
Discrete, Continuous, and Constrained
Optimization Using Collectives

Stefan R. Bieniawski∗ and Ilan M. Kroo†

Stanford University, Stanford, CA 94305

David H. Wolpert‡

NASA Ames Research Center, Moffett Field, CA 94035

Aerospace systems continue to grow in complexity while demanding op-
timal performance. This requires the systems to be both designed and
controlled optimally. Aerospace systems are also typically comprised of
many interacting components, some of which may have competing require-
ments. The optimization approaches used for aerospace systems usually
require centralized coordination and synchronous updates. In addition,
while the approaches treat the large numbers of variables, they may not
take advantage of the fact that the coupling may only be between a rela-
tively small number of the variables. Distributed optimization algorithms,
such as the approach based upon collectives presented in this paper, attempt
to exploit this aspect. A collective is defined as a multi-agent system where
each agent is self-interested and capable of learning. Furthermore, a collec-
tive has a specified system objective which rates the performance of the joint
actions of the agents. Although collectives have been used for a number of
distributed optimization problems in computer science, recent developments
based upon Probability Collectives (PC) theory enhance their applicability
to discrete, continuous, mixed, and constrained optimization problems. This
paper will present the theoretical underpinnings of the approach for these
various problem domains. Several example problems are used to illustrate
the technique and to provide insight into its behavior. The examples include
discrete, constrained, and continuous problems. In particular a constrained
discrete structural optimization and a continuous trajectory optimization
illustrate the breadth of the collectives approach.

Introduction

COMPLEX systems consist of many interacting
components which may have elements that com-

pete with one another. Aerospace systems have al-
ways been among the most complex of systems and
they continue to grow in complexity. Throughout this
growth they have still been required to deliver optimal
performance which is often rated by a specified system
objective. These aspects, a large system of interact-
ing components and a specified system objective, allow
aerospace systems to be viewed as a collective. Typ-
ically for aerospace systems centralized optimization
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approaches have been applied, although some work has
also been performed on distributed architectures. In
the latter, the optimization is usually only divided into
a small number of coordinated sub-level optimizations.

An alternate approach pursued in the current work
is to distribute the optimization among agents that
represent the variables in the system. Formulating
the problem as a distributed optimization allows for
the application of techniques from machine learning,
statistics, multi-agent systems, and game theory. The
current work leverages these fields by applying Collec-
tive Intelligence (COIN) to several illustrative prob-
lems. COIN is a framework for designing a “col-
lective”, defined as a system of adaptive computa-
tional agents with a system-level performance criteria.
COIN techniques have been applied to a variety of
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distributed optimization problems including network
routing, computing resource allocation, and data col-
lection by autonomous rovers.1,2, 6

The COIN solution process consists of the agents
selecting actions (a value from the variable space)
and receiving rewards based upon the system objec-
tive. These rewards are then used by the agents to
determine their next choice of action. The process
reaches equilibrium when the agents can no longer im-
prove their rewards by changing actions. Probability
Collectives (PC) theory formalizes and substantially
extends the COIN framework.7,11 In particular PC
theory handles constraints more explicitly, a neces-
sity for the problems considered in aerospace systems.
The core insight of PC theory is to concentrate on
how the agents update the probability distributions
across their possible actions rather than specifically
on the joint action generated by sampling those dis-
tributions. PC theory has been compared with results
obtained with traditional COIN approaches9 and has
also been demonstrated on new problem domains.10

The collectives approach is also in contrast to tra-
ditional aerospace optimization methods which also
concentrate on a specific choice for the design variables
and on how to update that choice. Even stochastic
approaches such as Genetic Algorithms and Particle
Swarm Optimization still operate on the design vari-
ables rather than their probability distributions. Since
the collectives approach operates directly on prob-
ability distributions, it offers a direct approach for
incorporating uncertainty, which is also represented
through probabilities.

One way to view PC theory is as an extension of con-
ventional game theory. In any game, the agents are
independent, with each agent i choosing its move xi

at any instant by sampling its probability distribution
(mixed strategy) at that instant, qi(xi). Accordingly,
the distribution of the joint-moves is a product dis-
tribution, P (x) =

∏
i qi(xi). In this representation,

all coupling between the agents occurs indirectly; it is
the separate distributions of the agents {qi} that are
coupled, while the actual moves of the agents are inde-
pendent. Bounded rational agents balance their choice
of best move with the need to explore other possible
moves. Information theory shows that the equilibrium
of a game played by bounded rational agents is the op-
timizer of a Lagrangian of the probability distribution
of the agents’ joint-moves. Since the joint probability
distribution is still a product, the optimization of the
Lagrangian can be done in a completely distributed
manner.

When constraints are included, the bounded ratio-
nal equilibrium optimizes the expected value of the
system objective subject to those constraints. Updat-

ing the Lagrange parameters weighting the constraints
focuses the agents more and more on the optimal
joint pure strategy. This approach provides a broadly
applicable way to cast any constrained optimization
problem as the equilibrating process of a multi-agent
system, together with an efficient method for that pro-
cess.

The next section reviews the theory behind Prob-
ability Collectives. Included is a discussion of the
game- and information-theoretic motivation of the the-
ory and its application to distributed constrained op-
timization. This is followed by the details of the re-
sulting optimization algorithm and its demonstration
on several example problems.

Probability Collectives Theory
Bounded Rational Game Theory

In noncooperative game theory one has a set of N
players. Each player i has its own set of allowed pure
strategies. A mixed strategy is a distribution qi(xi)
over player i’s possible pure strategies.15

Each player i also has a private utility function gi

that maps the pure strategies adopted by all N of the
players into the real numbers. Given mixed strategies
of all the players, the expected utility of player i is:

E(gi) =
∫

dx
∏

j

qj(xj)gi(x)

In a Nash equilibrium, every player adopts the
mixed strategy that maximizes its expected utility,
given the mixed strategies of the other players. Nash
equilibria require the assumption of full rationality,
that is, every player i can calculate the strategies of
the other players and its own associated optimal dis-
tribution.

In the absence of full rationality, the equilibrium
is determined based on the information available to
the players. Shannon realized that there is a unique
real-valued quantification of the amount of syntactic
information in a distribution P (y). This amount of
information is the negative of the Shannon entropy of
that distribution:

S(P ) = −
∫

dy P (y) ln[P (y)]

Hence, the distribution with minimal information is
the one that does not distinguish at all between the
various y, i.e., the uniform distribution. Conversely,
the most informative distribution is the one that spec-
ifies a single possible y. Given some incomplete prior
knowledge about a distribution P (y), this says that
the estimate P (y) should contain the minimal amount
of extra information beyond that already contained

2 of 9



in the prior knowledge about P (y). This approach is
called the maximum entropy (maxent) principle and
it has proven useful in domains ranging from signal
processing to supervised learning.16

Now consider an external observer of a game at-
tempting to determine the equilibrium, that is the
joint strategy that will be followed by real-world play-
ers of the game. Assume that the observer is provided
with a set of expected utilities for the players. The
best estimate of the joint distribution q that generated
those expected utility values, by the maxent principle,
is the distribution with maximal entropy, subject to
those expectation values.

To formalize this approach, assume a finite number
of players and of possible strategies for each player.
Also, to agree with convention, it is necessary to flip
the sign of each gi so that the associated player i wants
to minimize that function rather than maximize it.

For prior knowledge consisting of the set of expected
utilities of the players {εi}, the maxent estimate of
the associated q is given by the minimizer of the La-
grangian:

L(q) ≡
∑

i

βi[Eq(gi)− εi]− S(q) (1)

=
∑

i

βi

[∫
dx

∏

j

qj(xj)gi(x)− εi

]
− S(q) (2)

where the subscript on the expectation value indicates
that it is evaluated under distribution q, and the {βi}
are “inverse temperatures” βi = 1/Ti implicitly set by
the constraints on the expected utilities.

The mixed strategies minimizing the Lagrangian are
related to each other via

qi(xi) ∝ e
−Eq(i) [G|xi] (3)

where the overall proportionality constant for each i is
set by normalization, and

G(x) ≡
∑

i

βigi(x)

The subscript q(i) on the expectation value indi-
cates that it is evaluated according to the distribution∏

j 6=i qj . The expectation is conditioned on player i
making move xi. In Eq. (3) the probability of player
i choosing pure strategy xi depends on the effect of
that choice on the utilities of the other players. This
reflects the fact that the prior knowledge concerns all
the players equally.

Focusing on the behavior of player i, consider the
case of maximal prior knowledge. Here the actual
joint-strategy of the players and therefore all of their
expected utilities are known. For this case, trivially,

the maxent principle says the “estimate” q is that
joint-strategy (it being the q with maximal entropy
that is consistent with the prior knowledge). The same
conclusion holds if the prior knowledge also includes
the expected utility of player i.

Removing player i’s strategy from this maximal
prior knowledge leaves the mixed strategies of all play-
ers other than i, together with player i’s expected
utility. Now the prior knowledge of the other play-
ers’ mixed strategies can be directly incorporated into
a maxent Lagrangian for each player,

Li(qi) ≡ βi[εi − E(gi)]− Si(qi)

= βi[εi −
∫

dx
∏

j

qj(xj)gi(x)]− Si(qi)

The solution is a set of coupled Boltzmann distribu-
tions:

qi(xi) ∝ e
−βiEq(i) [gi|xi]. (4)

Following Nash, Brouwer’s fixed point theorem can be
used to establish that for any non-negative values {β},
there must exist at least one product distribution given
by the product of these Boltzmann distributions (one
term in the product for each i).

The first term in Li is minimized by a perfectly
rational player. The second term is minimized by a
perfectly irrational player, i.e., by a perfectly uniform
mixed strategy qi. So βi in the maxent Lagrangian
explicitly specifies the balance between the rational
and irrational behavior of the player. In the limit,
β →∞, the set of q that simultaneously minimize the
Lagrangians is the same as the set of delta functions
about the Nash equilibria of the game. The same is
true for Eq. (3). In fact, Eq. (3) is just a special case of
Eq. (4), where all player’s share the same private util-
ity, G. Such games are known as team games. This
relationship reflects the fact that for this case, the dif-
ference between the maxent Lagrangian and the one
in Eq. (2) is independent of qi. Due to this relation-
ship, the guarantee of the existence of a solution to the
set of maxent Lagrangians implies the existence of a
solution of the form Eq. (3).

Optimization Approach

Given that the agents in a multi-agent system are
bounded rational, if they play a team game with world
utility G, their equilibrium will be the optimizer of G.
Furthermore, if constraints are included, the equilib-
rium will be the optimizer of G subject to the con-
straints. The equilibrium can be found by minimizing
the Lagrangian in Eq. (2) where the prior information
set is empty, e.g. for all i, εi = {∅}.

Specifically for the unconstrained optimization
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problem,
min

~x
G(~x)

assume each agent sets one component of ~x as that
agent’s action. The Lagrangian Li(qi) for each agent
as a function of the probability distribution across its
actions is,

Li(qi) = E[G(xi, x(i))] − T S(qi)

=
∑
xi

qi(xi)E[G(xi, x(i))|xi] − T S(qi)

where G is the world utility (system objective) which
depends upon the action of agent i, xi, and the
actions of the other agents, x(i). The expectation
E[G(xi, x(i))|xi] is evaluated according to the distri-
butions of the agents other than i:

P (x(i)) =
∏

j 6=i

qj(xj)

The entropy S is given by:

S(qi) = −
∑
xj

qi(xj) ln qi(xj)

Each agent then addresses the following local opti-
mization problem,

min
qi

Li(qi)

s.t.
∑
xi

qi(xi) = 1, qi(xi) ≥ 0, ∀xi

The Lagrangian is composed of two terms weighted
by the temperature T : the expected reward across i’s
actions, and the entropy associated with the probabil-
ity distribution across i’s actions. During the mini-
mization of the Lagrangian, the temperature provides
the means to trade-off exploitation of good actions
(low temperature) with exploration of other possible
actions (high temperature).

The minimization of the Lagrangian is amenable to
solution using gradient descent or Newton updating
since both the gradient and the Hessian are obtained in
closed form. Using Newton updating and enforcing the
constraint on total probability, the following update
rule is obtained:8

qi(xi) → qi(xi)− αqi(xi)×{
E[G|xi]− E[G]

T
+ S(qi) + ln qi(xi)

}
(5)

where α plays the role of a step size. The step size is
required since the expectations result from the current
probability distributions of all the agents. The update

rule ensures that the total probability sums to unity
but does not prevent negative probabilities. To ensure
this, all negative components are set to a small posi-
tive value, typically 1×10−6, and then the probability
distribution is re-normalized.

Extension to Constrained Problems

Constraints are included by augmenting the world
utility with Lagrange multipliers, λj , and the con-
straint functions, cj(~x),

G(~x) → G(~x) +
∑

j

λjcj(~x)

where the cj(~x) are non-negative. The update rule
for the Lagrange multipliers is found by taking the
derivative of the augmented Lagrangian with respect
to each Lagrange multiplier, giving:

λj → λj + ηE[cj(~x)] (6)

where η is a separate step size.

Role of Private Utilities

Performing the update according to Eq. 5 involves
a separate conditional expected utility for each agent.
These are estimated either exactly if a closed form ex-
pression is available or with Monte-Carlo sampling if
no simple closed form exists. In Monte Carlo sam-
pling the agents repeatedly and jointly IID (identically
and independently distributed) sample their proba-
bility distributions to generate joint moves, and the
associated utility values are recorded. Since accurate
estimates usually require extensive sampling, the G
occurring in each agent i’s update rule can be re-
placed with a private utility gi chosen to ensure that
the Monte Carlo estimation of E(gi|xi) has both low
bias (with respect to estimating E(G|xi) and low vari-
ance.12

Intuitively bias represents the alignment between
the private utility and world utility. With zero bias,
updates which reduce the private utility are guaran-
teed to also reduce the world utility. It is also desirable
for an agent to distinguish its contribution from that
of the other agents: variance measures this sensitivity.
With low variance, the agents can perform the individ-
ual optimizations accurately without a large number
of Monte-Carlo samples.

Two private utilities are typically used with the so-
lution method, Team Game (TG) and Wonderful Life
Utility (WLU). Both are presented here for complete-
ness, but only the Team Game utility is used during
the current work. These utilities are defined as:

gTGi(xi, x(i)) = G(xi, x(i))

gWLUi(xi, x(i)) = G(xi, x(i))−G(CLi, x(i))
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Fig. 1 Algorithm Flow Chart.

For the team game, the local utility is simply the
world utility. For WLU, the local utility is the world
utility minus the world utility with the agent action
“clamped” by the value CLi. The choice of clamping
value can strongly affect the performance,6 although
clamping to the lowest probability action can be shown
to be minimum variance.7 Both of these utilities have
zero bias. However, due to the subtracted term, WLU
has much lower variance than TG.

For problems with known structure, other private
utilities will be unbiased and result in low variance.
The second continuous problem in this work will use
such a private utility.

Solution Algorithm
The basic algorithm developed from PC theory and

used to solve the example problems is illustrated in
Figure 1. The algorithms proceeds as follows:

1. Initialize.

(a) Set the parameters {T, α, η, γ}. Set the con-
vergence criteria value δ.

(b) Select the number of Monte-Carlo samples.

(c) Assign the starting probabilities for each vari-
able, typically uniform over its possible val-
ues.

2. Optimize the Lagrangian.

(a) Increment the iteration number, k.

(b) For each of the m Monte-Carlo samples,

• Jointly IID sample the system.
• Evaluate the objective function.
• For each agent (variable) compute the

private utility.1

1Team Game requires one function evaluation for each
Monte-Carlo sample, while the generic version of the Wonder-
ful Life utility requires as many function evaluations as there
are variables. Often the structure of the objective function and
constraints can be exploited in the evaluation of WLU to avoid
unnecessary function calls 1,6

(b) Compute the expected utility for each vari-
able for each of its possible moves.

E(gi|xi = j) =
N

(k)
ij

D
(k)
ij

=

∑
m gi(xi = j, x(i))1(xi = j) + γN

(k−1)
ij∑

m 1(xi = j) + γD
(k−1)
ij

where 1(xi = j) equals 1 when xi = j and 0
otherwise. For the discrete problems this is
simple averaging with data aging controlled
by the parameter γ.

(d) Update the probability distributions accord-
ing to Eq. (5). Ensure all the probabilities
are non-negative.

(e) Update the Lagrange multipliers according to
Eq. (6).

(f) Evaluate the convergence criteria,

‖~λk − ~λk−1‖+
∑

i

‖~qi
k − ~qi

k−1‖ ≤ δ

If not satisfied, return to step 2(a), otherwise
proceed to 3.

3. Final Evaluation.

(a) Determine the highest probability value for
each variable.

(b) Evaluate the objective function with this set
of values.

Extension to Continuous Variables

The solution algorithm can be extended to continu-
ous domains by replacing the probability distribution
across the discrete variables with a probability den-
sity across the domain of the variable. Many of the
basic elements are easily extended to the continuous
domain, such as the Monte-Carlo sampling, the use of
private utilities, and the basic solution algorithm. Two
aspects of the solution algorithm must, however, be
modified. First, the probability density function must
be represented in a way which maintains the favorable
updating properties of the discrete case. In this work,
the probability density is parameterized by values at
fixed, equally spaced locations across the domain of the
variables. Second, since the sampling occurs at only a
scattering of points across the range of the variables,
a regression is necessary. In the current work a simple
regression based upon exponentially weighted averag-
ing across samples is used. Since the regression is a fit
to the private utility value across the domain of the
variable it represents a one-dimensional response sur-
face, an area for which there is a large body of research
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Table 1 Properties for the 10-bar truss

Material: E = 107 psi, ρ = 0.1 lbm/in3

Stress limit: 25000 psi
Displacement limit: 2 in

Load: 100 kip
Length: L = 360 in

literature. There is significant area for improvement in
the algorithm presented here if more refined techniques
are applied.

Results
Discrete Constrained Optimization Problem

The performance of the solution algorithm on a dis-
crete constrained problem is illustrated using the ten
bar truss. This problem has been previously used to
study a variety of optimization approaches including
branch and bound3 algorithms, genetic algorithms,4,5

and particle swarm optimization algorithms.17 Fig-
ure 2 shows the geometry and the element numbering
while Table 1 lists the relevant properties.

Two cases were considered, the first enforcing just
the stress constraints on each element,4,5 the second
enforcing both the stress and vertical displacement
constraints.3 The objective for both cases was the to-
tal weight of the structure. For the results in this
paper, the weight was divided by a factor of 1000 to
be of the same order of magnitude as the constraints.

Figure 3 shows the convergence history for the first
case. The parameters settings used were α = 0.01,
γ = 0.5, and η = 1.0. Team Game utility was used
with a starting temperature of 0.5 which was multi-
plied by a factor of 0.95 each iteration. Sixteen values,
varying linearly from 0.1 in2 to 10 in2, were permit-
ted.4,5 The number of Monte-Carlo samples for each
iteration was varied from 50 to 200 to 500. For com-
parison purposes both the continuous optimum and
rounded-up continuous optimum value are shown. For
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Fig. 3 Iteration history for 10-bar truss with stress
constraints.

the latter the optimum areas from the continuous solu-
tion were rounded up to the next allowable value. The
true integer optimum is bounded by these two values.
The curves are the averages over 20 runs for the mean
of the samples within each iteration. The error bars
are then the averages of the minima and maxima of
the samples within each iteration. Although the con-
vergence rate is similar, the range of values explored
is clearly wider for the higher Monte-Carlo samples,
which leads to a lower optimum with increasing sam-
ples. The converged result is typically in the range
between the continuous optimum and the rounded-up
continuous optimum.

Figure 4 shows the convergence history for the sec-
ond case. The same settings as for the first case were
used except with a slower annealing rate. For this
case the temperature was multiplied by 0.99 each itera-
tion instead of 0.95 to allow for additional exploration.
The optimizations were also only performed for 500
Monte-Carlo samples. For this case there were 81 pos-
sible values, xi ∈ {0.1, 0.5, 1.0, ..., 40.0}.3 Again
the curve in Figure 4 represents the mean at each it-
eration averaged over 20 runs. The error bars show
that the approach has converged by 500 iterations to a
value a few percent above the discrete optimum found
with other approaches.3 Table 2 directly compares the
median and best collectives solutions with the result
presented in Reference.3

Continuous Optimization Problems

The solution approach was also applied to two con-
tinuous problems. The first consists of several Gaus-
sian peaks, as shown in Figure 5. Note that variable
x can not see the global minimum until variable y
changes its distribution away from uniform. As a re-
sult, cooperation is required between the variables to
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Fig. 4 Iteration history for 10-bar truss with stress
and displacement constraints.

Table 2 Solution comparison for the 10-bar truss.

Median Best
Collectives Collectives Reference3

W (lbs/1000) 5.1926 5.1417 5.0673
Feasible yes yes yes
x1 (in2) 30.0 31.0 30.5

x2 0.1 0.5 1.0
x3 23.5 24.5 24.5
x4 15.0 14.5 14.5
x5 0.1 0.1 0.1
x6 0.5 0.1 0.1
x7 7.5 8.5 8.5
x8 21.0 21.0 21.5
x9 22.0 20.5 20.5

x10 0.1 1.0 1.5

find the optimum. The objective function is given by,

G(x, y) = 3(1− x)2e−x2−(y+1)2 (7)

− 10(x/5− x3 − y5)e−x2−y2

− 1/3e−(x+1)2−y2

Figure 6 shows the convergence history for this prob-
lem averaged over 10 runs. The results indicate that
the technique quickly finds the minimum, typically
within 10 iterations. Although a small test problem,
the quick convergence here with only 10 Monte-Carlo
samples per iteration illustrates the potential of the
approach. The parameter settings used were T = 0.1,
τ = 0.1, α = 0.25, and γ = 0.5. The probability
densities were each represented using 200 points. The
slight oscillation in the converged optimum is due to
the fixed, moderate temperature value. This choice
results in probability distributions which are only cen-
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Fig. 5 Peaks function.
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Fig. 6 Convergence history for peaks function.

tered about the optimum, but when sampled will pro-
vide values away from the optimum. This is clear in
Figure 7 which shows the converged probability distri-
butions. This figure also illustrates another advantage
of the approach, the sensitivity of the objective to each
of the variables. Since the converged probabilities are
related to the expected utilities through Eq. 4, given
the probabilities qi(xi), the expected utility, E(gi|xi)
is obtained.

The second continuous problem considered is a
classical calculus of variations problem, the Brachis-
tochrone problem.13 The objective is to find the mini-
mum time trajectory between two points for an object
moving only under the influence of gravity, Figure 8.
Following13 the objective function is:

t12 =
∫ (x2,y2)

(x1,y1)

f dx

where,
f = (1 + (dy/dx)2)1/2 (2gy)1/2
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Fig. 7 Final probability distributions for peaks
function.

A trapezoidal approximation is made to the integral
at N points and a central finite difference is used for
the derivative. This results in the following optimiza-
tion problem with respect to the N vertical locations,
y1, ..., yN :

min
~y

G =
∆x

2
[f0 + 2f1 + ... + 2fN − 1 + 2fN ]

where, for the interior points

fi = (1 + [
1

2∆x
(yi+1 − yi−1]2)1/2 (2gyi)1/2 (8)

For the boundary points, f0 and fN , forward or back-
ward approximations are used for the derivatives.

This optimization problem was solved by a commer-
cially available gradient based optimizer14 and by the
collectives approach. Collectives are particularly ap-
plicable to objectives such as Eq. 8 due to the sparse
nature of the interactions between the variables. Since
contributions to the objective fi are only functions of
a single variable and its neighbors, a suitable private
utility is,

gi(yi−2, yi−1, yi, yi+1, yi+2) =
∆x

2
[
2fi−1(yi−2, yi−1, yi)

+ 2fi(yi−1, yi, yi+1)

+ 2fi+1(yi, yi+1, yi+2)
]

(9)

Eq. 9 is used for the interior agents while similar pri-
vate utilities can be obtained for the first and last
agents. This private utility has no bias since it in-
cludes all the dependencies of the world utility upon
agent i.

Figure 9 shows the objective function convergence
history for the gradient based and collectives ap-
proaches. Relevant parameters for the collectives re-
sults are α = 0.2, γ = 0.8, 10 Monte-Carlo samples

X

Y

y
i

(0,0)

(1,1)

g

Fig. 8 The Brachistochrone problem.

per iteration, and T = 0.01. Ten optimizations were
performed and the 90% confidence bars are shown.
For the gradient based optimization a random starting
point was used each time and all other settings used
the default values. The collectives approach performs
comparably, finding a minimum about 5% higher than
the gradient based optimum. Since the collectives
approach is a stochastic optimization technique, it
searches for a distribution of good solutions. To en-
courage the approach to find a single solution, as with
the gradient based approach, either the temperature
should be lowered or it should annealed as the opti-
mization proceeds. Additional Monte-Carlo samples
also aid in finding a better optimum. Figure 10 com-
pares the convergence rate for the baseline, increasing
the number of Monte-Carlo samples to 100, and an-
nealing the temperature by 0.99 each iteration. Note
that this figure compares the performance versus num-
ber of iterations rather than number of function calls.
Changing the parameters is seen to result in similar
improvement in the converged result.

Figure 11 shows the converged probability distri-
butions for the agents. This again illustrates the
non-linear sensitivity information provided by the col-
lectives approach. Another advantage of this approach
which still remains to be explored is the ability to treat
stochastic boundary conditions. Since these types
of boundary conditions are typically represented as
probability distributions, they can be incorporated as
additional agents whose probabilities are simply not
updated.

Summary
This paper has illustrated the application of collec-

tives to a range of optimization problems of interest in
aerospace systems. These have included the discrete,
constrained, and continuous problem domains. The
theory behind the approach as well as illustrative ex-
amples are intended to promote further research into
their application to aerospace systems. Given the con-
tinued growth in the complexity of aerospace systems
and the pressure for optimal performance, techniques
such as the one presented in this paper offer potential.
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Fig. 9 Iteration history for the Brachistochrone
problem.
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Fig. 10 Iteration history for the Brachistochrone
problem with different parameter settings.
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