user if no simpler method is available for per-
forming the specific analysis of interest.

In general, methods should require minimal effort before engineers start realising
the benefits from their use [9]. The progress checking mechanism that we propose
provides a way of checking liveness in a system, which is easily accessible by non-
experts. Although less expressive than LTL and Büchi automata, progress properties
can be specified in a simple intuitive way, and can be checked on the unmodified LTS
of the system. In the context of CRA, progress properties are specified independently
of the processes and composite subsystems that form a system. Consequently, they can
be applied meaningfully to a subsystem as well as to the composite system as long as



the subsystem contains the progress actions in its alphabet. A single traversal of the
LTS of a system is sufficient to check any number of progress properties.

In our framework, progress and safety properties can be combined efficiently, and
checked simultaneously. Therefore, users need to revert to LTL model-checking only
for restricted classes of liveness properties. Our experience so far in analysing archi-
tectural models leads us to believe that progress properties are sufficiently expressive
to allow many liveness properties, of interest at the software architecture level, to be
verified. For example, we applied our technique to a model of an Active Badge Sys-
tem with 566,820 states and 2,428,488 transitions [22], and showed that badge com-
mands are not acknowledged if badges move between locations too frequently.

The combination of progress checks and action priority provides an elegant way of
dealing with models that incorporate a notion of discrete time. The passing of time is
modelled as a global tick action [28]. The maximal progress condition that is usually
assumed for these discrete time models is ensured by making the tick action low pri-
ority: “>> {tick} ”. The integrity of the model with respect to time can be checked
by asserting the progress property “progress TIME = {tick} ”. We have used
these principles to construct and check a discrete time model for a Bounded Retrans-
mission Protocol used in one of Philips’ products.

In their work on patterns in property specifications [11], Dwyeret. al report that the
most common property pattern isResponse, described in LTL asÿ(a⇒◊b). Our prog-
ress and conditional progress schemes cover a wide range of properties that fall in this
category. For example, whenÿ◊a holds in a system,ÿ(a⇒◊b) reduces to the condi-
tional progress property “progress Response = if {a} then {b} ”.

The proposed fairness assumption has been elegantly incorporated in all our live-
ness-checking mechanisms [13] (though, in this paper, it was presented in the context
of progress). We found that the notion of fairness with respect totransitionsfits more
naturally with our framework. In the context of CRA, it is not easy to apply fairness
with respect toprocessesof the system, because the LTS of a composite system does
not retain information about which processes it consists of. This could only be
achieved by modifying the LTSs of the system components to record all necessary
information, similarly to the approach proposed by Clarkeet al. in [8].

In the context of liveness property checking, the possibility of including a notion of
fairness is essential. When Büchi automata are used to express fairness constraints,
users not familiar with the formalism are unable to check their model under any fair-
ness conditions. In such cases, most of the counterexamples returned by the checking
procedure correspond to unrealistic executions of the system analysed. As model
checkers return a single counterexample for a property violation, the user has no way
of finding out if the property checked is really violated, unless the counterexample is
realistic. We believe that, rather than checking liveness with no fairness constraints
and obtaining misleading violations, it is preferable from the developer’s point of view
to get only realistic results from the tool, even at the risk of missing problems that may
occur in practice.

The advantage of action priority is that it is simple to model, and the LTS of the
system is automatically updated accordingly. The user can therefore easily experiment
with checking various instances of the system behaviour, by applying different priori-



ties to it. As a result, the coverage of the checking mechanism under fair choice can be
increased. This process is guided by users, who may enforce adverse scheduling con-
ditions based on their intuition about vulnerable parts of the system behaviour.

In the context of CRA, action priority is applied to produce subsystem versions
solely for checking progress at the subsystem level. These “test” subsystems are not
used in constructing composite behaviours, since the application of action priority
removes parts of system behaviour. In our implementation, action priority is applied
during the construction of a composite LTS from component processes. Therefore,
action priority can also be used for performing partial searches on systems that are too
large for exhaustive exploration. In these cases, action priority provides a way of se-
lecting interesting behaviours for analysis. The current priority scheme allows only
coarse-grained control of scheduling. To refine this control, we plan to investigate the
use of more powerful priority schemes, such as relative and dynamic action priorities.
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