
Dimitra

Giannakopoulou
CMU / NASA Ames Research Center

NASA’s State-Space Exploration:
Verifying Safety-Critical Systems

model checking

void add(Object o) {
buffer[head] = o;
head = (head+1)%size;
}

Object take() {
…
tail=(tail+1)%size;
return buffer[tail];
}

program / model

property

always(ϕ

orψ)

model checker

YES

(property holds)
NO

+ counterexample:
(provides a violating execution)

model checking vs. testing

model checkingtesting

is it a good idea?

E. Clarke, A. Emerson, J. Sifakis

Turing Award 2007

Targets subtle (concurrency) errors
Safety critical applications
Successful in hardware industry

Input language
Properties
Computational complexity

state-explosion problem

compositional
verification

collaborators

Corina Păsăreanu (CMU / NASA Ames)

and talented students / visitors:
Howard Barringer (Univ. of Manchester)
Colin Blundell (UPenn)
Jamieson Cobleigh (UMass, now MathWorks)
Michael Emmi (UCLA)
Mihaela Gheorgiu (Univ. of Toronto)
Chang-Seo Park (UC Berkeley)
Suzette Person (Univ. of Nebraska)
Rishabh Singh (MIT)

compositional verification

M2

M1

A

satisfies

P?

check P on entire system: too many states!
use system’s natural decomposition into
components to break-up the verification task
check components in isolation:

does M1 satisfy P?

–

components typically satisfy requirements in
specific contexts / environments

assume-guarantee reasoning
–

introduces assumption

A representing M1

’s
“context”

does system made up of M1

and M2

satisfy property P?

assume-guarantee reasoning

“discharge”

the
assumption

1.

〈A〉

M1 〈P〉

2.

〈true〉

M2

〈A〉

〈true〉

M1

|| M2

〈P〉

M2

M1

A

satisfies

P?

reasons about triples:
〈A〉

M 〈P〉

is true

if whenever M is part of a system that
satisfies A, then the system must also guarantee P

simplest assume-guarantee rule (ASYM):

examples of assumptions

will not invoke “close” on a file if “open” has not previously
been invoked
accesses to shared variable “X” must be protected by lock “L”
(rover executive) whenever thread “A” reads variable “V”, no
other thread can read “V” before thread “A” clears it first
(spacecraft flight phases) a docking maneuver can only be
invoked if the launch abort system has previously been
jettisoned from the spacecraft

how do we come up with assumptions?

(best paper ASE 2002, ACM distinguished paper)
compute weakest assumption WA

s.t., for all environments

E
〈true〉

M1

|| E 〈P〉

IFF

〈true〉

E 〈WA〉

formalisms

components modeled as finite state machines (FSM)
–

FSMs assembled with parallel composition operator “||”
•

synchronizes shared actions, interleaves remaining actions

a safety property P is a FSM
–

P describes all legal behaviors in terms of its alphabet

–

Perr

–

complement of P
•

determinize & complete P with an “error”

state;
•

bad behaviors lead to error

–

component M satisfies P iff error state unreachable in (M || Perr

)

assume-guarantee reasoning
–

assumptions and guarantees are FSMs
–

〈A〉

M 〈P〉

holds iff error state unreachable in (A || M || Perr

)

learning assumptions (TACAS 2003)

iterative solution +
intermediate results

L* learns unknown regular language
U (over alphabet Σ) and produces
minimal DFA A such that L(A) = U

(L* originally proposed by Angluin)

(queries)
should word w be included in L(A)?

(conjectures)
here is an A –

is L(A) = U?

yes / no

yes!
no: word w

should (not) be in L(A)

the oracleL* learner

query c ↑αA

〈true〉

M2

〈Ai

〉

learning assumptions

L*

query: string s
〈s〉

M1

〈P〉

conjecture: Ai 〈Ai

〉

M1

〈P〉

false+crex cc ↑αA

c

↑αA

model checking

false+crex c

true / false

true

P holds in M1

|| M2

P violated in M1

|| M2
true

false

1.

〈A〉

M1 〈P〉

2.

〈true〉

M2

〈A〉

〈true〉

M1

|| M2

〈P〉

αA = (αM1 ∪ αP) ∩ αM2

terminates with weakest assumption or earlier
|A1| < | A2| < … < |A|, with |A| ≤ |WA|

more than 2 components…

extension of basic rule ASYM [TACAS 2003, FMSD 2009]
symmetric / circular rules [SAVCBS 2003, FMSD 2009]

to check if M1 || M2 || … || Mn satisfies P
–

decompose into M1

and M’1

= M2

|| …

|| Mn

–

apply learning framework recursively for 2nd

premise of rule
–

A1

plays the role of the property for M’1

at each recursive invocation for Mj and M’j = Mj+1 || … || Mn
–

use learning to compute Aj

such that
•

〈Aj

〉

Mj

〈Aj-1

〉

is true
•

〈true〉

Mj+1

|| …

|| Mn

〈Aj

〉

is true

1.

〈A1

〉

M1 〈P〉
2.

〈true〉

M2

|| …

|| Mn

〈A1

〉

3.

〈true〉

M1

|| M2

… || Mn

〈P〉

extension of ASYM

to n

components

tools: LTSA, SPIN
model derived from JPL’s Mars Exploration
Rover (MER) Resource Arbiter
–

local management of resource contention
between resource consumers (e.g. science
instruments, communication systems)

–

consists of k

user threads and one server
thread (arbiter)

ARB

U5

U4

request, cancel
U3

U2

U1
grant, deny

rescind

Resource Arbiter
checked mutual exclusion between
resources (e.g. driving while capturing a
camera image are incompatible)
compositional verification scaled to >5
users vs. monolithic verification ran out
of memory [SPIN’06]

example 1: Mars Exploration Rover

tool: LTSA
consists of control software, state estimator, and 4 types of sensors
input provided as UML state-charts, properties of type:
–

“you need at least two operational sensors to proceed to next mode”
3 bugs detected
scaling achieved with compositional verification:
–

monolithic verification runs out of memory after > 13M states
–

compositional verification terminates successfully in secs. Largest state-space
explored is less than 60K states, as opposed to > 13M.

control
software

orbital
state

star planet
tracker

inertial
navigation

GPS

docking
sensor

example 2: autonomous rendezvous & docking

tools: LTSA, JavaPathfinder
model of NASA Ames K9 Rover Executive
–

executes flexible plans for autonomy
–

consists of Executive

thread and ExecCondChecker

 thread for monitoring state conditions
–

checked for specific shared variable: if Executive

reads
its value, ExecCondChecker

should not read the
variable before the Executive

clears it

K9 Rover

generated assumption of 6 states for model in LTSA [TACAS 2003]
used generated assumption to check 8K lines of JAVA code translated from
10K lines of C++ code using the JavaPathfinder model checker [ICSE 2004]
reduced memory used by JavaPathfinder > 3 times
used generated assumption to perform assume-guarantee testing of C++ code
using Eagle runtime monitoring framework [SAVCBS 2005, IET Software 2009]

example 3: K9 Rover Executive

interface
generation

beyond syntactic interfaces (open file before close)
document implicit assumptions

safe: accept NO illegal sequence of calls
permissive: accept ALL legal sequences of calls

we use learning to generate interfaces [FASE 2009]
−

conjectured interfaces must be safe and permissive

−

queries and safety checked as in compositional scheme
−

permissiveness checked with heuristics

component interfaces

assume-guarantee reasoning

JavaPathfinder

interface generation / discharge

UML statecharts

http://javapathfinder.sourceforge.net
extensions/cv

tool: JavaPathfinder
UML statechart model of the
Ascent and EarthOrbit flight phases
of a spacecraft
properties:
–

“An event lsamRendezvous, which
represents a docking maneuver with
another spacecraft, fails if the LAS
(launch abort system) is still
attached to the spacecraft”

–

“Event tliBurn (trans-lunar interface
burn takes spacecraft out of the
earth orbit and gets it into transition
to the moon) can only be invoked if
EDS (Earth Departure Stage) rocket
is available”

example 1: crew exploration vehicle

Assumption 1:

lasJetisson

lasJetisson
lsamRendezvous

Assumption 2:

lsamRendezvous

tliBurn
lsamRendezvous

generated interface assumptions encode Flight Rules in terms of events

results

procedures guide work performed by astronauts
−

ISS power system troubleshooting / fixing

procedure authoring environment

verification with JavaPathfinder
−

domain models as UML statecharts
−

procedures in PRL language
−

automatically translated to statecharts for JavaPathfinder

discovered error missed by simulation
interface uncovered subtle timing issue

example 2: procedure verification

summary

automating compositional verification was a breakthrough

our techniques are generic

not a panacea…
–

perform well when alphabets & assumptions are small

what makes a system amenable to compositional techniques?

model checking

LCROSS

thank you!

http://javapathfinder.sourceforge.ne
 t

	NASA’s State-Space Exploration: Verifying Safety-Critical Systems �
	model checking
	model checking vs. testing
	is it a good idea?
	state-explosion problem
	Slide Number 6
	collaborators
	compositional verification
	assume-guarantee reasoning
	examples of assumptions
	Slide Number 11
	formalisms
	learning assumptions (TACAS 2003)
	Slide Number 14
	learning assumptions
	Slide Number 16
	extension of ASYM to n components
	example 1: Mars Exploration Rover
	example 2: autonomous rendezvous & docking
	example 3: K9 Rover Executive
	Slide Number 21
	Slide Number 22
	Slide Number 23
	example 1: crew exploration vehicle
	results
	example 2: procedure verification
	Slide Number 27
	introducing abstraction…
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	other related work
	our previous work
	Slide Number 36

