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For many systems characterized as “complex/living/intelligent” the spatio-temporal patterns exhibited on
different scales differ markedly from one another. For example the biomass distribution of a human body
“looks very different” depending on the spatial scale at which one examines that biomass. Conversely, the
density patterns at different scales in “dead/simple” systems (e.g., gases, mountains, crystals) do not vary
significantly from one another. Accordingly, we argue that the degrees of self-dissimilarity between the
various scales with which a system is examined constitute a complexity “signature” of that system. Such
signatures can be empirically measured for many real-world data sets concerning spatio-temporal densities,
be they mass densities, species densities, or symbol densities. This allows one to compare the complexity
signatures of wholly different kinds of systems (e.g., systems involving information density in a digital
computer, vs. species densities in a rain-forest, vs. capital density in an economy, etc.). Such signatures
can also be clustered, to provide an empirically determined taxonomy of “kinds of systems” that share
organizational traits. The precise measure of dissimilarity between scales that we propose is the amount of
extra information on one scale beyond that which exists on a different scale. This “added information” is
perhaps most naturally determined using a maximum entropy inference of the distribution of patterns at
the second scale, based on the provided distribution at the first scale. We briefly discuss using our measure

with other inference mechanisms (e.g., Kolmogorov complexity-based inference).

1 Introduction

Historically, the concepts of life, intelligence, culture, and
complexity have resisted all attempts at formal scientific
analysis. Indeed, there are not even widely agreed-upon
formal definitions of those terms [6, 3]. Why is this?

We argue that the underlying problem is that many of the
attempted analyses have constructed an extensive formal
model before considering any experimental data. For ex-
ample, some proposed definitions of complexity are founded
on statistical mechanics [7], while others use computer sci-
ence abstractions like finite automata [5] or universal Turing
machines [4, 8, 2]. None of these models arose from consid-
eration of any particular experimental data.

This contrasts with the more empirical approach that
characterized the (astonishingly successful) growth of the
natural sciences. This approach begins with the speci-
fication of readily measurable “attributes of interest” of
real-world phenomena followed by observation of the inter-
relationships of those attributes in real-world systems.
Then there is an attempt to explain those inter-relationships
via a theoretical model. For the most part, the natural sci-
ences were born of raw experimental data and a need to
explain it, rather than from theoretical musing.

It is not difficult to see why data-driven approaches may
be more successful in general. In many respects, before a
model-driven approach can be used to assign a complex-
ity to a system, one must already fully understand that
system (to the point that the system is formally encapsu-
lated in terms of one’s model class). So only once most of

the work in analyzing the system has already been done
can one investigate that system using these proposed mea-
sures of complexity. Another major problem with model-
driven approaches is that they are prone to degeneration
into theorizing and simulating, in isolation from the real
world. This lack of coupling to experimental data vitiates
the most important means by which theoretical models can
be compared, refuted, and modified.

In this paper we follow a more data-driven approach,
in which we start with an attribute of interest. Our
choice for attribute of interest is based on the observa-
tion that most systems that people characterize as com-
plex/living/intelligent have the following property: over dif-
ferent space and time scales, the patterns exhibited by a
complex system vary greatly, and in ways that are unex-
pected given the patterns on the other scales. Accordingly,
a system'’s self-dissimilarity is the attribute of interest we
propose be measured — completely devoid of the context
of any formal model at this point. (Bar Yam also proposes
a complexity profile which is based on the characteristics of
a system at different scales — see [1].)

The human body is a familiar example of such self-
dissimilarity; as one changes the scale of the spatio-
temporal microscope with which one observes the body, the
pattern one sees varies tremendously. Other examples from
biology are how, as one changes the scale of observation,
the internal structures of a biological cell, or of an ecosys-
tem, differ greatly from one another. By measuring pat-
terns in quantities other than the mass distribution (e.g.,
in information distributions), one can also argue that the



patterns in economies and other cultural institutions vary
enormously with scale. It may also be that as one changes
the scale of observation there are also large variations in the
charge density patterns inside the human brain.

In contrast, simple systems like crystals and ideal gases
may exhibit some variation in pattern over a small range
of scales, but invariably when viewed over broad ranges of
scales the amount of variation falls away. Similarly, viewed
over a broad range of spatio-temporal scales (approximately
the scales from complexes of several hundred molecules on
up to microns), a mountain, or a chair, would appear to
exhibit relatively little variation in mass density patterns.
As an extreme example, relative to its state when alive, a
creature that has died and decomposed exhibits no variation
over temporal scales. Such a creature also exhibits far less
variation over spatial scales than it did when alive.

Our thesis is that variation in a system’s spatio-temporal
patterns as one changes scales is not simply a side-effect of
what is “really going on” in a complex system. Rather it
is a crucial aspect of the system’s complexity. We propose
that it is only after we have measured such self-dissimilar
aspects of real-world systems, when we have gone on to
construct formal models explaining those data, that we will
have models that “get at the heart” of complex systems.

There are a number of apparent contrasts between our
proposed approach and much previous work on complex-
ity. In particular, fractals have often been characterized as
being incredibly complex due to their possessing nontrivial
structure at all different scales; in our approach they are in-
stead viewed as relatively simple objects since the structure
found at different scales is in many respects the same.

Similarly, a cottage industry exists in finding self-similar
degrees of freedom in all kinds of real-world systems, some
of which can properly be described as complex systems.
Our thesis is that independent of such self-similar degrees
of freedom, it is the alternative self-dissimilar degrees of
freedom which are more directly important for analyzing a
system’s complexity. We hypothesize that, in large mea-
sure, to concentrate on self-similar degrees of freedom of a
complex system is to concentrate on the degrees of freedom
that can be very compactly encoded, and therefore are not
fundamental aspects of that system’s complexity.

As an example, consider a successful, flexible, modern
corporation, a system that is “self-similar” in certain vari-
ables ([9]). Consider such a corporation that specializes in
an information processing service of some sort, so that its
interaction with its environment can be characterized pri-
marily in terms of such processing rather than in terms of
gross physical manipulation of that environment. Now hy-
pothesize that in all important regards that corporation is
self-similar. Then the behavior of that corporation — and
in particular its effective dynamic adaptation to and inter-
action with its environment — is specified using the ex-
tremely small amount of information determining the scal-
ing behavior. In such a situation, one could replace that
adaptive corporation with a very small computer program
based on that scaling information, and the interaction with
the environment would be unchanged. The patent absur-

dity of this claim demonstrates that what is most important
about a corporation is not captured by those variables that
are self-similar.

More generally, even if one could find a system commonly
viewed as complex that was clearly self-similar in all impor-
tant regards, it is hard to see how the same system wouldn’t
be considered even more “complex” if it were self-dissimilar.
Indeed, it is hard to imagine a system that is highly self-
dissimilar in both space and time that wouldn’t be con-
sidered complex. Self-dissimilarity would appear to be a
sufficient condition for a system to be complex, even if it is
not a necessary condition.

In Section 2 we further motivate why self-dissimilarity
is a good measure of complexity. Section 3 then takes up
the challenge of formalizing some of these vague notions.
The essence of our approach is the comparison of spatio-
temporal structure at different scales. Since we adopt a
strongly empirical perspective, how to infer structure on
one scale from structure on another is a central issue. This
naturally leads to the probabilistic measure we propose in
this section. Finally, in Section 4 we discuss some of the
general attributes of our measure and how to estimate it
from data. In future work we plan to apply those estimation
schemes to real-world data sets.

It is worth emphasizing that we make no claim what-
soever that self-dissimilarity captures all that is important
in complex systems. Nor do we even wish to identify self-
dissimilarity with complexity. We only suggest that self-
dissimilarity is an important component of complexity, one
with the novel advantage that it can actually be evaluating
for real-world systems.

2 Self-Dissimilarity

In the real world, one analyzes a system by first being pro-
vided information (e.g., some experimental data) in one
space, and then from that information making inferences
about the full system living in a broader space. The essence
of our approach is to characterize a system’s complexity in
terms of how the inferences about that broader space differ
from one another as one varies the information-gathering
spaces. In other words, our approach is concerned with
characterizing how readily the full system can be inferred
from incomplete measurements of it. Violent swings in such
inferences as one changes what is measured — large self-
dissimilarity — constitute complexity for us.

2.1 Why might complex systems be self-
dissimilar?

Before turning to formal definitions of self-dissimilarity we
speculate on why self-dissimilarity might be an important
indicator of complexity. Certainly self-dissimilar systems
will be interesting, but why should they also coincide with
what are commonly considered to be complex systems?
Most systems commonly viewed as complex/interesting
have been constructed by an evolutionary process (e.g. life,



culture, intelligence). If we assume that there is some selec-
tive advantage in such systems for maximizing the amount
of information processing within the system’s volume, then
we are led to consider systems which are able to process in-
formation in many different ways on many spatio-temporal
scales, with those different processes all communicating
with one another. By exploiting different scales to run dif-
ferent information processing, such systems are in a certain
sense maximally dense with respect to how much informa-
tion processing they achieve in a given volume. Systems
processing information similarly on different scales, or even
worse not exploiting different scales at all, are simply inef-
ficient in their information-processing capabilities.

To make maximal use of the different information pro-
cesses at different scales, presumably there must be effi-
cient communication between those processes. Such inter-
scale communication is common in systems usually viewed
as complex. For example, typically the effects of large scale
occurrences (like broken bones in organisms) propagate to
the smallest levels (stimulating bone cell growth) in com-
plex systems. Similarly, slight changes at small scales (the
bankruptcy of a firm, or the mutation of a gene) can have
marked large-scale (industry-wide, or body-wide) effects.

Despite the clear potential benefits of multi-scale infor-
mation processing, explicitly constructing a system which
engages in such behavior seems to be a formidable challenge.
Even specifying the necessary dynamical conditions (e.g., a
Hamiltonian) for a system to be able to support multi-scale
information processing appears difficult. (Tellingly, it is
also difficult to explicitly construct a physical system that
engages in what most researchers would consider “life-like”
behavior, or one that engages in “intelligent” behavior; our
hypothesis is that this is not a coincidence, but reflects the
fact that such systems engage in multi-scale information
processing.) In this paper, rather than try to construct sys-
tems that engage in multi-scale information processing, we
merely assume that nature has stumbled upon ways to do
so. QOur present goal is only to determine how to recog-
nize and quantify such multi-scale information processing
in the first place, and then to measure such processing in
real-world systems.

This perspective of communication between scales sug-
gests that there are upper bounds on how self-dissimilar a
viable complex system can be. Since the structure at one
scale must have meaning at another scale to allow communi-
cation between the two, presumably those structures cannot
be too different. Also for a complex system to be stable it
must be robust with respect to changes in its environment.
This suggests that the effects of random perturbations on
a particular scale should be isolated to one or a few scales
lest the full system be prone to collapse. To this extent
scales must be insulated from each other. Accordingly, as a
function of the noise inherent in an environment, there may
be very precise and constrained ways in which scales can in-
teract in robust systems. If so it would be hoped that when
applied to real-world complex systems a self-dissimilarity
measure would uncover such a modularity of multi-scale in-
formation processing.

This perspective also gives rise to some interesting con-
jectures concerning the concept of intelligence. It is gen-
erally agreed that any “intelligent” organism has a huge
amount of extra-genetic information-processing concerning
the outside world, in its brain. (If all the processing could
take place directly via genome-directed mechanisms, there
would be no need for an adaptive structure like a brain.)
In other words, the information processing in the brain of
an intelligent organism is tightly and extensively coupled to
the information processing of the outside world. So to an
intelligent organism, the outside world — which is physi-
cally a scale up from the organism — has the same kind of
information coupling with the organism that living, com-
plex organisms have between the various scales within their
own bodies.

So what is intelligence? This perspective suggests a def-
inition. An intelligence is a system that is coupled to the
broader external world exactly as though it were a subsys-
tem of a living body consisting of that broader world. In
other words, it is a system whose relationship with the out-
side world is similar to its relationship with its own internal
subsystems. An intelligence is a system configured so that
the border of what-is-living/complex extends beyond the
system, to the surrounding environment.

2.2 Advantages of the approach

The reliance on self-dissimilarity as a starting point for a
science of complexity has many advantages beyond its be-
ing part of a data-driven approach. For example, puzzles
like how to decide whether a system “is alive” are rendered
mute under such an approach. We argue that such difficul-
ties arise from trying to squeeze physical phenomena into
pre-existing theoretical models (e.g., for models concerning
“life” one must identify the atomic units of the physical sys-
tem, define what is meant for them to reproduce, etc.). Tak-
ing our purely empiricist approach, life is instead a charac-
teristic signature of a system’s self-dissimilarity over a range
of spatio-temporal scales. Presumably highly complex liv-
ing systems exhibit highly detailed, large self-dissimilarity
signatures, while less complex, more dead systems exhibit
shallower signatures with less fine detail. We argue that
life is more than a yes/no bit, and even more than a real
number signifying a degree—it is an entire signature. In ad-
dition to superseding sterile semantic arguments, adopting
this point of view opens entirely new fields of research. For
example, one can meaningfully consider questions like how
the life-signature of the biosphere changes as one species
(e.g., humans) takes over that biosphere.

More generally, self-dissimilarity signatures can be used
to compare entirely different kinds of systems (e.g., infor-
mation densities in human organizations versus mass distri-
butions in galaxies). With this complexity measure we can,
in theory at least, meaningfully address questions like the
following: How does a modern economy’s complexity signa-
ture compare to that of the organelles inside a prokaryotic
cell? What naturally occurring ecology is most like that
of a modern city? Most like that of the charge densities
moving across the internet? Can cultures be distinguished



according to their self-dissimilarity measure? Can one re-
liably distinguish between different kinds of text streams,
like poetry and prose, in terms of their complexity?

By concentrating on self-dissimilarity signatures we can
compare systems over different regions of scales, thereby in-
vestigating how the complexity character itself changes as
one varies the scale. This allows us to address questions like:
For what range of scales is the associated self-dissimilarity
signature of a transportation system most like the signa-
ture of the current densities inside a computer? How much
is the self-dissimilarity signature of the mass density of the
astronomy-scale universe like that of an ideal gas when ex-
amined on mesoscopic scales, etc.?

In fact, by applying the statistical technique of clustering
to self-dissimilarity signatures, we should be able to create
empirically-defined taxonomies ranging over broad classes
of real-world systems. For example, self-dissimilarity sig-
natures certainly will separate marine environments (where
the mass density within organisms is similar to the mass
density of the environment) from terrestrial environments
(where the mass densities within organisms is quite differ-
ent from that of their environment). One might also hope
that such signatures would divide marine creatures from
terrestrial ones, since the bodily processes of marine crea-
tures observe broad commonalities not present in terrestrial
creatures (and vice-versa). Certainly one would expect that
such signatures could separate prokaryotes from eukaryotes,
plants from animals, etc. In short, statistical clustering
of self-dissimilarity signatures may provide a purely data-
driven (rather than model-driven or — worse still — sub-
jective) means of generating a biological taxonomy. More-
over, we can extend the set of signatures being clustered
far beyond biological systems, thereby creating, in theory
at least, a taxonomy of all natural phenomena. For ex-
ample, not only could we cluster cultural institutions (do
Eastern and Western socio-economic institutions break up
into distinct clusters?); we could also cluster the signatures
of such institutions together with those of insect colonies
(do hives fall in the same cluster as human feudal societies,
or are they more like democracies?).

The self-dissimilarity concept also leads to many interest-
ing conjectures. For example, in the spirit of the Church-
Turing thesis, one might posit that any naturally-occurring
system with sufficiently complex yet non-random behavior
at some scale s must have a relatively large and detailed
self-dissimilarity signature at scales finer than s. If this
hypothesis holds, then (for example) due to the fact that
its large-scale physical behavior (i.e., the dynamics of its
intelligent actions) is complex, the human mind necessarily
has a large and detailed self-dissimilarity signature at scales
smaller than that of the brain. Such a scenario suggests that
the different dynamical patterns on different scales within
the human brain is not some side-effect of how nature hap-
pened to solve the question of how to build an intelligence,
given its constraints of noisy carbon-based life. Rather it is
fundamental, being required for any (naturally occurring)
intelligence. This would in turn suggest that (for exam-
ple) work on artificial neural nets will have difficulty creat-

ing convincing mimics of human beings until those nets are
built on several different scales at once.

3 Probabilistic Measures of Self-
Dissimilarity

We begin by noting that any physical system is a realiza-
tion of a stochastic process, and it is the properties of that
underlying process that are fundamentally important. This
leads us to consider an explicitly probabilistic setting for
measuring self-dissimilarity, in which we are comparing the
probability distributions over the various scale s patterns
that the process can generate.

By incorporating probabilistic concerns into its foun-
dations in this way, the proposed measure explicitly re-
flects the fundamental role that statistical inference (for
example of patterns at one scale from patterns at another
scale) plays in complexity. It also means that the frame-
work will involve the quantities that are of direct inter-
est physically. In addition, via information theory, it pro-
vides us with some very natural candidate measures for the
amount of dissimilarity between structures at two differ-
ent scales (e.g., the Kullback-Leibler [10] distance between
those structures). The implicit viewpoint of such measures
is that “how dissimilar” two structures at different scales
are is how much information is provided in the larger-scale
structure that is absent in the smaller-scale structure. (The
exploration of other, non-information-theoretic measures of
self-dissimilarity is the subject of future research.)

To formalize the proposed measure of self-dissimilarity,
we begin with a definition of a scale’s “stochastic struc-
ture”. Then we specify how to convert structures on differ-
ent scales to the same scale by using statistical inference.
As the final step, we specify how to quantify the difference
between two structures on the same scale. Applied on a
scale s, to a pair of structures converted from scales s; and
s9, this quantity will be our measure of the self-dissimilarity
exhibited by scales s; and ss.

3.1 Defining the structure at a scale

Assume an integer-indexed set of spaces, {2s. The indices on
the spaces are called scales. For any two scales s; and sy >
s1, assume also that we have a set of mappings {pg?<_32}
labeled by i, each taking elements of (), to elements of the
smaller scale space (2, .

In this paper, “scales” will be akin to the widths of the
translatable masking windows with which a system is exam-
ined, rather than to different levels of precision with which
it is examined. The index ¢ labeling the mapping set speci-
fies the location of the masking window through which the
system is examined (colloquially, i tells us where we are
pointing our microscope). The fact that we have a full
mapping set simply reflects the multitude of such locations.

Two elaborations of window-based scales are provided by
the following two examples. Both examples involve one-
dimensional sequences of characters as the objects under



study

Example 1: The members of (), are the sequences of s,
successive characters. Indicate such a sequence as ws, (k),
with 1 < k < s, indexing the characters. p' s, is the
projective mapping taking any w,, to the sequence of s;
characters ws, where wsg, (j) = ws,(j +14) for 1 < j < sq,
and 0 < ¢ < 83 — s1. So the pszl<_32 are translations of
a simple masking operation creating a subsequence of s;
characters, with ¢ indicating the translation.

Example 2: This is a modification of example 1 so that
the mapping sets and spaces s are as scale-invariant as
possible, and therefore introduce minimal a priori bias
into the self-dissimilarity measure. We require that s;
must equal a2 and s, must equal b2*2, for some inte-
ger constants b > a > 0 and ks > k; > 0. We then
have wg, (j) = ws,(j + 2F1), where 1 < j < a2F, and
0 < i< bh2k2=F1 _ g, So for example if b and a are fixed
and ko = ki, then for all (k;-indexed) pairs of a small scale
and a large scale, the kinds of of overlaps among the small
scale windows appear the same, “from the perspective” of
the large scale.

If we are given a probability distribution 75, over Q5, and

any single member of the mapping set { pg?<_52}, we obtain
an induced probability distribution over {};, in the usual
way. Call that distribution pg?<_32 (ms,), Or just 7r§?<_32 for
short. It will often be convenient to construct a quantita-
tive synopsis of the set of all of these scale s; distributions.
If that synopsis is a single probability distribution, then
forming this synopsis puts {2;, and Q,, on equal footing,
in that they are both associated with a single distribution.
In this paper, we use the average ps, s, (7s,) = sy 5, =
> T e/ >, 1 as the synopsis of Y

We would like to be able to talk about the probabilistic
structure at scale s (i.e. a distribution describing the kinds
of patterns seen at scale s). This structure may characterize
the statistical regularities of a single object or the regular-
ities of an ensemble of the objects. Either way though, we
would like this distribution to be independent of quantities
at scales other than s.

Accordingly, we restrict attention to mapping sets such
that for some fixed generating scale sy, for any s; < s2 < 54,
the set {pglfLsg} is the set of all compositions pgil)<_52 pg)(_sg.
We call this restriction composability of mapping sets. By
itself, composability of mapping sets does not quite force
Psi+sg (71—59) to equal pg, s, (psz<—sg (71—59))'1 In this paper
though we focus on mapping sets such that for the scales of
interest 7y, s, R Ps; 455 (Ps24-s,(Ts,)). Under this restric-
tion we can, with small error, just write 7, for any scale
of interest s, without specifying how it is generated from
s, For situations where this restriction holds we will say
that we have (approximate) composability of distributions.

IThe problem is that the ratio of the number of times a particular
mapping pglﬁ_)sg occurs in the set {pglfLsg}, divided by the number

()

of times it can be created by compositions psi1 - Sng)(_ 54+ Ay Not
be the same for all k*.

Given such composability, we adopt the sitribution w,; as
our definition of the stochastic structure at scale s.

Example 1 continued: Here 7r§?<_52 (ws, ) is the probabil-
ity that a sequence randomly sampled from Q, (according
to 7s,) will have the subsequence wg, starting at its i’th
character. So 7y, s, (ws, ) is the probability that a sequence
randomly sampled from g, will, when sampled starting at
a random character ¢, have the sequence wy, .

In this example, although we have composability of map-
ping sets, in general we do not have composability of distri-
butions unless s, /s, is quite large. The problem arises from
edge effects due to the finite extent of 2, . Say 7, (ws,) = 1
for some particular w;_; all other elements of 2 are dis-
allowed. Then a subsequence of s; characters occurring
only once in w,, will occur just once in {pg'fz_sg (ws,)}, and
accordingly is assigned the value 1/(s, — s1) by 7y s,,
regardless of where it occurs in w,,. If that subsequence
arises at the end of w,, and nowhere else it will also oc-

cur just once in the set { p(s?<_32 p(sjz.z_sg (ws,)}- However if it
occurs just once in ws,, but away from the ends of wy,, it

will occur more than once in the set {pg?<_52 pgg_sg (wsy)}-
Accordingly, its value under pg, « g, (Psyes, (7s,)) is depen-
dent on its position in w, , in contrast to its value under
Psi+sg (7"39)-

Fortunately, so long as sy/s, is large, we would expect
that any sequence of s; characters in w;, that has a sig-
nificantly non-zero probability will occur many times in
ws,, and in particular will occur many times in regions
far enough away from the edges of ws, so that the edges
are effectively invisible. Accordingly, we would expect that
the edge effects are negligible under those conditions, and
therefore that we have approximate composability of distri-
butions.

The fact that they are generated via mappings ps, ¢ s,
and ps,. s, imposes some restrictions relating the stochastic
structures 7y, and 7s,. Firstly, note that the mapping from
the space of possible 7y, to the space of possible m,, given
by a particular ps, s, (-) usually will not be one-to-one. In
addition, it need not be onto, i.e. there may be 7, ’s that
do not live in the space of possible 7y, s,. In particular,
consider example 1 above, where the character set is binary.
Say that s, = 2. Then 7, (ws,) = d,,, (0,1 is not an allowed
Tsy s, For such a distribution to exist in the set of possible
s, s, Would require that there be sequences wy, for which
any successive pair of bits is the sequence (0, 1). Clearly
this is impossible for there must necessarily be successive
pairs of bits in w,, consisting of (1,0).

Accordingly, for any s < sg, in general not all m; are
possible, due solely to the mapping set ps;s,. Therefore
for any s; < s2, the posterior probability? P(ms,|rs,) must
reflect a mapping set concerned with a scale other than s; or
82, namely ps,.s,. This is in addition to reflecting ps, «s,,
and holds even for composable distributions.

Also due to this fact that (depending on the mapping

2P(msy| s, ) is the probability of stochastic structure 7, at scale
s2 given a stochastic structure s, at scale s1.



set) not all m,; are possible in general, the functional form
of any P(m,,) will often not be “consistent” with the associ-
ated induced functional form of P(r,) = [ dmsP(ms,)0(ms—
Pss,(Ts,)) (the integral is implicitly restricted to the unit
s-dimensional simplex). When this happens, we cannot em-
ploy first-principles arguments to set a functional form for
a prior probability distribution over structures 75 and then
apply that prior to all scales s simultaneously. In particu-
lar, a P(m,,) that assigns non-zero weight to all possible
will not assign non-zero weight to all possible 75 in general,
and in this sense the functional forms on the two scales are
not consistent.

3.2 Comparison to traditional methods of
scaling

It is worth taking a brief aside to discuss the numerous al-
ternative ways one might define the structure at a particular
scale. In particular, one could imagine modifying any of the
several different methods that have been used for study-
ing self-similarity. Although we plan to investigate those
methods in future work, it is important to note that they
often have aspects that make them appear problematic for
the study of self-dissimilarity. For example, one potential
approach would start by decomposing the full pattern at
the largest scale into a linear combination of patterns over
smaller scales, as in wavelet analysis for example. One could
then measure the “weight” of the combining coeflicients for
each scale, to ascertain how much the various scales con-
tribute to the full pattern. However such an approach has
the difficulty that comparing the weight associated with the
patterns at a pair of scales in no sense directly compares
the patterns at those scales. At best, it reflects — in a non-
information-theoretic sense — how much is “left over” and
still needs to be explained in the small scale pattern, once
the full scale pattern is taken into account.

Many of the other traditional methods for studying self-
similarity rely on scale-indexed blurring functions (e.g. con-
volution functions, or even scaled and translated mother
wavelets) B, that wash out detail at scales finer than s
(for example by forming convolutions of the distribution
with such blurring functions). With all such approaches
one compares some aspect of the pattern one gets after ap-
plying B, to one’s underlying distribution, to the pattern
one gets after applying By . If after appropriate rescal-
ing those patterns are the same for all s and s’ then the
underlying system is self-similar.

There are certain respects shared by our approach and
these alternatives. For example, usually a set of spaces
{pgll)<_32032} are used by those alternative approaches in
defining the structure at a particular scale. (Often those
spaces are translations of one another, corresponding to
translations of the blurring function.)

However unlike these traditional approaches our ap-
proach makes no use of a blurring function. This is im-
portant since there are a number of difficulties with using
a blurring function to characterize self-dissimilarity. One
obvious problem is how to choose the blurring function,

a problem that is especially vexing if one wishes to apply
the same (or at least closely-related) self-dissimilarity mea-
sure to a broad range of systems, including both systems
made up of symbols and systems that are numeric. Indeed,
for symbolic spaces how even to define blurring functions
in general is problematic. This is because the essence of a
blurring function By is that for any point z, applying B re-
duces the pattern over a neighborhood of width s about z to
a single value. There is some form of average or integration
involving that blurring function that produces the pattern
at the new scale — this is how information on smaller scales
than s is washed out. But what general rule should one use
to reduce a symbol sequence of width s to a single symbol?

More generally, even for numeric spaces, how should one
deal with the statistical artifacts that arise from the fact
that the probability distribution of possible values at a point
z will differ before and after application of blurring at 27 In
traditional approaches, for numeric spaces, this issue is ad-
dressed by dividing by the variance of the distribution. But
that leaves higher order moments unaccounted for, an over-
sight that can be crucial if one is quantifying how patterns
at two different scales differ from one another.

Such artifacts reflect two dangers that should be avoided
by any candidate self-dissimilarity measure:

1. The possibility of changes in the underlying statistical
process that don’t affect how we view the process’s self-
dissimilarity, but that do modify the value the candi-
date self-dissimilarity measure assigns to that process.

2. The possibility of changes in the underlying process
that modify how we view the self-dissimilarity of the
process but not the value assigned to that process by
our candidate measure.

In general, unless the measure is derived in a first principles
fashion directly from the concept of self-dissimilarity, we can
never be sure that the measure is free of such artifacts.
Our current focus is on approaches that are based on
mapping sets, and in which rather than directly compare
two scale-indexed structures that live in different spaces (as
in the traditional approaches), one first performs statistical
inference to map the structures to the same space. There
will always be the possibility of artifacts when making com-
parisons between systems that are different in kind (e.g.,
that live in non-isomorphic spaces). However properly done,
an inference-based approach should at least avoid hidden
statistical artifacts in comparisons between scales within a
single system since the statistical aspects are explicit.® In
particular, with such an inference-based approach there is
no need for a blurring function, and the problems inherent
in careless use of such functions can be avoided. Intuitively,
the inference-based approach achieves this by having the in-
formation at scale s» be a superset of the information at any
scale s1 < so. This is clarified in the following discussion.

3Indeed, it may even prove possible to combine such inference-
based mappings — and the associated lack of unforeseen statistical
artifacts — with the structures used in the traditional approaches
(e.g., blurring-based structures). This is the subject of future research.



3.3 Converting structures on different

scales to the same scale

It will be convenient to introduce yet a fourth “comparison
scale”, s., at which to compare our (inferences based on) our
structures. Often s, is set in some manner by the problem
at hand, and in particular, we can have s, = s, and/or s, =
sg. But this is not required by the general formulation. For
the rest of this paper, we will always take s, > max][sy, s2],
where s; and s» are the two scales whose structures are
being compared.

Suppose we are interested in the scale s, structure, m,_,
and are given the structure on scale s. Then via Bayes’
theorem, that scale s structure fixes a posterior distribution
over the elements of w;s, € (), , i.e., it fixes an estimate of
the scale s, structure:

P(ws, | ) = / dy. Plws, | 7a,) P(ma, | ms)

- / Ay, T, (03.) P, | )

_ fdﬂsc s (ws.) Pms | ms. ) P(ms,)
[dr, P(ms | w0 ) P(r,)

Se

1)

where 7, is a dummy argument 7, , and in the usual
Bayesian way

P(r,.) = / dr,, P(m,. | ma,)P(ns,)
:/dﬂ'sga(ﬂ'sc _psc<—sg7rsg)P(7ng)7

where P(7s,) is a prior over the real-valued multi-
dimensional vector 7, .

The implicit model here is that 7, is formed by first sam-
pling P(m,,) to get a 7,,, and then having the mapping set
Ps.+s, generate m,, from that 7y . Then ws, is formed by
sampling that 7, . To generate 7y, one applies the mapping
Pses, tO s, directly.

As an example, by composability 75 = pss, 75, and
therefore

. fdwsc Tse (wsc) 5(7"5 — Ps+se (Wsc)) P(ﬂ'sc)
P(wsc | ﬂ-S) a fdﬂ';c 5(773 — Ps+se. (T"QC)) P(ﬂ'.lsc)

(As always, sums replace integrals if appropriate.) In this
situation, P(ws, | ms) may not even be an allowed distribu-
tion, in the sense that P (7, ) assigns zero probability to the
distribution whose w,_-dependence is given by P(ws, | 7).
As an alternative decomposition, we can write

P(m, | ws, ) P(ws,)
P(ms)
_ P(ms | ws,) fdﬂ'scﬂsc (ws, ) P(ms,) ' 2)

> .. numerator

Pws, | ms5) =

In practice, rather than set the prior P(7,,) and try to
evaluate the integrals in equations (1) and (2), one might
approximate the fully Bayesian approach of equations (1)
and (2), for example via MAXENT [11], MDL [12], or by

minimizing algorithmic complexity [14]. Indeed, even if we
were to restrict ourselves to analyses relying on Bayes’ the-
orem and even if s, # s., we might (for example) wish
to “pretend” that s. is our generating scale, and therefore
measure the dissimilarity between P(w,, | m,,)|s,=s. and
P(ws, | Ts,)|s,=s., rather than the dissimilarity between
P(ws, | m5,) and P(ws, | Ts,).

To allow full generality then, for each pair of scales sz
and s; < sz, introduce the random variable 73! to indicate
a distribution over ), that is inferred from the structure
at scale s1. Indicate an element sampled from 7! by wj!.
Given a structure at scale si, 7s,, we call the rule taking
s, to a distribution 73! the inference mechanism for going
from that scale-s; structure to a guess for the distribution
at scale so, and indicate the action of the inference mech-
anism by writing 73! = wjl(ms, ). As examples, equations
(1) and (2) provide two formulations of a Bayesian inference
mechanism.

Once we have calculated both wj!(m,,), the scale-s;-
inferred distribution over Q;_, and 732 (7,,), the scale-ss-
inferred distribution over Q;_, we have translated both our
structures at scale s; and s into two new structures, both
of which are in the same space, {2;,. We can now directly
compare the two new structures that were generated by the
structures at scales s; and s,. In this way we can quantify
how dissimilar the structures over s; and s, are. In this
paper, we will concentrate on quantifications that can be
viewed as the amount of information (concerning scale s.)
inferable from the structure at scale s that goes beyond
what is inferrable from the structure at scale s;.

3.4 Comparing structures on the same
scale

To define a complexity measure we must next choose a
scalar-valued function A, that measures a distance be-
tween probability distributions over Q,_.* Intuitively,
A (Qs, QL) should reflect the information-theoretic simi-
larity between the two distributions over 2 given by @
and Q). Accordingly A, should satisfy some simple re-
quirements. It is reasonable to require that for a fixed my,
A, (7, Q) is minimized by setting Qs to equal m,. Also,
in some circumstances it might be appropriate to require
that for any Sz, 81 < 82, Ts,, and Q527 As2 (7TS27QS2) Z
Ay, (Ps152(Tss)s Ps1s2(@s,))- In this paper we will not
impose a rigid set of requirements on Ag, but rather as
we discuss various candidate A, we will note how they are
related to such desiderata.

As an example A(Qs,Q.) might be |KL(ms, Qs) —
KL(rms,Q")|, where KL(-,-) is the Kullback-Leibler (KL)
distance [10] and 74, is the implicit true distribution over
Q5..5 One nice aspect of AKT is that it can be viewed as
a quantification of the amount of extra information con-
cerning 2, that exists in @5 but not in Q. lL.e., it is the
amount of extra information in ); beyond that in Q.

4We use the word “distance” advisedly, since we do not require
that A,. obey the properties of a metric in general.

5When, as in this case, specification of 75, is needed, we should
properly write AKL(Qg, Q15 ms).



Consider s, = s. In this case w32(-) is the identity func-
tion and AﬁL (w32 (T, ), 32 (705, )3 s, ) = K L(s,, 752 (s, ).
Le., in this scenario, AXZ is the KL distance between m,,
and the inference for 7, based on 7s,. This suggests an-
other natural choice for A;(Qs,Q%), which is to set it to
KL(Qs, Q) always, regardless of the scale s, distribution
or of whether s, = s,. However this choice for A; could
be misleading if neither @, nor Q. is “well-aligned” with
the true 7y; in such a case the two distributions may ap-
pear very similar according to Ag, but that similarity is
specious. In contrast, AXL forces the inference mechanisms
to be “honest”, as far as the resultant value of dissimi-
larity is concerned. In addition, AXZ(Q,, Q") obeys the
triangle inequality, and unlike KL(Qs,Q"), AKL(Q,, Q")
is symmetric in its arguments. Unfortunately though,
AKL(Q4, Q") = 0 does not imply that Q, = Q.. So AKL
is not ideal, and there may be situations where K L(,-) is
preferable.

4 Discussion

In this section we discuss how to estimate our self-
dissimilarity measure from finite data and discuss some of
the broad features of our measure.

4.1 Comparing Structures when Informa-
tion is Limited
In the previous section we saw that to measure how dissim-
ilar two structures ms, and m,, are we translate both to a
distribution over the common space {25, and then measure
how dissimilar those two distributions are. Unless we know
the structures my,, 7s,, and w,, though, rather than eval-
uate Ag,, we have to be content with the expected value
of A, conditioned on our provided information, Z. We
indicate such an expectation in its full generality as follows:

Iy, 5955, (Z) = /d7r31d7r52d7rscAsc (ﬂ'gcl (781)77r§f (7r52);7r5c)
X P(WSNWSZ’WSC |I) ) (3)
where in turn
P(7Tsl,7r32771'sc |Z) =P(7rsc I 7‘—31771—52’1)
X P(7s,,Tsy | Ts., L) -

In this last equation, the last term on the right-hand side
is the likelihood function for generating the structures at
scales s; and ss.

As an example, if the provided information is s, and
Ts,, then we can write the expected distance as

Is1,sz;sc (71'51 s 7Tsz) = / dﬂ'sc Asc (ﬂ—:i (71'51 )7 sz (77—52); 7Tsc)
(4)

X P(7s, | Tsy3Tsy) s
where by Bayes’ theorem
P(Trsc | 7T5177r52) o8
0[5y = Psis. (s.)]0[Ts, — Psyes. (75, )] P(7s.)

(5)

with the proportionality constant set by normalization.

I, 505, is a quantification of how dissimilar the structures
at scales s; and ss are. The dissimilarity signature of a sys-
tem is the upper-triangular matrix Ay, 5, = Is, 5,5, . Large
matrix elements correspond to unanticipated new structure
between scales.

In light of the foregoing, there are a number of restrictions
we might impose on our inference mechanism, in addition
to the possible restrictions on the distance measure. For
example, it is reasonable to expect that for scales ¢ < j < k
that I; ks, > I; j;s.. Plugging in equation (4) with p;j set
equal to pijpj—r translates this inequality into a restric-
tion on allowed inference mechanisms 7}, and Wi. As with
a full investigation of restrictions on distance measures, an
investigation of restrictions on inference mechanisms is the
subject of future research.

4.2 Features of the Measure

Although we are primarily interested in cases where the in-
dices s correspond to physical scales and the 2, to versions
of physical spaces observed on those scales, our proposed
self-dissimilarity measure does not require this, especially
if one allows for non-composable mapping sets. Rather
our measure simply acknowledges that in the real world
information is gathered in one space, and from that infor-
mation inferences are made about the full system. The
essence of our measure is to characterize a system’s com-
plexity in terms of how those inferences change as one varies
the information-gathering spaces.

Accordingly, there are three elements involved in speci-
fying Is1 ,52;8¢ (71—51 s sy ):

1. A set of mapping sets {pg?_s,;i} relating various scales
s and s', to define the “structure” at a particular scale;

2. An inference mechanism to estimate structure on one
scale from a structure on another scale;

3. A measure of how alike two same-scale structures are
(potentially based on a third structure on that scale).

The choice of these elements can often be made in an
axiomatic manner. First, the measure in (3) can often
be uniquely determined based on information theory and
the issues under investigation. Next, assuming one has a
prior probability distribution over the possible states of the
system, then for any provided mapping set, one can com-
bine that prior with the measure of (3) to fix the unique
“Bayes-optimal” inference mechanism: The optimal infer-
ence mechanism is the one that produces the minimal ex-
pected value of the measure in (3) given the information
provided by application of the mapping set. For sy = s,
I, 5055, (Tsy s Msy) = Ay, (sy, w3k (75, )), and for example
for the Kullback-Leibler A, the Bayes-optimal 7}! (7y,) is
P(ws, | 7s, ), as given in equation 1. (This solution for the
Bayes-optimal inference mechanism holds for many natu-
ral choices of A; see the discussion on scoring and density
estimation in ([13]).)



Finally, given the mapping-set-indexed Bayes-optimal in-
ference mechanisms, and given the measure of (3), one can
axiomatically choose the mapping set itself: The optimal
mapping set of size K from Q; to Qy, is the set of K
mappings that minimizes the expected value of the self-
dissimilarity of the system. In other words, one can choose
the mapping set so that the expected result of applying it
to a particular Q; results in a distribution over Q4 that
is maximally informative concerning the distribution over
s, in the sense of inducing a small expected value of the
measure in (3). At this point all three components of I
are specified. The only input from the researcher was what
issues they wish to investigate concerning the system, and
their prior knowledge concerning the system.

In practice, one might not wish to pursue such a full ax-
iomatization of (1,2,3). We view the ease with which our
measure allows one to slot in portions of such an alter-
native non-axiomatic approach to be one of the measure’s
strengths. For example, one could fix (1) and (3), perhaps
without much concern for o priori justifiability, and then
choose the inference mechanism in a more axiomatic man-
ner. In particular, if we know that the system has certain
symmetries (e.g., translational invariance), then those sym-
metries can be made part of the inference mechanism. This
would allow us to incorporate our prior knowledge concern-
ing the system directly into our analysis of its complexity
without following the fully axiomatic approach.

Another advantage of allowing various inference mecha-
nisms is that it allows us to create more refined versions
of some of the traditional measures of complexity. For
example, consider a real-world scheme for estimating the
algorithmic information complexity of a particular infinite
real-world system. Such a scheme would involve gather-
ing a finite amount of data about the system (e.g., data
from a finite window), and then finding small Turing ma-
chines that can account for that data [14]. The size of the
smallest such machine is an upper bound on the algorith-
mic complexity of the data. In addition, the appropriately
weighted distribution of the full patterns these Turing ma-
chines would produce if allowed to run forever can be taken
as a probabilistic inference for the full underlying system.
Self-dissimilarity then measures how this inference for the
full system varies as one gathers data in more and more
refined spaces. Systems with small algorithmic complexity
should be quite self-similar according to such a measure,
since once a certain quality of data has been gathered, re-
fining the data further (i.e., increasing the window size) will
not affect the set of minimal Turing machines that could
have produced that data. Accordingly, such refining will
not significantly affect the inference for the full underlying
system, and therefore will result in low dissimilarity val-
ues. Conversely, algorithmically complex systems should
possess large amounts of self-dissimilarity. Note also that
rather than characterize a system with just a single num-
ber, as the traditional use of algorithmic complexity does,
this proposed variant yields a more nuanced signature (the

set {5, })-
The self-dissimilarity measure can even be made to

closely approximate traditional, blurring-function-based
measures of similarity by an appropriate choice of the in-
ference mechanism. This would be the case if for example
the inference mechanism worked by estimating the fractal
character of the pattern at scale s;, and extrapolated that
character upward to scales sy > s1.
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