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Abstract

In this chapter an analysis of the behavior of an arbitrary (perhaps
massive) collective of computational processes in terms of an associated
“world” utility function is presented We concentrate on the situation
where each process in the collective can be viewed as though it were
striving to maximize its own private utility function. For such situations
the central design issue is how to initialize/update the collective’s struc-
ture, and in particular the private utility functions, so as to induce the
overall collective to behave in a way that has large values of the world
utility. Traditional “team game” approaches to this problem simply set
each private utility function equal to the world utility function. The “Col-
lective Intelligence” (COIN) framework is a semi-formal set of heuristics
that recently have been used to construct private utility functions that
in many experiments have resulted in world utility values up to orders
of magnitude superior to that ensuing from use of the team game utility.
In this paper we introduce a formal mathematics for analyzing and de-
signing collectives. We also use this mathematics to suggest new private
utilities that should outperform the COIN heuristics in certain kinds of
domains. In accompanying work we use that mathematics to explain pre-
vious experimental results concerning the superiority of COIN heuristics.
In that accompanying work we also use the mathematics to make numer-
ical predictions, some of which we then test. In this way these two papers
establish the study of collectives as a proper science, involving theory,
explanation of old experiments, prediction concerning new experiments,
and engineering insights.

Introduction

This paper concerns distributed systems some of whose components can be
viewed as though they were agents, adaptively “trying” to induce large values
of their associated private utility functions. When combined with a world utility
function that rates the possible behaviors of that system, the system is known
as a collective [17, 20, 23, 25].
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Given a collective, there is an associated inverse design problem, of how to
configure/modify the system so that in their pursuit of their private utilities
the agents also maximizes the world utility. Solving this problem may involve
determining/modifying the number of agents, how they interact with each other,
and what degrees of freedom of the overall system each of them controls (i.e., the
very definition of the agents). When the agents are machine learning algorithms
overtly trying to maximize their private utilities, the inverse problem may also
involve determining/modifying the algorithms that those agents use, as well as
precisely what private utilities they are each trying to maximize.
This paper presents a mathematical framework for the investigation of col-

lectives, and in particular the investigation of this design problem. A crucial
feature of this framework is that it involves no modeling of the underlying sys-
tem nor of the algorithms controlling the agents. For example, only the behavior
of an agent (or more precisely, certain broad aspects of it) is formally related to
what private utility that agent is “trying” to maximize; nothing of what goes on
“under the hood” is assumed. This behaviorist approach is crucial since in the
real world collectives are often so complicated that no tractable model can bear
more than a cursory similarity with the system it is supposed to represent. More
generally, this approach is crucial to have the framework be broad enough to
encompass, for example, the collectives of spin glasses and of human economies.
In the next section we introduce generalized coordinates. These allow us to

avoid any restrictions on the kinds of variables comprising the system—they can
be uncountable, countable, or combinations thereof, with or without an under-
lying topology/metric, and except where explicitly indicated otherwise, all the
results of the framework still apply. The underlying variables can either include
time or not, and if they do, the associated underlying dynamics is arbitrary. The
variables also can either be broken up explicitly into separate agents or not, and
if they are, there can be arbitrary restrictions on which of the conceivable joint
moves of the agents are physically allowed. In addition, how the variables are
broken up into agents, and even the number of agents is arbitrary, and can be
modified dynamically (if time is included in the underlying variables). More-
over, if time is included as an underlying variable, then some of the agents can
have their decision “simultaneously” fix the state of one or more variables of
the system at distinct moments in time. (This is reminiscent of what is decided
in settling on a contract in cooperative game theory.) Again, all of this can be
varied in an arbitrary fashion.
Using these generalized coordinates, a central equation can be derived that

determines how well any of these kinds of systems perform. It does so by breaking
performance down into three terms. These terms loosely reflect the concerns
of the fields of high-dimensional search, economics, and machine learning; the
central equation is the bridge that couples those fields.
The following section uses this mathematical framework to introduce a (model-

independent) formalization of the assumption that a particular component of
the system is a “utility-maximizing. . . agent”. That formalization is then used
to derive the Aristocrat and Wonderful Life private utility functions, two utility
functions previously intuited that have been found to result in far better world
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utility than conventional techniques. [17]. This derivation also uncovers (rela-
tively rare) conditions under which those utilities should not perform very well.
That section ends by deriving many new results, including the Collapsed private
Utility, and ways to modify other agents to help a particular agent, along with
specification of the scenarios in which such techniques should result in good
world utility.
An accompanying paper [22] presents this mathematical framework in a more

pedagogical manner, including many examples, commentary and some discus-
sion of related fields (e.g., mechanism design in game theory). That paper also
discusses recent experiments involving a set of previous semi-formal heuristics
(including the Aristocrat and Wonderful Life private utilities) that have been
found to be very useful for the design of collectives. It uses the mathematical
framework to explain the efficacy of those techniques. It then goes on to make
numerical predictions based on that framework, and then presents some experi-
mental tests of those predictions. It ends by making other (testable) predictions,
and presents a sample of future research topics and open issues.
This paper instead exhaustively presents all of the currently elaborated

mathematics of the framework, including the details omitted in [22]. In particu-
lar, this paper contains theorems not presented there, extensions of the theorems
that are presented there, the proofs of all theorems, detailed application of the
framework to multi-step games, and the important example of applying the
framework to gradient ascent over categorical variables. (For pedagogical rea-
sons, the latter two occur as appendices.) Combined, these two papers present
a mathematical theory along with associated predictions/experiments and en-
gineering recommendations. In this, they lay the foundation for a full-fledged
science of collectives.

1 The Central Equation

(i) Generalized coordinates and intelligence

We are interested in addressing optimization problems by decomposing them
into many subproblems, each of which are solved separately. We will not try
to choose such subproblems so that they are independent of one another, or
find a way to coordinate their solutions. Rather we will choose the subproblems
so that each of them separately is relatively easy to solve, given the context of
a particular current solution to the other subproblems, and then have them be
solved in parallel.
To formalize this, let ζ be an arbitrary space with elements z called world-

points. Let C ⊆ ζ be the set of elements of ζ that are actually allowed, for
example in that they are consistent with the laws of physics.1 Define a gener-
alized coordinate variable as a function from C to associated coordinate

1Whenever expressing a particular system as a collective, it is a good rule to write out the
functional dependencies presumed to specify C(.) as explicitly as one can, to check that what
one has identified as the space ζ does indeed contain all the important variables.
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values. (When the context makes the precise meaning clear, we will sometimes
use the term “coordinate” to refer to a generalized coordinate variable, and
sometimes to a value of that variable.) We will sometimes view a coordinate
variable ρ as an exhaustive partition of C into non-empty subsets, with ρ(z) be-
ing the element of the partition that contains z. Accordingly we will sometimes
write a coordinate value r = ρ(z) as “r ∈ ρ” and a worldpoint z′ sharing that
value as “z′ ∈ r”.2 Intuitively, each “sub-problem” of our overall optimization
problem will be formalized in terms of such a partition ρ, as finding the optimal
z within the r ∈ ρ specified by the current solutions to the other subproblems.
Often we implicitly assume that the set of values that any coordinate vari-

able we are discussing can take on forms a measurable set, as does the set of
worldpoints having any such value. (All integrals are implicitly with respect to
such measures.)
As an example, C might consist of the possible joint actions of a set of

computational agents engaged in a non-cooperative game [7, 2, 10, 3, 5]. ρ(z ∈
C) could then be the actions of all agents except some particular agent identified
with ρ. In this case, by fixing all other degrees of freedom, the value of the
coordinate ρ implicitly specifies the degrees of freedom that are still “available
to be set” by the agent identified with ρ.
A frequently occurring type of coordinate variable is one whose values are

contained in the real numbers. A particularly important example is a world
utility function G : C → R that ranks the various possible worldpoints of
the system. We are always provided a G; the goal in the problem of designing
collectives is to maximize G.
Our mathematics does not concern G alone, but rather its relationship with

some coordinate utilities gρ : C → R.3 Each coordinate utility ranks the
possible values of those degrees of freedom still allowed once the worldpoint has
been restricted to a set of worldpoints r ∈ ρ. Given a set of coordinate variables,
{ρ}, we are interested in inducing a z that each gρ ranks highly (relative to the
other worldpoints in the associated set r = ρ(z)), and in the relation between
those rankings of z and G’s ranking of z. To analyze these issues we need to
standardize utility functions so that the numeric value they assign to z only
reflects their relative ranking of z (potentially just in comparison to the other
worldpoints sharing some associated coordinate value).4

Generically, we indicate such a standardization by N , and for any utility
function U , coordinate ρ, and z ∈ C, we write the associated value of such a
standardization of the utility U as Nρ,U (z). Define “sgn[x]” to equal +1, 0, or
−1 in the usual way. Then we only need to require of a standardization N that
Nρ,U (z) be a [0, 1]-valued, ρ-parameterized functional of the pair (U,U(z)), one
that meets the following two conditions as we vary U and/or z:

2In general, we try to use lower-case greek letters for coordinates, and the associated lower-
case roman letter for the value of that coordinate.

3In previous work, roughly analogous utilities were called “personal utilities” [17].
4It turns out that there never arises a reason to consider the relation between such a stan-

dardization and the axioms conventionally used to derive utility theory [10], and in particular
those axioms concerning behavior of expectation values of utility.
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i) ∀ z ∈ C, if for a pair of utilities V andW , sgn[W (z′)−W (z)] = sgn[V (z′)−
V (z)] ∀ z′ ∈ ρ(z), then Nρ,W (z) = Nρ,V (z).

ii) With U and r ∈ ρ fixed, ∀ z, z′ ∈ r, sgn[Nρ,U (z)−Nρ,U (z′)] = sgn[U(z)−
U(z′)].

We call the value of Nρ,U at z the “intelligence of z (given ρ) with respect
to U for coordinate ρ”.5 ,6 If ρ consists of a single set (all of C), we simply write
NU (z). An example of an intelligence operator based on percentiles is provided
in App. A. Unless explicitly stated otherwise, whenever calculating intelligence
values in any examples, we will use this choice of the intelligence operator.
Often there will be uncertainly in the worldpoint z, in particular on the

part of the system designer (e.g., when worldpoints are worldlines of a physical
system, such uncertainty arises if the designer is not able to calculate exactly
how the system evolves). Such uncertainty is captured by a distribution P (z)
that equals 0 off of C.7 Accordingly, coordinates ρ are not only partitions, but
are also random variables, taken values r ∈ ρ.
All aspects of the designer’s ability to manipulate the system are encap-

sulated in the selection of an element s from some design coordinate σ. In
particular, since the (sub)problem of finding a z ∈ r with maximal ρ-intelligence
will vary as r varies, it cannot be addressed with conventional algorithms for
maximizing a static function. Instead, its solution requires techniques — like
those in reinforcement learning — tailored for dynamically varying and/or un-
certain functions. Accordingly, we will often consider the case where (among
other things) s specifies which of a set of allowed private utility functions to
associate with some coordinate ρ, gρ,s : z → R. Such a function is one that
we view intuitively as the “payoff function” for a self-interested computational

5Note that for fixed U , the function Nρ,U (.) from C → R+ can be viewed as a utility
function, and therefore as a coordinate. In particular, Nρ,Nρ,U = Nρ,U . This follows from

condition (i) in the definition of intelligence with V = U , W = Nρ,V , and the equality of sgn’s
following from condition (ii) in the definition of intelligence.

6Although this paper concentrates on R-valued utility functions, much of its analysis can
be extended to functions having different ranges. Examples include vector-valued functions
having range Rn — appropriate for analyzing intelligence with respect to several distinct U
at once — and functions whose range is a set of non-overlapping contiguous sub-intervals
of R. In particular, given some such range Q, and any associated antisymmetric preference
function F : Q×Q→ {−1, 0, 1}, we can replace the sgn function with F throughout (i) and
(ii) when we specify our intelligence operator. Much of the sequel (e.g., Thm. 1) still holds
under this modification. If in addition Q is a field over the reals, we can also form the average
value of such an intelligence, and some of the theorems presented below concerning expected
intelligence values will go through.

7If there is uncertainty in C itself we express that with a distribution P (C), to go with the
distributions P (z | C). In particular, if probabilities reflect the system designer’s uncertainty
about C, then P (z) may be non-zero even for points z off of the actual C. Fixing C exactly
is analogous to fixing the energy exactly in statistical physics (the microcanonical ensemble),
with allowing C to vary being analogous to uncertainty in the energy (the canonical ensemble).
Unless explicitly stated otherwise, in this paper we will consider C to be fixed. In a similar
fashion, if probabilities reflect uncertainty in how a coordinate κ partitions C, then it could
be that P (z | k) is non-zero even for points z where κ(z) 6= k. (For simplicity, we will usually
assume this is not the case.)
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agent, embodied in C, that uses a “learning algorithm”, to “control” position
within any particular element of ρ.8 A priori, a coordinate need not have an as-
sociated private utility; in particular, non-learning agents need not. Informally,
when we have a “learning agent” associated with coordinate ρ we refer to ρ
as either the agent coordinate or the agent’s context coordinate, with the
value of that coordinate being the agent’s context. (These definitions are made
more formal below.)
Properly interpreted, the rules of set theory hold when coordinate variables

play the role of sets. Under this interpretation any coordinate variable κ arising
in a set-theoretic expression should be read as “every (subset of ζ that consti-
tutes an) element of κ”. For example, κ ⊂ λ means “every element of κ is a
proper subset of every element of λ”, so that the value k fixes l. See App. B.
As a notational matter, we adopt the usual convention that probability of

a coordinate value is shorthand that the associated random variable takes on
that value, e.g., P (a) means P (α = a). As usual though, this convention is not
propagated to expectation values: E(U(a, β) | c) ≡

∫

dbU(a, b)P (b | c). Delta
functions are either Kronecker or Dirac as appropriate (although always written
as arguments rather than as subscripts). Similarly, integrals are assumed to have
a point-mass measure (i.e., reduce to a sum) as appropriate. For any function
φ : C → R and coordinate κ, with y ∈ [0, 1], we write CDFφ(y | k) to mean the
cumulative distribution function P (φ ≤ y | k) ≡

∫ y

−∞ dt
∫

dz P (z | k) δ(φ(z)−t),
and just write CDF(φ | k) to refer to the entire function over y. In addition,
“supp” is shorthand for the support operator, and “B” indicates the Booleans.
O(A) means the cardinality of the set A. For any two functions f1 and f2 with
the same domain x ∈ X, “f1 < f2” means that ∀x f1(x) ≤ f2(x), and ∃x such
that f1(x) < f2(x). All proofs that are not in the text are provided in App. C.

(ii) The Central Equation

Our analysis revolves around the following central equation for P (U | s),
which follows from applying Bayes’ theorem twice in succession:

P (U | s) =
∫

d ~NU P (U | ~NU , s)
∫

d ~Ng P ( ~NU | ~Ng, s)P ( ~Ng | s) (1)

where usually we are interested in having U = G. “g” is the vector of the values
of a set of coordinate utilities, and “ ~Ng” is an associated vector of intelligences
with respect to those coordinate utilities. Here we concentrate on the case where
each of those intelligences is for the associated coordinate, i.e., for set of coordi-
nates {ρ} it is the ρ-indexed vector with components { ~Nρ,gρ(z)}. “ ~NU” is also a
coordinate-variable-indexed vector of intelligence values, only for utility U . We
will concentrate on the case where ~NU is indexed with the same coordinates as
~Ng. In this situation ~NU has components ~Nρ,U (z) and is identical to ~Ng except

8Note that, formally speaking, the learning algorithm itself is embodied in C. Hence the
quotation marks around the term ‘control’.
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in its choice of utility functions.9

If we can choose s so that term 3 in the integrand in Eq. 1 is peaked around
vectors ~Ng all of whose components are close to 1, then we have likely induced
large intelligences. If in addition to such a good term 3 we can have term 2 be
peaked about ~NU equal to ~Ng, then ~NU will also be large. If in addition term 1

in the integrand is peaked about high U when ~NU is large, then our choice of s
will likely result in high U , as desired.
In the next subsection we analyze what coordinate utilities give the desired

form of term 2 in the central equation, for our choice of ~NG and ~Ng. We then
present examples illustrating such systems and more generally illustrating gen-
eralized coordinates. We end this section with a brief discussion of term 1. Then
in the next section we analyze what coordinate utilities give the desired form of
term 3 in the central equation. It is only here that the use of agents to control
some coordinate values becomes crucial. We end that section by combining these
analyses to derive coordinate utilities that have the desired forms for both term
2 and term 3.
This formalism applies to many more scenarios than those that involve dy-

namical systems with values z specifying behavior across time. It also applies
even in scenarios that are not conventionally viewed as instances of game theory.
Nonetheless, as an example of the formalism, App. D is a detailed exposition of
multistep games in terms of this formalism.

(iii) Term 2—Factoredness

We say that U1 and U2 are (mutually) factored at a point z for coordinate ρ if
Nρ,U1

(z′) = Nρ,U2
(z′) ∀ z′ ∈ ρ(z).10 Note that factoredness is transitive. If we

do not specify U2, it is taken to be G, and we sometimes say that U “is factored”,
or “is factored with respect to G”, when U and G are mutually factored. If ∀ ρ
in a set of coordinates that we are using to analyze a system, the utility gρ is
factored with respect to G for coordinate ρ at a point z, we simply say that the
system is factored at z, or that the {gρ} are factored with respect to G there.
There is a very tight relation between factoredness and game theory. For ex-

ample, consider the case where we have Pareto superiority of a point z ′ over some
other point z with respect to the coordinate utility intelligences [7, 2, 10, 3, 5].
Say that in addition those associated utilities form a factored system with re-
spect to the world utility G. These together imply the Pareto superiority of z ′

over z with respect to world utility. The converse also holds. However these prop-
erties relating factoredness, coordinate and world utilities only hold for Pareto
superiority for intelligences (rather than for raw coordinate utility values), in

9Since the distributions in Eq. 1 are conditioned on s, when we have a percentile-style
intelligence, a natural choice for the associated measure dµ(z) is given by the values r = ρ(z)
and s, as P (z | r)P (r | s) (see App. A). In other words, given that we are within a particular
r, the measure extends across that entire context—including points inconsistent with s—
according to the distribution P (z | r).

10In previous work we defined factoredness only to mean that sgn[U1(z′) − U1(z)] =
sgn[U2(z′) − U2(z)] ∀ z′ ∈ ρ(z). This is a necessary (but not sufficient) condition that
Nρ,U1

(z′) = Nρ,U2
(z′) ∀ z′ ∈ ρ(z); see Thm. 1 below and the definition of intelligence.
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general. In addition, by taking U2 = G, the following theorem provides the
basis for relating game-theoretic concepts like Nash equilibria and non-rational
behavior with world utility in factored systems:

Theorem 1 U1 and U2 are mutually factored at z ∈ C for coordinate ρ iff

sgn[U1(z
′)− U1(z

′′)] = sgn[U2(z
′)− U2(z

′′)] ∀ z′, z′′ ∈ ρ(z).

Note that this holds regardless of the precise choice of N , so long as it meets
the formal definition of an intelligence operator.
By Thm. 1, for a system whose coordinate utilities are factored with respect

to G, the set of Nash equilibria of those coordinate utilities equals the set of
points that are maxima of the world utility along each of the coordinates indi-
vidually (which of course does not mean that they are maxima along off-axis
directions).11 In addition to this desirable equilibrium structure, factoredness
ensures the appropriate off-equilibrium structure; so long as for each coordinate
the associated intelligence is high (with respect to that coordinate’s utility), the
system will be close to a local maximum of world utility. This is because, for
each coordinate ρ, given a (fixed) associated coordinate value r, any change in
z ∈ r that decreases ρ’s coordinate utility—which is almost all changes if ρ’s
intelligence is high—will assuredly decrease world utility. Note though that hav-
ing gρ factored with respect to G does not preclude deleterious side-effects on
the other coordinate utilities of such a gρ-improving change within r. All such
factoredness tells us is whether world utility gets improved by such changes (see
the end of App. D).12

11An immediate game-theoretic corollary is that any game whose utilities can be expressed
as coordinate utilities of a system that is factored with respect to a world utility having critical
points has at least one pure strategy Nash equilibrium. However consider an arbitrary vector
~ε all of whose components lie in [0, 1]. Then it is not the case that every factored system has
a pure strategy joint profile with each player’s intelligence given by the associated component
of ~ε. This is even true if every component of ~ε is either a 0 or a 1. As a simple example, choose
g1 = g2 = G, and have ~ε = (0, 1). Have G = z1 for z2 > 1/2, and equal 1 − z1 otherwise,
where both z1 and z2 ∈ [0, 1]. Then if z2 > 1/2, z1 = 1, since N1 = 1. However if z1 = 1, then
z2 ∈ [0, 1/2] since N2 = 0. If z2 ≤ 1/2 though, z1 = 0, which means that z2 ∈ (1/2, 1]. QED.

12Factoredness is simply a bit; a system is factored or it isn’t. As such it cannot quantify
situations in which term 2 has a good form although it is not exactly a delta function. Nor
can it characterize “super-factored” situations in which that conditional distribution is better

than a delta function, being biased towards NG values that exceed the Ng values. One way to
address this deficiency is to define a “degree of factoredness”. One example of such a measure
is 1 −

∫

dz P (z | s)[ ~NG − ~Ng ]2 ∈ [0, 1]. Another is
∫

dz P (z | s)[ ~NG − ~Ng ], which extends
from “partially factored” systems (negative values), to perfectly factored systems (value 0),
to super-factored systems (value greater than 0). Other definitions arise from consideration
of Thm. 1. For example, one might quantify factoredness for coordinate ρ as the probability
that a random move within a context changes G and gρ the same way:

∫

dz dz′ P (z | s)P (z′ | s)δ(z′ ∈ ρ(z))Θ([G(z)−G(z′)][gρ(z)− gρ(z
′)]).

Especially when one has a percentile-type intelligence, all these possibilities suggest yet
other variants in which the measure dµ(z) replaces the distribution(s) P (z | s). Similarly,
one can define “local” (degree of factoredness) about some point z′′ by introducing into the
integrands of all these variants Heaviside functions restricting the worldpoint to be near z′′.
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The following theorem gives the entire equivalence class of utilities that are
mutually factored at a point:

Theorem 2 U1 and U2 are mutually factored at z for coordinate ρ iff ∀ z′ ∈
r ≡ ρ(z), we can write

U1(z
′) = Φr(U2(z

′))

for some r-indexed function Φr that is a strictly increasing function of its argu-
ment across the set of all values U2(z

′ ∈ r). (The form of U1 for other arguments
is arbitrary.)

Using some notational overloading of the “Φ” function, by Thm. 2 we can en-
sure that the system is factored by having each gρ(z) = Φρ(G(z), ρ(z)) ∀ z ∈ ζ
for some functions Φρ whose first partial derivative is strictly increasing ev-
erywhere. Note that this factoredness holds regardless of C or P (z | s). The
canonical example of such a case is a team game (also known as an ‘exact po-
tential game’ [6, 12, 4]) where gρ = G for all ρ. Alternatively, by only requiring
that ∀ z ∈ C does gρ take on such a form, we can access a broader class of
factored utilities, a class that does depend on aspects of C.
As an example, define a difference utility for coordinate ρ with respect to

utility D1 as a utility taking the form Dρ(z) = β(z)[D1(z) − D2(z)] for some
function D2 and positive function β(.), where both β(.) and D2(.) have the
same value for any pair of points z and z′ ∈ C for which ρ(z) = ρ(z′). (We will
sometimes refer to D1 as the lead utility of such a difference utility, with D2

being the secondary utility.) Since both β(z) and D2(z) can be written purely
as a function of ρ(z), by Thm. 2, a difference utility is factored with respect to
D1. As explicated in the next subsection, for such a utility with D1 = G, term 3
in the central equation can be vastly superior to that of a team game, especially
in large systems. In addition, as a practical matter, often Dρ can be evaluated
much more easily than can D1.

(iv) Term 1 and alternate forms of the central equation

Assuming term 3 results in a large value of ~Ng, having factoredness then ensures

that we have a large value of ~NG as well. In this situation term 1 will determine
how good G is. Intuitively, term 1 reflects how likely the system is to get caught
near local maxima of G. If any maximum of G the system finds is likely to be
the global maximum, then term 1 has a good form. (For factored systems, in
such scenarios it is likely that a system near a Nash equilibrium it is near the
highest possible G.)

So for factored systems, for our choice of ~NG and ~Ng, term 1 can be viewed
as a formal encapsulation of the issue underpinning the much-studied explo-
ration/exploitation trade-off of conventional search algorithms. That trade-off
can manifest itself both within the learning algorithms of the individual agents
as well as in a centralized process determining whether those agents are allowed
to make proposed changes in their state ([26]). In this paper we will not consider
such issues, but will instead concentrate on terms 2 and 3.
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As mentioned, term 2 in the central equation is closely related to issues
considered in economics and game theory (cf. Thm. 1 and note the relation
between factoredness and the concept of incentive compatibility in mechanism
design [7, 2, 14, 2, 10, 16, 8, 27, 13, 15]. On the other hand, as expounded below,
term 3 is closely related to signal-noise issues often considered in machine learn-
ing (but essentially never considered in economics). Finally, as just mentioned,
term 1 is related to issues considered by the search community. So the central
equation can be viewed as a way of integrating the fields of economics, machine
learning, and search.
Finally, an important alternative to the choice of ~NU investigated in this

paper is where it is the scalar N∅,U . In this situation, ~NU is a monotonic trans-
formation of U over all of C, rather than just within various partition elements
of C. For this choice term 1 in the central equation becomes moot, and that
equation effectively reduces to P (U | s) =

∫

d ~NgP (U | ~Ng, s)P ( ~Ng | s). The
analysis presented below of the P ( ~Ng | s) term in the central equation is un-
changed by this change. However the analysis of the P ( ~NU | ~Ng, s) term is now
replaced by analysis of P (U | ~Ng, s). For reasons of space, we do not investigate
this alternative choice of ~NU in this paper.

2 The Three Premises

(i) Coordinate complements, moves, and worldviews

Since intelligence is bounded above by 1, we can roughly encapsulate the qual-
ity of term three in the central equation as the associated expected intelligence.
Accordingly, our analysis of term 3 will be expressed in terms of expected intel-
ligences.
We will consider only one coordinate at a time together with the associated

expected coordinate intelligence. This simplifies the analysis to only concern one
of the components of ~εg together with the dependence of that component on
associated variations in s, our choice of the element of the design coordinate.
For now we further restrict attention to agent coordinate utilities, reserve “ρ”to
refer only to such an agent coordinate with some associated learning algorithm,
and take gρ = gρ,s.

13 The context will always make clear whether ρ specifies
a coordinate (as when it subscripts a private utility), refers to the values the
coordinate can assume (as in r ∈ ρ), indicates the associated random variable
(as in expressions like P (U(x, ρ)) =

∫

drP (r)U(x, r)), etc.
As a notational matter, define two partitions of some T ⊆ ζ, π1 and π2, to

be complements over T ⊆ ζ if z ∈ T → (π1(z), π2(z)) is invertible, so that,

13Note that changing ρ’s coordinate utility while leaving s unchanged has no effect on the
probability of a particular G value; gρ is just an expansion variable in the central equation.
Conversely, leaving ρ’s coordinate utility the same while making a change to its private utility
(and therefore to s, and therefore in general to the associated distribution over ζ, P (z | s))
changes the probability distribution across G values. Setting those two utilities equal is what
allows the expansion of the central equation to be exploited to help determine s.
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intuitively speaking, π1 and π2 jointly form a “coordinate system” for T .
14,15

When discussing generalized coordinates, this nomenclature is used with T im-
plicitly taken to be C. (π1 and π2 are coordinate variables in the formal sense
if T = C.) We adopt the convention that for any coordinate ρ, ˆρ, having la-
bels/values written ˆr, is shorthand for some coordinate that is complementary
to ρ (the precise such coordinate will not matter) and that ˆˆρ = ρ. We do
not take the “ˆ” operator to refer to values of a coordinate, only to coordinates
as a whole. So for example, there is no a priori relationship implied between a
particular element of ˆρ that we write as “ˆr”, and some particular element of
ρ that we write as “r”.
We always have E(Nρ,U | s) =

∫

drdndxP (r | s)P (n | r, s)P (x | n)Nρ,U (x, r).
Accordingly, if we knew P (r | s), and also knew one of P (n | r, s) and P (x | n)
but did not know the other, then we could in principle solve for that other dis-
tribution so as to optimize expected intelligence.16 Unfortunately, we usually
do not know two of those three distributions, and so must take a more indirect
approach.
The analysis presented here for agent coordinates revolves around the issue

of how sensitive gρ is to changes within an element of ρ as opposed to changes
between those elements of ρ. To conduct this analysis we will need to introduce
two coordinates in addition to σ and ρ: ξ and ν.17 Given some ˆρ, rather than
the precise element ˆr ∈ ˆρ, in general the agent associated with ρ can only
control which of several sets of possible elements ˆr the system is in. This is
formalized with the coordinate ξ ⊇ ˆρ. We refer to ξ as the move variable of
the agent, and we refer to an x ∈ ξ, and/or the set of z that that x specifies,
as the move value of the agent. For convenience we assume that for all such
contexts r and moves x there exists at least one z ∈ C such that ρ(z) = r and
ξ(z) = x. In general, what we identify as the ξ of a particular ρ need not be
unique. Intuitively, such a partition ξ delineates a set of r → z maps, each such
map giving a way that the agent associated with ρ is allowed to vary its behavior
to reflect what context r it’s in. An agent’s move is a selection among such a
set of allowed variations. An important example of move variables involving
dynamic processes in presented in App. D.
We assume that ξ(z) and ρ(z) jointly set the value of G(z) and of any gρ,s we

will consider.18 Accordingly, we write γρ when we mean the coordinate whose
partition elements are identical to σ’s but whose values are instead the private

14This characterization as a coordinate system is particularly apt if π1 and π2 are minimal

complements, by which is meant that there is neither a coarser partition π′ ⊇ π1 such that π′

and π2 are complements, nor a coarser partition π′′ ⊇ π2 such that π′′ and π1 are complements.
15Note that it is not assumed that T → (p1, p2) taking points z to partition element pairs

is surjective.
16Formally, to implement this would require making an associated change to s, a change

which in the case of solving for P (x | n) would have to be reflected in the value of n.
17Properly speaking, ξ and ν should be indexed by ρ, as should the coordinates σg and σˆg

introduced below; for reasons of clarity, here all such indices are implicit.
18Phrased differently, given the utility function, and the associated ξ and ρ, the minimal

choice for ζ is ξ× ρ. If the value s is not fixed by x× r, i.e., if it is not the case that σ ⊇ ξ∩ ρ,
then σ must also be contained in ζ, and similarly for ν.
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utility functions of ρ: γρ : s ∈ σ → gρ,s. Similarly, we will write Nρ when we
mean the function (x, r, s)→ Nρ,gρ,s(x,r).
We refer to ν as the worldview variable of the agent, and we refer to a

n ∈ ν, and/or the set of possible z that that ν specifies, as theworldview value
of the agent. Intuitively, n specifies all the information—all training data, all
knowledge of how the training data is formed (including potentially knowledge
of its own private utility), all observations, all external commands, all externally
set prior biases—that ρ’s agent uses to determine its move, and nothing else. It
is the contents of the (perhaps distorting) “window” through which the learning
algorithm receives information from the external world.
Formally, there three properties a coordinate must possess for it to qualify as

a worldview of an agent. First, if the agent does indeed use all the information in
n, then the agent’s preference in moves must change in response to any change
in the value of n. This means that ∀ n1, n2 ∈ ν, for at least one of the x ∈ ξ,
P (x | n1) 6= P (x | n2).

19 Second, if the worldview truly reflects everything the
agent uses to make its move, then any change to any variable must be able
to affect the distribution over moves only insofar as it affects n. This means
that with Ω defined as the set of all non-ξ coordinate we will consider in our
analysis (e.g., σ, ρ for some other agent, their intersection, etc.), P (x | n,W ) =
P (x | n) ∀ x ∈ ξ, n ∈ ν and W ∈ Ω such that P (x, n,W ) 6= 0.20,21,22 Finally,
of all coordinates obeying these two properties, the worldview must be among
those whose information maximizes the expected performance of the associated
Bayes-optimal guessing,23 i.e., ∀ s ∈ σ, β 6= ν,

∫

dbP (b | s)E
(

γρ[argmaxx′{E(γρ(x′, ρ) | b)}, ρ] | b
)

≤
∫

dnP (b | s)E
(

γρ[argmaxx′{E(γρ(x′, ρ) | n)}, ρ] | n
)

.

So P (n | s) is how the worldview varies with s, and P (x | n) is how the agent’s
learning algorithm uses the resultant information. The P (x | s) induced by these
two distributions is how the move of the agent varies with s. Alternatively, P (r |
s) is the distribution over contexts caused by our choice of design coordinate
value, and the distribution P (x | r, s) =

∫

dnP (x | n)P (n | r, s) gives all salient
aspects of the agent’s learning algorithm and technique for inferring information
abou r; the integral over r of the product of these two distributions says how
choice of s determines the distribution over moves.

19When worldviews are numeric-valued, we can modify this requirement to be that the
distribution P (x | n) has to be sufficiently sensitive a function of n over all of ν.

20Note that if allW are allowed, then in general the only choice for ν obeying this restriction
is ν = ξ.

21As a result of this requirement, P (r | x, n,W ) = P (r | n,W ), P (x, r | n,W ) = P (x |
n)P (r | n,W ), etc.

22For any P (z) and coordinates α and β , one can always construct a coordinate δ 6= α such
that P (a | b, d) varies with d. So our assumption about ξ, ν and Ω constitutes a restriction on
what coordinates we will consider in our analysis.

23If it were not for this requirement, ξ could double as the worldview, and often so could σ.
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We will find it convenient to decompose σ = σγρ ∩ σˆγρ , where σγρ is a
coordinate whose value gives gρ,s, and there is no coordinate ω ⊃ σγρ with this

property. (Intuitively, σγρ ’s value is a component of s that specifies gρ,s and

nothing more.) Also, from now on, we will often drop the ρ index whenever its
implicit presence is clear. So for example, we will often write sg instead of sγρ .

(ii) Ambiguity

Since we do not know P (x | n) in general, we cannot directly say how n sets
the distribution over x. Fortunately we do not need such detailed information.
We only need to know the effect that certain changes to n have on particular
characteristics of the associated distribution P (x | n) (e.g., the effect certain
changes to n have on the “characteristic of P (x | n)” given by an n-conditioned
expected intelligence E(NU | n)).
Now if there were any universal rule for how such characteristics affect ex-

pected intelligence, then without any assumptions we could use such a rule to
deduce that some particular choices of n are superior to others. That has been
proven to be impossible however [18, 21]. Accordingly, we must make some
presumption about the nature of the learning algorithm, one that must be as
conservative as possible if it is to apply to all reasonable algorithms.
To see what presumption we can safely make concerning such effects, first

note that the worldview n encapsulates all the information the agent might
try to exploit concerning the x-dependence of the likely values of the pri-
vate utility. That encapsulation given by n takes the form of the distribu-
tion over the Euclidean vector of private utility values (y1, y2, ...) given by
∫

drds δ(gρ,s(x
1, r) − y1)δ(gρ,s(x

2, r) − y2)... P (r, s | n). The agent works by
“trying” to use this encapsulation to appropriately set its move. Our presump-
tion must concern aspects of how it does this. Furthermore, if that presumption
is to apply to a wide variety of learning algorithms, it must only involve the en-
capsulated information, and not (for example) any characteristics of some class
of learning algorithms to which the agent belongs.
For simplicity, consider the case where there are only two possible moves, x1

and x2. The encapsulated information provided by n induces a pair of distribu-
tions of likely utility values at those two x’s,

∫

drds δ(gρ,s(x
1, r)− y) P (r, s | n)

and
∫

drds δ(gρ,s(x
2, r) − y) P (r, s | n), which we can write in shorthand

as P (y; γρ;n, x
1) and P (y; γρ;n, x

2), respectively. (Note that unlike n, the xi

value in this semicolon notation is a parameter to the random variable γρ,
not a conditioning event for that random variable.) By definition of Von Neu-
mann utility functions, for worldview n, the optimal move is x1 if the expected
value E(y; γρ;n, x

1) > E(y; γρ;n, x
2), and x2 otherwise. In general though the

learning algorithm of the agent will not (and often cannot) have its distribu-
tion over x set to a delta function this way. Other aspects of P (y; γρ;n, x

1)

and P (y; γρ;n, x
2) besides the difference in their first moments will affect how

P (x | n) changes in going from the one n to the other. For example, it may be
that if E(y; γρ;n, x

1) > E(y; γρ;n, x
2), then if n is changed so that both the
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probability of a relatively large y value at x2 and the probability of a relatively
small y value at x1 shrinks, while the first moments of those distributions are
unchanged, then the algorithm is more likely to choose x1 with the new n than
with the original one.
In light of this, we want to err on the side of caution in presuming how

changes to P (y; γρ;n, x
1) and P (y; γρ;n, x

2) induced by changing n affect the
associated distribution P (x | n). The most unrestrictive such presumption we
can make is that if the entire distributions P (y; γρ;n, x

1) and P (y; γρ;n, x
2) are

“further separated” from one another after the change in n, then P (x | n) gets
weighted more to the higher of those two distributions. Such a presumption is the
most conservative one we can make that holds for any learning algorithm, i.e.,
that is cast purely in terms of the set of posterior distributions {P (y; γρ;n, x)}
without any reference to attributes of the learning algorithm. This can be viewed
as a first-principles justification that it applies to any learning algorithm not
horribly mis-suited to the learning problem at hand.24

To formalize the foregoing, consider the quantity

P (g1 = y1, g2 = y2;n, x1, x2) ≡ P (gσ(x
1, ρ) = y1 | n)P (gσ(x2, ρ) = y2 | n),

which expands into the distribution

∫

dr1 dr2 ds1 ds2 δ(gs1(x
1, r1)− y1)δ(gs2(x

2, r2)− y2)P (r1, s1 | n)P (r2, s2 | n).

This is the distribution generated by sampling P (r′, s′ | n) to get values of γρ
at x1, and then doing this again (in an IID manner) to get values at x2. This
“semicolon” distribution is the most accurate possible distribution of private
utilities values at x1 and x2 that the agent could possibly employ to decide
which x to adopt to optimize that private utility, based solely on n.
Now also fix a utility U that is a single-valued function of x. Our “most accu-

rate distribution” induces the convolution distribution P (y = y1−y2;n, x1, x2).
The more weighted this convolution is towards values of y that are large and
that have the same sign as U(x1) − U(x2), the less likely we expect the agent
to be “led astray, as far as U(.) is concerned” in “deciding between x1 and x2”,
when the worldview is n. On the other hand, if the convolution distribution is
heavily weighted around the value 0, then we expect the agent is more likely to
be mistaken (again, as far as U is concerned) in its choice of x.
So consider changing na to nb in such a way that the associated convolution

distribution, P ([g1−g2] sgn[U(x1)−U(x2)];na, x1, x2) is more weighted upwards

than is P ([g1−g2] sgn[U(x1)−U(x2)];nb, x1, x2). Say this is the case for all pairs

of x values (x1, x2), i.e., with worldview na, the agent is less likely to be led
astray for all decisions between a pair of x values than it is with worldview nb.

24If the learning algorithm and underlying distribution over utility values do not adhere to
this presumption, then in essence that underlying distribution is “adversarially chosen” for the
learning algorithm — that algorithm’s implicit assumptions concerning the learning problem
are such a poor match to the actual ones — that the algorithm is likely to perform badly for
that underlying distribution no matter what one does to s, n, or the like.
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Our assumption is that whenever such a situation arises, if we truly have an
adaptive agent operating in a learnable environment, then the agent has higher
intelligence with respect to U , on average, with worldview na.
Now in general we can encapsulate how much a stochastic process over C

weights some random variable V upward, given some coordinate value l ∈ λ,
with CDFV (y | l) — the smaller this cumulative distribution function, the larger
the l-conditioned values of V tend to be.25 Accordingly, we can use such a CDF
to quantify how much more “weighted upward” our convolution distribution for
na is in comparison to the one for nb. (See App. A for how this CDF is related
to intelligence.)
To formalize this we extend the semicolon notation introduced above. Given

a coordinate χ whose value c is a single-valued function of (x, r, s), and arbitrary
coordinate λ, define the (x1, x2, l)-parameterized distribution over values c1, c2,

P (χ1, χ2; l, x1, x2) ≡ Pχ(c
1, c2; l, x1, x2)

=

∫

dr1 dr2 ds1 ds2 P (r1, s1 | l)P (r2, s2 | l)

δ(χ(x1, r1, s1)− c1) δ(χ(x2, r2, s2)− c2).
So in this expression χ is a random variable that is (being treated as) pa-
rameterized by x, and we are considering its l-conditioned distributions at x1

and x2. This notation is sometimes simplified when the meaning is clear, e.g.,
Pχ(c

1, c2; l, x1, x2) is written as P (c1, c2; l, x1, x2).
Expectations, variances, marginalizations, and CDF’s of this distribution

and of functionals of it are written with the obvious notation. In particular,
Pχ(c; l, x) = P (χ(x, ρ, σ) = c | l), so Pχ(c1, c2; l, x1, x2) = Pχ(c

1; l, x1)Pχ(c
2; l, x2).

As another example, say that χ is the real-valued coordinate ψ taking values yi

at (xi, ri, si). Then for any function f : R2 → R, for any l,

CDFf(y1,y2)(y; l, x
1, x2) ≡

∫ ∞

−∞

dy1 dy2 P (y1, y2; l, x1, x2)Θ[y − f(y1, y2)]

=

∫

dr1 dr2 ds1 ds2P (r1, s1 | l)P (r2, s2 | l)

Θ[y − f(ψ(x1, r1, s1), ψ(x2, r2, s2))].

Using this notation, for any single-valued function U : x→ R, we define the
(ordered) ambiguity of U and ψ, for l, x1, x2, as the CDF of the associated
convolution distribution:

A(y;U,ψ; l, x1, x2) ≡ CDF(y1−y2) sgn[U(x1)−U(x2)](y; l, x
1, x2) .

Note that the argument of the sgn is just a constant as far as the integrations
giving the CDF are concerned. That sgn term provides an ordering of the x’s;

25Let ū be a real-valued random variable, and F : R → R a function such that F (y) >
y; ∀y ∈ R. Then P (F (ū) < y) ≤ P (ū < y) ∀y, i.e., the monotonically increasing function
F applied to the underlying random variable pushes the CDF down. Conversely, if CDF1 <
CDF2, then the function F (u) = CDF−1

1 (CDF2(u)) is a monotonically increasing function
that transforms CDF1 into CDF2.
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ordered ambiguity says how separated our two y-distributions are “in the direc-
tion” given by that ordering. When U is not specified, the random variable in
the CDF is understood to be (ψ1−ψ2) rather than (ψ1−ψ2) sgn[U(x1)−U(x2)].
It is easy to verify that such unordered ambiguities are related to ordered
ones by

A(y;U,ψ; l, x1, x2) = 1/2 + tU (x
1, x2)[A(tU (x

1, x2)y;ψ; l, x1, x2)− 1/2]

where tU (x
1, x2) ≡ sgn[U(x1)− U(x2)].

We write just A(U,ψ; l, x1, x2) (or A(ψ; l, x1, x2)) when we want to refer to
the entire function over all y. If that entire function shrinks as we go from one
n to another — if its value decreases for every value of the argument y — then
intuitively, the function has been “pushed” towards more positive values of y.
Taking λ = ν, such a change will serve as our formalization of the concept that
the distributions over U at x1 and x2 are “more separated” after that change
in the value of ν.
Expanding it in full we can write A(y;U,ψ;n, x1, x2) as

∫

dr1 dr2 ds1 ds2 P (r1, s1 | l)P (r2, s2 | l)

Θ[y − (ψ(x1, r1, s1)− ψ(x2, r2, s2)) sgn[U(x1)− U(x2)]],

or, by changing coordinates, as
∫

dy1 dy2 Pψ(y
1; l, x1)Pψ(y

2; l, x2)Θ[y − (y1 − y2) sgn[U(x1)− U(x2)]],

and similarly for unordered ambiguities. So ambiguity is parameterized by the
two distributions P (ψ; l, xi) as well as (for ordered ambiguities) U .26 As a final
comment, it is worth noting that there is an alternative to A, A∗, that also
reflects the entire n-conditioned CDF of differences in utility values. It and our
choice of A rather than A∗ is discussed in App. G.

(iii) The first premise

By considering ambiguity with ψ = γρ and λ = ν, we can formalize our the
conclusion of reasoning about how certain changes in n affect the probability of
the agent’s “choosing” a particular x. We call this the first premise”

A(U, γρ;n
a, x1, x2) < A(U, γρ;n

b, x1, x2) ∀ x1, x2

⇒
CDF(U | na) ≤ CDF(U | nb),

26Note that the ordered ambiguity does not change if we interchange x1 and x2, unlike
the unordered ambiguity. Note also that unless sgn[ψ(x1, r1, s1) − ψ(x2, r2, s2)] is the same
∀ (r1, s1), (r2, s2) ∈ suppP (., . | n), the associated ordered ambiguity is non-zero for some
y < 0. More generally, to have the ambiguity be strongly weighted towards positive values
of y, we need that sgn to be the same for all (r′, s′) in a set with measure (according to
P (r′, s′ | n)) close to 1.
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where U, na, and nb are arbitrary (up to the usual restrictions, that z ∈ C, that
U is a function of x, etc.)27 In other words, we presume that when the condition
in the first premise holds, the distribution P (x | na) must be so much better
“aligned” with U(x) than P (x | nb) is that the implication in the first premise
(concerning the two associated CDF’s) holds. Note that that implication does
not involve a specification of r; since in general the agent knows nothing about
r, the first premise, which purely concerns P (x | n), cannot concern r.
Summarizing, U determines which of the two possible moves x1 and x2 by

agent ρ are better; gρ,s is the (s-parameterized) private utility that agent ρ
is trying to maximize, based exclusively on the value of the worldview, n (a
worldview that may or may not provide the agent with the functional form of
that private utility
The first premise is, at root, the following assumption: If every one of the

ambiguities A(γρ;n
a, x1, x2) (one for each (x1, x2) pair) is superior (as far as U is

concerned) to the corresponding A(γρ;n
b, x1, x2), then if we replace nb with na,

the effect on P (x | n) due to that superiority dominates any other characteristics
of the two n’s. In addition, that dominating effect pushes P (x | n) to favor x’s
having high values of U . As argued above, this is most broadly applicable rule
relating certain changes to n and associated changes to an agent’s choice of x.
There is no alternative we could formulate that is more conservative, i.e., that
applies to more learning algorithms, while only involving the distributions of
the problem at hand confronting the algorithm.
To explicitly relate the first premise to intelligence, we start with the fol-

lowing result, which has nothing to do with learning algorithms, and which in
particular holds regardless of the validity of the first premise. (Indeed, it can
be seen as motivating the use of a CDF like ambiguity to analyze properties of
intelligences.)

Theorem 3 Given any coordinates ω, κ and λ, fixed k ∈ κ, and two functions
V a : (w, k)→ R and V b : (w, k)→ R that are mutually factored for coordinate
κ,

CDF(V a | la, k) < CDF(V b | lb, k)
⇒

E(Nκ,V a | la, k) > E(Nκ,V b | lb, k)

and similarly when the inequalities are both replaced by equalities.

Now take ω = ξ and for a fixed k, define U(.) ≡ V (., k) (so that U is a function
of x). Then since P (x | n, k) = P (x | n) (by definition of worldviews), assuming
both P (na, k) and P (nb, k) are nonzero, CDF(U | na) < CDF(U | nb) ⇒
CDF(U | na, k) < CDF(U | nb, k) ⇒ CDF(V | na, k) < CDF(V | nb, k). So
if we choose λ = ν in Thm. 3 and combine it with the first premise, we get

27Note that the functional (sic) inequality in the first premise is equivalent to
tU (x

1, x2)A(γρ;n
a, x1, x2) < tU (x

1, x2)A(γρ;n
b, x1, x2). In turn, this inequality implies

that U(x1) 6= U(x2), since otherwise tU (x
1, x2) = 0.
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the promised relation between ambiguities based on the x-ordering V (x, k) and
expected κ-intelligences of V conditioned on k and n. In turn, to relate the first
premise to the problem of choosing s, use the fact that E(Nκ,V | n, k, s) =
E(Nκ,V (ξ, κ) | n, k, s) = E(Nκ,V | n, k) to derive the equality E(Nκ,V | s) =
∫

dndkP (n, k | s)E(Nκ,V | n, k).

(iv) Recasting the first premise

Below we will need to use a more general formulation of the first premise than
that given above. To derive this more general form, start by defining a param-
eterized distribution H whose parameter has redundant variables:

P (x | n) ≡ H{A(γρ;n,x
1,x2):x1,x2∈ξ},n(x)

Note that unordered ambiguity is used in this definition, and that H implicitly
carries an index identifying the agent as ρ.
In general, the complexity of P (x | n) can be daunting, especially if ν is fine-

grained enough to capture many different kinds of data that one might have the
learning algorithm exploit. This complexity can make it essentially impossible
to work with P (x | n) directly. However in many situations it is reasonable to
suppose that the dependence of H on its ν argument is small in comparison
to associated changes in the ambiguity arguments (e.g., n’s value does not set
a priori biases of the learning algorithm across ξ, etc.). In such situations all
aspects of P (x | n) get reduced to the dependence of H on ambiguities. In other
words, in such situations the functional dependence of P (x | n) on the set of
ambiguities can be seen as a low-dimensional parameterization of the set of all
reasonable learning algorithms P (x | n). Accordingly, in these situations one can
work with the ambiguities, and thereby circumvent the difficulties with working
with P (x | n) directly.
Another advantage of reducing P (x | n) to H is that often extremely general

information concerning P (γρ | n) allows us to identify ways to improve ambi-
guities, and therefore (by the first premise) improve intelligence. Reduction to
H, with its explicit dependence on those ambiguities, facilitates the associated
analysis.
In particular, say that the worldview coordinate value specifies the private

utility (or at least that we can assume that augmenting the worldview to contain
that information would not appreciably change P (x | n)). This means that
P (γρ | n), which arises in calculating ambiguities, can be replaced by P (gρ,s | n),
where gρ,s is the private utility specified by n. Say that in addition, P (x | n) not
only is dominated by the the set of associated ambiguities (one ambiguity for
each x pair), but can be written as a function exclusively of those ambiguities,
a function whose domain is the set of all possible ambiguities. Under these two
conditions we could consider the effects on P (x | n) of replacing the actual
ambiguities {A(γρ;n, xi, xj) : xi, xj ∈ ξ} = {A(gρ,s;n, xi, xj) : xi, xj ∈ ξ}, with
counterfactual ambiguities {A(gρ,s′ ;n, xi, xj) : xi, xj ∈ ξ} that are based on the
actual n at hand but are evaluated for some alternative candidate private utility
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gρ,s′ . Under certain circumstances, this approach could be used to determine
what such candidate private utility to use, based on comparing the associated
counterfactual ambiguities.
To use this approach in as broad a set of circumstances as possible, we must

address the fact that P (x | n) may have some dependence on n not fully captured
in the associated ambiguities, e.g., when n modifies the learning algorithm, for
example by specifying biases for the learning algorithm to use. This means the
definition given above forH will not in general extend to parameter values whose
ambiguity set does not correspond to n. Another hurdle is that often the domain
of P (x | n) need not extend to all ambiguities of the form {A(gρ,s′ ;n, xi, xj) :
xi, xj ∈ ξ}. Finally, in general worldviews do not specify the private utility.
To circumvent these difficulties we need to introduce new notation and recast

the first premise accordingly. Start by extending the domain of definition ofH to
write it as H{A(ψ;l,x1,x2):x1,x2∈ξ},n(x), for any coordinate value l ∈ λ ⊆ ν. Here
ψ is an arbitrary real-valued function of x, r, and s, not necessarily related to
γρ. So H{A(ψ;l,x1,x2):x1,x2∈ξ},n(x) is not necessarily related to the actual P (x |
n). Despite these freedoms, we require that for any value of its parameters
H{A(ψ;l,x1,x2):x1,x2∈ξ},n(x) is a proper probability distribution over x, one that
for fixed ψ and λ = ν is (like P (x | n)) parameterized by n. This extending of
H’s domain is how we circumvent the first two of our difficulties.
Next we introduce some succinct notation. As in the definition of worldviews

letW ∈ Ω refer to the set of all non-ξ coordinate we will consider in our analysis,
and define the distribution P [ψ;λ](x, l,W ) ≡ H{A(ψ;l,x1,x2):x1,x2∈ξ},n(x)P (l,W ),

where λ ⊆ ν. When ψ = γρ, we just write P
[λ]. So for example P [ν](x | n) =

P [γρ;ν](x | n) = P (x | n), P [ψ;λ](x | l,W ) = P [ψ;λ](x | l) = H{A(ψ;l,x1,x2):x1,x2∈ξ},n(x),

etc. Note also that P [γρ;ν,σ](x | n, s) = P [gρ,s;ν,σ](x | n, s). Intuitively, we
view the learning algorithm as taking arbitrary sets ambiguities and world-
views as input and producing a distribution over x; P [ψ;λ](x | l) is the distri-
bution over x that arises when the learning algorithm is fed the ambiguities
{A(ψ; l, x1, x2) : x1, x2 ∈ ξ} and worldview n specified by l.
Now consider the following elementary result:

Lemma 1 Consider any two probability density functions over the reals, P1

and P2, where
P1(u)
P1(u′)

≥ P2(u)
P2(u′)

∀u, u′ ∈ R where u > u′. Say we also have any

φ : R→ R with nowhere negative derivative. Then CDFP1
(φ) ≤ CDFP2

(φ).

Combining this lemma with the first premise, and using our new notation, we
arrive at the following version of the first premise, derived in the appendix:

Theorem 4 Given coordinate values la and lb ∈ λ ⊆ ν, ∃H such that

A(U,ψa; la, x1, x2) < A(U,ψb; lb, x1, x2) ∀x1, x2

⇒
CDF[ψa;λ](U | la) ≤ CDF[ψb;λ](U | lb),

where as usual ψa, ψb and (the r-independent) U are arbitrary.
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Figure 1: The solid line depicts an ambiguity A(y;V ; l, x1, x2). The dotted line
depicts A(y;KV ; l, x1, x2) = A(y/K;V ; l, x1, x2) for K > 1; the dashed line is
A(KV ; l, x1, x2) for 0 < K < 1. Neither of those scaled-utility ambiguities lies
entirely below the original one. Accordingly, neither of those scaled utilities is
recommended by the first premise.

This theorem is illustrated geometrically in Fig. 1.
Because it holds for any underlying distribution over ζ, Thm. 3 holds for

CDF’s and expectation values based on any P [ψ;λ], not just P [γρ;ν]. Since for
any ψ, P [ψ;λ](x | l,W ) = P [ψ;λ](x | l), the discussion following Thm. 3 holds for
P [ψ;λ] conditioned on l just as well as for P conditioned on n. So Thm. 4 has
the following corollary:

Corollary 1 Given any coordinates κ and λ ⊆ ν, fixed k ∈ κ, and V : (x, k)→
R, ∃H such that

A(V (., k), ψa; la, x1, x2) < A(V (., k), ψb; lb, x1, x2) ∀ x1, x2

⇒
E[ψa;λ](Nκ,V | la, k) ≥ E[ψb;λ](Nκ,V | lb, k)

Summarizing, for a particular value of k, V determines which of the two
possible moves x1 and x2 by agent ρ are better; gρ,s is the (s-parameterized)
private utility that agent ρ is trying to maximize, based exclusively on the value
of the worldview, n (a worldview that may or may not provide the agent with the
functional form of that private utility); ψa and ψb are two real-valued functions
of x, r and s that are used to evaluate ambiguities, and la and lb are values of a
conditioning variable for evaluating ambiguities, a variable that specifies n at a
minimum. In addition,H is a parametrized distribution over x that is defined for
any parameter value that consists of O(ξ) CDF’s and a worldview, a distribution
that equals P (x | n) when the its parameter value is the set {A(γρ;n)} together
with n, and more generally for any λ ⊆ ν is expressed as P [ψ;λ](x | l) whenever
the CDF’s are the ambiguities {A(ψ; l, x1, x2) : x1, x2 ∈ ξ)}. From now on, unless
explicitly stated otherwise, we will assume that we are restricting attention to
an H for which Coroll. 1 holds.
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(v) The second premise

Having rewritten the first premise this way, we can address the potential problem
arising when the worldview does not specify the private utility. First consider
any changes to s that modify the associated set of n for which P (n | s) is
substantial. Typically, any such change in the likely n fixes fairly precisely what
the inducing changes in s are, as far as evaluation of ambiguities is concerned.
Accordingly, when exploiting the first premise we usually restrict attention to
scenarios in which ∀r ∈ suppP (r | s) we can approximate

∫

dnP (n | s)P [ν](x | n) =
∫

dnP (n | s)P [ν,σ](x | n, s).

We refer to this approximation as the second premise. Note that it holds
exactly if n contains a specification of gρ,s, and P (x | n) only depends on the
associated ambiguities, {A(γρ;n, xi, xj)}= {A(gρ,s;n, xi, xj)}. So if we can treat
the system as though this were the case, on average, then the second premise
holds.28 A semi-formal example of a more general situation where the second
premise holds is presented in App. F.29

The following corollary of the second premise is often useful:

Corollary 2 Where V is any utility function, h ∈ η any coordinate, andW ∈ Ω
any non-ξ coordinate,

E(V | h, s) =
∫

dndW P (W | s)P (n |W, s) E[gρ,s;ν,σ](V | n, s, h,W )

Often this result can be used in conjunction with Coroll. 1 to analyze the impli-
cations of various choices of s. As an example, in many situations (e.g., in very
large systems) changes to ρ’s private utility will have relatively little effect on the
rest of the system, i.e., will have minimal effect on the distribution over r values.
Accordingly consider sa and sb that vary only in that choice of ρ’s private util-
ity30, in a situation where this implies that P (r | sa) = P (r | sb) ≡ P (r | sab).

28Conversely, if σ is “perniciously chosen” to always force n to equal n′ for any s, where
n′ gives no information about the likely values that s is inducing of gρ,s at the various r,

then
∫

dnP (n | s)P [ν](x | n) = P (x | n′) and does not reflect the ambiguities determining
∫

dnP (n | s)P [ν,σ](x | n, s) = P [ν,σ](x | n′, s). In such a situation the second premise will not
hold. This is similar to the situation with the first premise; in both an adversarially poor match
between the learning algorithm and the learning problem at hand confounds our premise.

29If it weren’t for the second premise, we would have to work with P (r | n) rather than
P (r | n, s) in evaluating ambiguities. This would then require specifying a prior P (s̄), reflecting
“prior beliefs” of what the private utility is likely to be, among other aspects of s. Specifying
a prior over such a space and then integrating against it can be a fraught exercise. In essence,
the second premise allows us to circumvent this when averaging over n, by setting that prior
to a delta function about the actual s. Nonetheless, it is important to note that we do not
need a hypothesis as powerful as the second premise to do this; the second premise is only
used once, in the proof of Coroll. 3 below, and a significantly weaker version of it would suffice
there. We present the “powerful” version instead for pedagogical clarity.

30Formally, our presumption is that ∀ za ∈ sa, zb ∈ sb, σˆg(z
a) = σˆg(z

b).
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Let V be a utility function, so that Nρ,V is as well. Then for both s = sa and
s = sb, by using Coroll. 2 with Ω = ρ and η = ∅, we establish that

E(Nρ,V | s) =

∫

drdnP (r | sab)P (n | r, s) E[gs;ν,σ](Nρ,V | n, r, s).

So by Coroll. 1, taking λ = ν ∩ σ, κ = ρ, and ψa = ψb = γρ, if separately for

each r for which P (r | sab) is substantial,

A(V (., r), γρ;n
a, sa, x1, x2) < A(V (., r), γρ;n

b, sb, x1, x2) ,

(for all (x1, x2) pairs, and for all (na, nb) such that both P (na | r, sa) and
P (nb | r, sb) are substantial) we can conclude that E(Nρ,V | sa) > E(Nρ,V | sb).
This approach can be used even if the coordinate utility V is factored with
respect to G but the private utility is not. Note also that if we take V = gρ,sb
and have gρ,sa be factored with respect to gρ,sb , then our reasoning implies that

E(Nρ,gρ,sa | sa) > E(Nρ,g
ρ,sb

| sb).
The first two premises can also be used to analyze the effect on agent ρ of

changes to the other agents. In addition they can be used to analyze changes
that amount to a complete redefinition of the agent (which changes we can
implement by inserting commands in the value of the agent’s worldview that
change how it behaves), or more generally, a coordinate transformation [22].
Indeed, by those premises, H, γρ and P (r | n, s) parameterize P (x | n). In
particular, say σ = σγρ ⊆ ν, H has no direct dependence on n not arising in the

ambiguities, and we take P (r | s) to be uniform. Then for fixed H, all aspects of
the learning algorithm are set by γρ, P (n | r, s), and the associated ambiguities.
More generally, once we specify P (r | s) in addition to these quantities, we

have made all the choices available to us as designers that affect term 3 of the
central equation. In principle, this allows us to solve for the optimal one of those
four quantities given the others. For example, for fixed γρ, H, and P (r | s), we
could solve for which P (n | r, s) out of a class of candidate such likelihoods
optimizes expected intelligence.31

The rest of this paper presents a few preliminary examples of such an ap-
proach, concentrating on changes to s that only alter one or more agents’ private
utilities, where only very broad assumptions about P (n | r, s) are used. These
are the scenarios in which the premises have been most thoroughly investigated,
and therefore in which confidence that H etc. do indeed capture the totality of
a learning algorithm is highest.

(vi) The third premise

As just illustrated, for some differences in s (namely those that only modify
private utilities), we can simplify the analysis to involve only a single s-induced

31More formally, where σ ⊆ σν sets the likelihood P (n | r, srho, sν), we could solve for the
sν optimizing expected intelligence.
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distribution over r’s (namely P (r | sab)). The analysis still involved different
distributions over n’s however, one each of the two s’s (in the guise of the two
distributions P (n | r, s)). Moreover, to calculate expected intelligence for a given
s we must average over n, and usually changes to s change P (n | r, s) in a way
difficult to predict.32 Therefore to exploit the first two premises to determine
which of the two s’s gave better expected intelligence, we had to have a desired
difference in ambiguities hold for all pairs of n’s generated from the two s’s, an
extremely restrictive condition.
One way around this would be to extend the analysis in a way that only

involves a single s-induced distribution over n’s. To see how we might do this,
fix r, x1, and x2, and consider a pair sa and sb that differ only in the associ-
ated private utility for agent ρ, where those two utilities are mutually factored.
Train on gsb , thereby generating an n according to P (n | r, sb), and thence a
distribution over r′, P (r′ | n), which in turn gives an ambiguity between values
of the private utility at x1 and x2 and therefore an expected intelligence. Our
choice of private utility affects this process in three ways:

1) By affecting the likely n, and therefore P (r′ | n).
2) By affecting how well distinguished utility values at x1 and x2 are for any

associated pair of r′ values generated from P (r′ | n). If P (r′ | n) is broad and/or
the private utility is poor at distinguishing x1 and x2, then ambiguity will be
poor.
3) By providing one of the arguments to H which (given the utility, and

along with the ambiguities of (2)) fixes the distribution over intelligences.

In the guise of Coroll. 1 (with λ = ν, κ = Ω = ρ, ψa = gsa = V a, and

ψb = gsb = V b), the first premise concerns the second effect. If we combine this
with the second premise (in the guise of Coroll. 2, with Ω = ρ), we see that
the first two premises concern the last two effects of the choice of private utility
on expected intelligence. They say nothing about the first effect of the private
utility choice though.
It is typically the case that the first effect will tend to work in a correlated

manner with the last two effects. That is, if for some given n generated from
gρ,sb the utility gρ,sa results in higher intelligences (e.g., because it is better
able to distinguish utility values than is gρ,sb), it is typically also the case that
if one had used gρ,sa to generate n’s in the first place, it would have resulted in
more informative n, and therefore P (r′ | n) would have been crisper, leading to
a better ambiguity and thence expected intelligence.
We formalize this as the third premise.33

32For example, in a multi-stage game (see App. D), in general changing gρ,s causes our agent
to take different actions at each stage of the game, which usually then causes the behavior of
the other agents at later stages to change, which in turn changes ρ’s training data, contained
in the value of n at those later stages.

33An alternative to the version of the third premise presented here that would serve our
purposes just as well would have all distributions conditioned on some b ∈ β ⊆ σ (e.g., (r, s)),
rather than just on s. One could also modify the hypothesis condition of the third premise by
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Say that sa and sb differ only in their associated private utilities, and that those
utilities are mutually factored. Then
∫

dnP (n | sb)E[gsa ;ν,σ](Nρ | n, sb) ≥
∫

dnP (n | sb)E[g
sb

;ν,σ](Nρ | n, sb)
⇒

∫

dnP (n | sa)E[gsa ;ν,σ](Nρ | n, sa) ≥
∫

dnP (n | sb)E[g
sb

;ν,σ](Nρ | n, sb).

Together with Coroll. 2 this results in the following:

Corollary 3 Say sa and sb differ only in the associated private utility for agent
ρ, and that those utilities are mutually factored. Then

∫

dndrP (r | sb)P (n | r, sb)E[gsa ;ν,σ](Nρ | n, r, sb) ≥
∫

dndrP (r | sb)P (n | r, sb)E[g
sb

;ν,σ](Nρ | n, r, sb)

⇒
E(Nρ,gsa | sa) ≥ E(Nρ,g

sb
| sb).

If, ∀r,A(gρ,sb(ξ, r), gρ,sb ;n, x1, x2, sb) > A(gρ,sb(ξ, r), gρ,sa ;n, x
1, x2, sb) (for all

(x1, x2), and for all n such that P (n | r, sb) is substantial), then by Coroll. 1 the
condition in Coroll. 3 is met (take λ = ν ∩σ and κ = ρ, as usual). So by Coroll.
3, in such a situation we can conclude that E(Nρ,gsa | sa) ≥ E(Nρ,g

sb
| sb), i.e.,

that for fixed r, sa has better term 3 of the central equation than does sb. This
is the process that will be the central concern of the rest of this paper: inducing
improved ambiguity, and then plugging the first premise (in the guise of Coroll.
1) into the second and third premises (combined in Coroll. 3) to infer improved
expected intelligence.
In particular, again consider the situation (discussed in the subsection on

the first premise) where P (r | sa) = P (r | sb) ≡ P (r | sab), and assume this also
equals P (r | sb). If separately for each r for which P (r | sab) is substantial, and
for all associated n for which P (n | r, sab) is substantial,

A(gρ,sb(., r), gρ,sb ;n, x
1, x2, sb) > A(gρ,sb(., r), gρ,sa ;n, x

1, x2, sb),

then we can conclude that

E(Nρ,gsa | sa) ≥ E(Nρ,g
sb
| sb).

replacing sb throughout with some alternative s∗, and our results would still hold under the
substitution throughout of sb → s∗. Similarly one could change the integration variable n ∈ ν
to some other coordinate l ∈ λ ⊆ ν. For all such changes the results presented below — and
in particular Coroll. 3 — would still hold; the important thing for those results is that each
ambiguity arising in the integrand of the left-hand-side of the hypothesis condition of the third
premise is evaluated with the same distribution over r1 and r2 as the corresponding ambiguity
in the right-hand-side. For pedagogical clarity though, no such modification is considered here.
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Of course, in practice this condition won’t hold for all such r and n. At the same
time, Coroll. 3 makes clear that it doesn’t need to; we just need the associated
integrals over r and n to favor sa over sb.

(vii) Example: The collapsed utility

As an example of how to use Coroll. 3, consider the use of a Boltzmann learning
algorithm for our agent [25], where sb is our original s value. With such an algo-
rithm, constructing a new private utility by scaling the original one (i.e., chang-
ing s) is equivalent to modifying the learning algorithm’s temperature parame-
ter. Now say that for any pair of moves, the ambiguity for sb and any probable
associated worldview nb is zero for all negative y values. Then changing s by low-
ering the temperature will monotonically lower A(gρ,sb(ξ, r), gρ,s;n

b, x1, x2). Ac-
cordingly, doing this cannot lower expected intelligence, only increase it. (Note
that the new private utility is factored with respect to the original one, so this ef-
fect of changing s also holds for expected intelligence with respect to the original
private utility.)
Now consider the following theorem:

Theorem 5 Fix n, sa, sb, r ∈ suppP (. | sb) and a function U : x ∈ ξ → R.
Stipulate that

i) ∀ x, x′ ∈ ξ, sgn[U(x, r)− U(x′, r)] = sgn[gsb(x, r)− gsb(x′, r)];

ii) ∀ r′ ∈ suppP (. | n), there exists two real numbers Ar′ and Br′ ≤ Ar′
such that gsb(x, r

′) takes on both values—but no others—as one varies the
x ∈ ξ;

iii) for all such r′ gsa(x, r
′) = 0 if Ar′ = Br′ , and equals

g
sb

(x,r′)−Br′

Ar′−Br′
other-

wise, and ∀ r′ 6∈ suppP (. | n), gsa is factored with respect to gsb ;

iv) for each pair of moves, for at least one move of that pair, x∗, ∃ y∗ such
that P (gsa(x

∗, ρ) = y | n) = δ(y − y∗).

Then ∀ x1, x2, A(U, gsa ;n, x
1, x2) has purely non-negative support.

(An analogous version of this result holds if instead we take gsa(x, r
′) = 1

whenever Ar′ = Br′ .)
Condition (i) of Thm. 5 can be viewed as a weakened form of requiring that

U and gsb be factored. In particular, it trivially holds for U = gsb , or (due to
the fact that gsa is a difference utility with lead utility gsb) U = gsa . Conditions
(ii) and (iii) mean that for each r′, the values of gsa(x, r

′) as one varies x are
those of gsb “collapsed” to one of the two values 0 or 1. However for fixed x,
which of that pair of values equals gsa(x, r

′) can differ from one r′ to the next.
There are many situations in which condition (ii) of Thm. 5 holds with

gsb = G. One example is a spin glass with G given by the Hamiltonian. Another
is the simple spin system where G(z) = sin(πn(z)/2), n(z) being defined as the
total number of spins in the up configuration.
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Condition (iv) means that given worldview n, context r, and a pair of moves,
there is no room for uncertainty in the value of the private utility at x∗—it
must equal (the typically unknown value) y∗ there. (Note that which element
of the pair of moves is this special x can vary with n and/or r.) This will
often be the case if, for example, n was generated from gsa , and the agent’s
(n-based) “prediction” for the utility value of the particular move it actually
ends up making is both unambiguous and correct. In particular, such prediction
accuracy often can be induced by having all the other agents readily “freeze”
into a static background. In turn, as an example, those other agents are likely
to freeze if they all use Boltzmann learning algorithms with their temperatures
set low enough, and with the windows they use to estimate the utilities of their
possible moves short enough.
We call the difference utility gsa in Thm. 5 the collapsed utility (CU),

and say that it is formed by collapsing gsb , since for fixed r
′ it is formed by

collapsing all the values gsb(x, r
′) takes on as one varies x, to either 0 or 1.

When the conditions in Thm. 5 hold the ambiguity will shrink monotonically
as the CU is scaled upwards. As an example, consider a Boltzmann learning
algorithm in the scenario discussed at the end of the previous subsection, where
in addition the conditions in Thm. 5 are met for private utility set to the CU. As
the temperature parameter of that algorithm shrinks the associated expected
intelligence cannot decrease, and should in particular eventually exceed that of
gsb .

34 Therefore for the choice of gsb = G, the value of G induced by using CU
as the private utility with a low enough temperature should be larger than that
induced by using the team game at any temperature.

3 The Aristocrat and Wonderful Life Utilities

In this section we illustrate a general set of techniques for changing the pri-
vate utility so as to monotonically lower unordered ambiguity conditioned on
a particular n. As discussed above, when plugged into Coroll. 3 such improved
ambiguities can cause the new private utility to have better expected intelligence
than the original one.
The analysis will be closely analogous to that behind the use of Fisher’s

linear discriminant in statistics. We will start by restricting the analysis to
distributions obeying a linearity condition. This is essentially an extended form
of assuming Gaussian distributions — such an assumption being the starting
point of the derivation of Fisher’s linear discriminant. We will then exploit
Coroll. 3 to derive “learnability” as a measure of the quality of a private utility
(as far as term 3 in the central equation is concerned). Formally, learnability

34Formally, the fact that ambiguity for gsa has purely non-negative support does not mean
that the ambiguity for gsb has a support that extends to negative values. In practice though,

that is the case for the vast majority of n ∈ suppP (. | sb). Even so, we cannot conclude that
the ambiguity function for gsa , extending over all y, is less than that for gsb . We can conclude
that the reverse does not hold though. And again, in practice, the discrepancy in supports
usually does mean that the ambiguity function for gsa is less than that for gsb , so that we
can apply the first two corollaries premises.
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is identical to the Rayleigh coefficient, just expressed in a different setting.
Completing the analogy, whereas with the Fisher discriminant one strives for
coordinate transformations of a data set giving a large value of the associated
Rayleigh coefficient, at the end of this section we demonstrate transformations
to the private utility giving a large value of the associated learnability.

(i) Learnability

We begin by considering the first order expansion of the distribution of one
utility in terms of the distribution of another utility:

Theorem 6 Fix l, l′ ∈ λ ⊆ ν, x1, x2, an x-ordering U , and two utilities Va and
Vb, where ∃ K ∈ R+ and h : ξ → R such that

PVa(y
1, y2; l′, x1, x2) = PKVb+h(y

1, y2; l, x1, x2).

Then ∀ y,

A[y;U, Va; l
′, x1, x2] = A

[

y

K
+ tU (x

1, x2)

(

h(x2)− h(x1)

K

)

;U, Vb; l, x
1, x2

]

.

So if in addition to the condition in Thm. 6, ∀ y,

A

[

y

K
+ tU (x

1, x2)

(

h(x2)− h(x1)

K

)

;U, Vb; l, x
1, x2

]

< A[y;U, Vb; l, x
1, x2],

then it follows that A[U, Va; l
′, x1, x2] < A[U, Vb; l, x

1, x2].
We will sometimes find it convenient to put subscripts on K and/or h explic-

itly giving the values of l′, Va, l, Vb, x
1 and/or x2, in that order. For example,

in Fig. 2 we refer to KV,U , to mean K when Va = V and Vb = U .35

It is often the case that “to first order”, changing from V = Vb to V =
Va doesn’t change the shapes of any of the associated distribution functions
P (V (x) = v | l) (one such distribution for each x). Primarily, all the change
does to those distributions is separately shift them, and/or contract them all
by the same factor.36,37 The condition in Thm. 6 is (a slightly weaker version

35Note the following algebraic rules concerning such sets of distributions that are linearly
related:

Kl1,V1,l3,V3
= Kl1,V1,l2,V2

Kl2,V2,l3,V3
;

Kl1,V1,l2,V2
= 1/Kl2,V2,l1,V1

;

hl1,V1,l3,V3
= Kl1,V1,l2,V2

hl2,V2,l3,V3
− hl1,V1,l2,V2

;

hl1,V1,l2,V2
= −hl2,V2,l1,V1

/Kl2,V2,l1,V1
.

36This is particularly common in situations where there are extremely many possible V
values, densely packed together.

37Note that a linear relationship between utilities is a sufficient but not necessary condition
for a linear relationship between the distributions of their values.
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of) the requirement that this property holds exactly, even if we also switch
from l to l′ at the same time (and therefore change the underlying probability
distribution over z). The general effects of expansion or contraction of the utility
on the associated ambiguity are illustrated in Fig. 2.
Thm. 6 tells us in particular that when its condition is met along with the one

mentioned just following its presentation, then for K = 1 and tU (x
1, x2)[h(x2)−

h(x1)] negative, then changing from (Vb, l) to (Va, l
′) improves ambiguity. More-

over, the degree of that drop grows with increasing magnitude of {h(x2) −
h(x1)}/K.38 In the usual way, for l = l′, λ = ν ∩σ, Va = gs′ , and Vb = gs, where
s and s′ only differ in their private utilities, we can exploit this phenomenon in
concert with Coroll. 1 and then Coroll. 3 to improve term 3. To that end we
start with the following:

Theorem 7 Say that the condition in Thm. 6 holds for the quadruple (l′, Va, l, Vb)
with the same K,h ∀x1, x2. Then

i) where f is any distribution over x,

K =

√

∫

dx f(x)Var(Va; l′, x)
∫

dx f(x)Var(Vb; l, x)
.

Now define

Λf (U ; l
′′, x1, x2) ≡ E(U ; l′′, x1)− E(U ; l′′, x2)

√

Ef(x)(Var(U ; l′′, ξ))

where Ef(x)(Var(U ; l
′′, ξ)) =

∫

dx f(x)Var(U(x, ρ) | l′′). Then
ii)

h(x2)− h(x1)

K
∝ Λf (Vb; l, x

1, x2)− Λf (Va; l′, x1, x2),

where the Va-independent proportionality constant is
√

∫

dx f(x)Var(Vb; l, x).

We call h(x
2)−h(x1)
K

the (ambiguity) shift and Λf (U ; l, x
1, x2) the learn-

ability of U for x1, x2, and l.39 As a particular example, for f(x) = (1/2)[δ(x−
x1) + δ(x− x2)],

[Λf (U ; l
′′, x1, x2)]2 = 2

[E(U ; l′′, x1)− E(U ; l′′, x2)]2

Var(U ; l′′, x1) + Var(U ; l′′, x2)
. (2)

Note that |Λf (U ; l′′, x1, x2)| is invariant under affine transformations of U . Typi-
cally we are interested in the case where sgn[E(V 1

b −V 2
b ; l, x

1, x2)] = sgn[E(V 1
a −

38A similar result holds if we instead consider a fixed pair (x1, x2) and associated Kx1,x2 ,
so that the expansion factor can vary with moves, just like the offset factor h.

39This latter is a slight modification from the definition used in our previous work.
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V 2
a ; l, x

1, x2)] = tV b(x
1, x2), so that we can use learnability to evaluate the offset

term in Thm. 6, tU (x
1, x2)

[

h(x2)−h(x1)
K

]

.

Intuitively, the learnability of U reflects its signal-to-noise, as far as agent ρ
is concerned, in that agent’s process of “choosing its move”. This is because the
numerator term in the definition of learnability reflects how much (the expecta-
tion of) that utility varies as one changes the agent’s move x with the context
held fixed. In contrast, the denominator term reflects the (average over x of)
how much U varies due to uncertainty in the context while keeping the move x
fixed.40

The following results provide a geometric perspective on the expressions in
Thm. 7:

Theorem 8 Say that the condition in Thm. 6 holds for the quadruple (l′, Va, l, Vb).

i) If both Va and Vb are difference utilities with the same lead utility and β =
1, while both P (r′; l) = P (r′; l′) and Λf (Vb; l, x

1, x2) < Λf (Va; l
′, x1, x2),

then K < 1.

ii) Let {Va, l′} be an equivalence class of (V, l) pairs all related to (Vb, l) as
in Thm. 6. Then the learnability of those pairs multiplied by tU (x

1, x2)
is a shrinking function of the value of the associated ambiguities at the
origin. In addition, across all pairs in that class that share some particular
learnability value, K is inversely proportional to the slope of the ambiguity
of that pair at the origin.

iii) Say the condition (ii) also holds for the quadruple (l∗, Va∗ ≡ βVa, l, Vb)
(though potentially for a different K and/or h), where P (r′; l∗) = P (r′; l′).
Then Λf (Va∗ ; l

∗, x1, x2) and Λf (Va; l
′, x1, x2) are identical ∀ x1, x2, as are

the associated shifts, while Kl∗,Va∗ ,l,Vb = βKl′,Va,l,Vb .
41

iv) If K < 1 and Λf (Va; l
′, x1, x2) > Λf (Vb; l, x

1, x2) (K > 1 and Λf (Va; l
′, x1, x2) <

Λf (Vb; l, x
1, x2), respectively), then the maximal slope of A(Va; l

′, x1, x) is
greater than (less than, respectively) the maximal slope of A(Vb; l, x

1, x2).

To understand Thm. 7 in terms of ambiguities, for pedagogical simplicity
consider making changes to a utility V without any corresponding changes to
the value of λ (and therefore none to the underlying probability distribution
over z). First note that such a change applied to the scale of V doesn’t change
how weighted the associated ambiguity is to positive y values. It doesn’t change
“how far” V (x1) − V (x2) is from zero, on average. This “weight to positive
y values” is reflected in the value of |Λf | (which is invariant with respect to
such rescalings), and therefore (by Thm. 7(ii)) is also reflected in the value of

40Low learnability is not only a problem for agents with poor learning algorithms. Even for a
Bayes-optimal learning algorithm, if the “signal to noise” of the private utility is poor, then the
agent’s intelligence for the actual r at hand can readily be far less than 1. (Bayes-optimality
only means that x is set to maximize E(gs | n, x), not to maximize gs(x, r).)

41Trivially, the condition in Thm. 6 holds for (l′, Va∗ , l, Vb) if it does for (l′, Va, l, Vb). In
addition, Λf (Va∗ ; l

′, x1, x2) = Λf (Va; l
′, x1, x2) while Kl′,Va∗ ,l,Vb

= βKl′,Va,l,Vb
.
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Figure 2: The leftmost solid line shows an ambiguity A(y;V ; l, x1, x2). The
dotted line shows A(y;V ′; l, x1, x2) for V ′ = aV , 0 < a < 1. KV ′,V = a,
and learnability of V ′ is the same as V ’s. The dashed line shows the dot-
ted line right-shifted by tU (x

1, x2)[h(x1) − h(x2)] > 0, i.e., the ambiguity
A(y;U ; l, x1, x2) for U ≡ aV + h. (Since we have not changed s, Thm. 6 must
apply.) Λf (U ; l, x

1, x2) > Λf (V
′; l, x1, x2). Finally, the rightmost solid line de-

picts the dotted line expanded back to the scale of the leftmost solid line, i.e.,
the ambiguity of U ′ ≡ βU where β = 1/KV ′,V , so that KU ′,V = 1. As with the
previous one, this rescaling from W to T does not affect the learnability.

tU (x
1, x2)

[

h(x2)−h(x1)
K

]

. However such a rescaling can still be useful in how it

“stretches” the CDF. To see how, note by Thm. 8(iii) that if V has better learn-
ability than some other utility U , such stretching of V may provide a new utility
V ′ such that in addition KV ′,U = 1, which means that V

′ has better ambiguity
than U (in light of Thm. 8(iii)).42 In other words, to change the learnability
we must induce a rightward offset in the (potentially scaled) ambiguity of V .
Having done that, a subsequent rescaling can give us an aggregate K equal to
1 (without changing learnability), and thereby provide a final utility whose am-
biguity lies everywhere below that of U . The value of that offset is given by the
(β-independent) ambiguity shift. (See Fig. 2.)

(ii) Learnability and term 3

Plug Thm. 7 into Thm. 6, with U in Thm. 6 set to the x-ordering given by
Vb(., r). This shows that after appropriate rescaling of Va, the triple (Va, l

′) has
better ambiguity than does (Vb, l) if it has better learnability.

43 If we plug that
fact into Coroll. 1, we establish the following:

Corollary 4 Fix r, l, l′, Va and Vb, where λ ⊆ ν, as usual. Say ∃K ∈ R+, h :
ξ → R, such that ∀ x1, x2

i) PVa(y
1, y2; l′, x1, x2) = PKVb+h(y

1, y2; l, x1, x2);

and
42Note that such rescaling amounts to changing the temperature parameter in a Boltzmann

learning algorithm.
43Note that this rescaling is done before we invoke the third premise. In this way we will be

able to exploit that premise to do rescaling without invoking the assumption in Thm. 8(iii).
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ii) tVb(.,r)(x
1, x2)Λf (Va; l

′, x1, x2) > tVb(.,r)(x
1, x2)Λf (Vb; l, x

1, x2).

Then by appropriately rescaling Va we can assure that

E[Va;λ](Nρ,Vb | r, l′) ≥ E[Vb;λ](Nρ,Vb | r, l).

Consider changing the private utility from Vb to a Va which is factored with
respect to Vb. Then Coroll. 4 means that if this increases the learnability (in the
x-ordering preferred by Vb(., r)) of one’s private utility, then typically it results
in higher expected intelligence, for the optimal scaling of that private utility.
More precisely, express Coroll. 4 for λ = ν ∩ σ and l = l′ ≡ (n, s) and then
plug it into Coroll. 3 with sb = s, gsa = Va and gsb = Vb, where s

a and sb differ
only in the associated private utility for our agent, and Va and Vb are mutually
factored. Then we see that if learnability is higher with sa than with sb (in the
x-ordering preferred by Vb(., r)) for enough of the n for which P (n | r, sb) is
non-negligible, then s = sa gives a higher expected intelligence conditioned on
r and s than does s = sb (each intelligence evaluated for the associated optimal
scale of the private utility).
As an added bonus, often the higher the learnability of a private utility,

the more “slack” there is in setting the parameters of the associated learning
algorithm while still having an ambiguity that’s below that of some benchmark,
low-learnability private utility. In other words, the higher the learnability, the
less careful one must be in setting such parameters in order to achieve expected
intelligence above some threshold. In particular, the greater the ambiguity shift
in Coroll. 4, the broader the range of scales β for which βVa has greater expected
intelligence than does Vb. So by using private utilities with increased learnability
often it becomes less crucial that one exactly optimize the learning algorithm’s
internal parameter setting the scale at which the algorithm examines utility
values. This phenomenon can be amplified via “construction interference”, for
example as in the following result.

Corollary 5 Fix r and two sets of utility-(λ-value) pairs, {Vt, lt} and {V ∗, lt∗},
indexed by t and t∗, respectively. Assume all quintuples (r, lt∗ , V

∗, lt, Vt) obey
Coroll. 4(i),(ii) with Va = V ∗, Vb = Vt, etc. For pedagogical simplicity, also take
sgn[Vb(x

1, r)− Vb(x2, r)] = sgn[Va(x
1, r)− Va(x2, r)] ≡ m,

sgn[E(V 1
b − V 2

b ; l, x
1, x2)] = sgn[E(V 1

a − V 2
a ; l

′, x1, x2)] ≡ m′,
and m = m′.

i) Define

∆t,t∗x1,x2 ≡ {Λf (V ∗; lt∗ , x1, x2)− Λf (Vt; lt, x1, x2)}
√

∫

dxf(x)V ar(Vt; lt, x),

Bt,x1,x2 ≡ min(y : A(y;Vt(., r), Vt; lt, x
1, x2) = 1),

Dt,x1,x2 ≡ max(y : A(y;Vt(., r), Vt; lt, x
1, x2) = 0),

where as usual f is a fixed but arbitrary distribution over x, and we assume
∆t,t∗,x1,x2 ≥ 0 ∀t, t∗, x1, x2.
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ii) Define Kt,t∗ ≡ Klt∗ ,V
∗,lt,Vt , and then define the subintervals of R (one for

each (t, x1, x2) triple)

Lt,t∗,V ∗,x1,x2 ≡ 1

Kt,t∗
[

Bt,x1,x2

Bt,x1,x2 +∆t,t∗,x1,x2

,
Dt,x1,x2

Dt,x1,x2 +∆t,t∗,x1,x2

]

if Dt,x1,x2 < −∆t,t∗,x1,x2 ,

≡ 1

Kt,t∗
[

Bt,x1,x2

Bt,x1,x2 +∆t,t∗,x1,x2

,∞)

if −∆t,t∗,x1,x2 ≤ Dt,x1,x2 < 0,

≡ 1

Kt,t∗
[

Dt,x1,x2

Dt,x1,x2 +∆t,t∗,x1,x2

,∞)

otherwise,

and

Lt,t∗,V ∗ ≡ ∩x1,x2Lt,t∗,V ∗,x1,x2 .

iii) Define Lt∗,V ∗ ≡ ∪tLt,t∗,V ∗ .

Then for every t∗, ∀β ∈ Lt∗,V ∗ ,

E[βV ∗;λ](NV ∗ | r, lt∗) ≥ mintE
[Vt;λ](NVt | r, lt).

Note that Bt,x1,x2 ≥ 0 always, since m = m′ for (lt, Vt). Accordingly, Lt∗,V ∗ is
never empty, always containing ∪t 1

Kt,t∗
at least.44,45

To help put Coroll. 5 in context, apply Coroll. 4 to the scenario of Coroll. 5.
This establishes that for any t∗, ∃β ∈ Lt∗,V ∗ such that E[βV ∗;λ](NβV ∗ | r, lt∗) ≥
maxtE

[Vt;λ](NβVt | r, lt). Note also the immediate implication of Coroll. 5 that
∀β ∈ ∩t∗Lt∗,V ∗ ,

mint∗E
[βV ∗;λ](NV ∗ | r, lt∗) ≥ mintE

[Vt;λ](NVt | r, lt).
As an example of Coroll. 5, take λ = ν ∩ σ, have lt∗ equal some fixed

l∗ ∀t∗, V ∗ ≡ gs∗ , and Vt ≡ gst ∀t. Have real-valued t ∈ [t1 > 0, t2], where Vt =
Vt1

t
t1
. So assuming Λf (V

∗; l∗, x1, x2) ≥ Λf (Vt; lt, x1, x2) ∀x1, x2 as usual, the

range in the logarithms of β for which E [βV ∗;λ](NV ∗ | r, l∗) ≥ mintE
[Vt;λ](NVt |

r, lt) is greater than or equal to ln(t2) - ln(t1).
46

44If (unlike in Coroll. 4) the value of K can change with the (x1, x2) values, then those
indices must be added to K’s subscripts. In this case the conclusion of Coroll. 4 need not
hold; Lt∗,V ∗ can be empty.

45A subtle point is that in situations where Dt,x1,x2 > 0, we can increase the scale of
Vt as many times as we want and assuredly improve its ambiguity each time. (This is not
something we can do in the other situations.) Accordingly, if every instance going into Lt∗,V ∗

is such a situation, then our conclusion that rescaling V ∗ can assuredly give better expected
intelligence than Vt is a bit irrelevant; in this scenario we can also rescale Vt to assuredly
improve its expected intelligence.

46To see this, note that t sets the scale of Vt, just like β does for V ∗. Furthermore, Kt ≡

Kt,t∗ =
t1Kt1,t

∗

t
if P (r′; l∗) = P (r′; lt) ∀r′, t (cf. Thm. 8(iii)). So 1/Kt, which we know is

contained in Lt,t∗,V ∗ , equals t
t1Kt1

. Now apply Coroll. 5.
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As another example, choose {lt} = {lt∗} = {n ∈ suppP (ν | r, si), siρ)} for
some set of σ values {siρ}, with Vt = Vn,si = gsi ∀i. Also presume that ∀β, there
is a design coordinate value sβρ such that gsβ = βV ∗. If we now plug the conclu-
sions of Coroll. 5 into Coroll. 3, we establish that ∀i, β ∈ ∩n∈suppP (ν|r,si)Ln,siρ,V ∗ ,

E(Ng
sβ
| r, sβρ ) ≥ E(Ngs′ | r, si),

and therefore ∀β ∈ ∩si,n∈suppP (ν|r,si)Ln,siρ,V ∗ ,

E(Ng
sβ
| r, sβρ ) ≥ minsi,n∈suppP (ν|r)E(Ngsi | r, s

i)

(iii) Aristocrat Utility

In general, there is no utility that is both factored with respect to the world util-
ity and has infinite learnability.47 The following result allows us to solve for the
private utility that maximizes learnability, and thereby find the private utility
for agent ρ that should give best performance under the first three premises:

Theorem 9

i) A utility U1 is factored with respect to U2 at z iff ∀ z′ ∈ ρ(z) ≡ r, with
x ≡ ξ(z′), U1(x, r) = Fr(U2(z

′)) − D(r), for some function D and some
r-parameterized function Fr with positive derivative.

ii) For fixed l ∈ λ ⊆ ν, r, x1, x2, and F , the D that maximizes Λf (U1; l, x
1, x2)

is the (l, x1, x2)-independent quantity Ef(x)(Fr(U2(ξ, r))).

iii) The f that maximizes the associated ambiguity shift between U2 and U1 is

argminf

[

Ef(x){Var(U2; l, ξ)}
Ef(x1),f(x2){Var((F 1 − F 2)δ(r1 − r2); l, ξ1, ξ2)}

]

,

where the subscript on the denominator expectation indicates that both x’s
are averaged according to f , and the delta function there means that our
two F ’s (one for each x) are evaluated at the same r.

A particularly important example of a function Fr meeting the condition in
Thm. 9 is Fr(U2) = U2. This choice results in the difference utility U1 that takes
z = (x, r)→ U2(x, r)−Ef (U2(ξ, r)). We call this the Aristocrat Utility (AU)

47As an example of when having both conditions is impossible, take r ∈ {r1, r2}, x ∈
{x1, x2}, and G(x1, r1) > G(x2, r1), while G(x2, r2) > G(x1, r2). Then by Thm. 1, we also
must have γρ(x

1, r1) > γρ(x
2, r1) and γρ(x

2, r2) > γρ(x
1, r2). Also assume that P (r′; l) =

δ(r′ − r) ∀ r, s, so P (U = u; l, x) = δ(u− U(x, r)) always.
Define A ≡ γρ(x

1, r2)−γρ(x
1, r1), C ≡ γρ(x

2, r2)−γρ(x
1, r2), B ≡ γρ(x

2, r1)−γρ(x
2, r2),

and D ≡ γρ(x
1, r1)− γρ(x

2, r1). So A+B + C +D = 0, and both C > 0 and D > 0.

Take f(x) = 1/2 for both x, so
∫

dx f(x)Var(U ; r, s, x) = [A2 +B2]/4, which by convexity
≥ [(A + B)/2)]2 = [(C + D)/2)]2. In turn, [E(U ; l, x1) − E(U ; l, x2)]2 = [(D − C)/2]2 ≤
[(C+D)/2)]2. Combining, by the definition of learnability we see that it is bounded above by
1. QED.
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for U2 at z, AUU2,f (z), reflecting the fact that it is the difference between the
value of U2 at the actual z and the average such utility.
Say a particular choice of f , f ′, results in conditions (i) and (ii) of Coroll. 4

being met with Vb = U2 and Va = AUU2,f ′ , for the choice of λ etc. discussed just
after the presentation of Coroll. 4. Then we know by that corollary that once
it is appropriately rescaled, using the AU for U2 as ρ’s private utility results
in an expected intelligence with that is larger than is the expected intelligence
that arises from using U2 as the private utility. (Note that U2 and AUU2,f ′

are mutually factored.) Moreover, by Thm. 9 any other difference utility that
obeys Coroll. 4(i)(ii) (in concert with U2) must have worse ambiguity than does
AUU2,f ′ , and therefore worse expected intelligence.

48

To evaluate AU for some G at some z we must be able to list all z ′ ∈ ρ(z).
This can be a major difficulty, for example if one cannot observe all degrees of
freedom of the system. Even if we can list all such z′, we must also be able to
calculate G for all those z′, an often daunting task which simple observation of
the actual G(z) at hand cannot fulfill (in contrast to the calculational needed
with a team game, for example).
Even when we cannot calculate an AU exactly though, we can often use

an approximate AU and thereby improve performance over a team game. For
example, in an iterated game, at timestep t, r for a particular player i reflects
the state of the other players it is confronting. In such a situation, by observing
r, often we can approximate Ef (gi(ξ, r)) by an appropriate average of the value
of gi over those preceding iterations when the state of the other players was r,
with f being the frequency distribution of moves made by i in those iterations.
In particular, consider a “bake-off” tournament of a 2-player game in which each
player in the tournament plays one other player in each round, and keeps track
of who it has played in the past and with what move and resultant outcome.
In such a situation, the expectation value for player i confronting player j that
gives AUg can often be approximated by the average payoff of player i over
those previous runs where i’s opponent was j.
On the other hand, even when we can evaluate AU exactly, it may be that

the conditions in Coroll. 4 are badly violated. In such situations increasing
learnability by using AU will not necessarily improve expected intelligence, and
accordingly AU may not induce optimal performance. Indeed, it may induce
worse performance than the team game in such situations. On the other hand,
there are other modifications to the private utility that (under the first premise)
may improve expected intelligence in these situations. An example of such a
utility is the CU, as illustrated in [22].

(iv) Wonderful Life Utility

One technique that will often circumvent the difficulties in evaluating AU is to
replace ρ with a coarser partition, having poorer resolution. While this replace-

48Note though that in general there may be a utility Fr(U2)−D(r) with better learnability
than AU, for example if Fr is non-linear. Note also that whether AUU2,f

′ obeys conditions
4(i)(ii) will depend on the choice of f ′, in general.
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ment usually decreases learnability below that of AU, it still results in utilities
that are far more learnable than team game utilities, while (like team games)
not requiring knowledge of the set of worldpoints ρ(z) in full. In this subsection
we illustrate making such a replacement for difference utilities.
We concentrate on the case where the domain of the lead utility D1 is all of

ζ, and the secondary utility D2 = D1(φ(z)) for some function φ : ζ → ζ where
∀z ∈ C, φ depends only on r, i.e., ∀ r, ∀z′, z′′ ∈ r, φ(z′) = φ(z′′). So specifying
the utility consists of choosing φ. While in general we can make the choice that
best suits our purposes, here we will only consider a particular class of φ’s. A
more general approach might, for example, choose φ to maximize learnability.
Intuitively, the resulting difference utility is equivalent to subtracting D1 of a
transformed z from the original D1(z), with the transform chosen to maximize
the signal-to-noise of the resultant function. See the discussion of Thm. 7.
Let π be a partition of ζ. Fix some subset of ζ called the clamping element

CLˆπ such that ∀p ∈ π,D1 is invariant across the (assumed non-empty) inter-
section of CLˆπ and p.

49 Define an associated projection operator CLˆπ(z) ≡
CLˆπ ∩π(z), which for any p ∈ π maps all worldpoints lying in p to the same
subregion of that element, a subregion having a constant D1 value.

50 Then the
Wonderful Life Utility (WLU) of D1 and π is defined by

WLUD1,π(z) ≡ D1(z)−D1(CLˆπ(z)).
51

To state our main theorem concerning WLU, for any partition of ζ, π, and
any set B ⊆ ζ, define B ∩ π to be a partition of B with elements given by the
intersections of B with the elements of π. Furthermore, recall from App. B that
given two partitions π1 and π2, π1 ⊆ π2 iff each element of π1 is a subset of an
element of π2. Then the following holds regardless of what subset of ζ forms C:

Theorem 10 Let π and π′ ⊆ π be two partitions of ζ. Then WLUD1,π is fac-
tored with respect to D1 for coordinate C ∩ π′ ∀ z ∈ C.

As an example, with ρ ≡ C ∩ π, WLUG,π is factored with respect to G for
coordinate ρ.
Note that π′ ⊆ π means that π′ is either identical to π or a “finer-resolution”

version of π. So z → CLˆπ ∩π(z), by sending all points in π(z) to the same
point, is a more severe operation, resulting in a greater loss of information, than
is z → CLˆπ∩π′(z), which can map different points on π(z) differently. So Thm.
10 means we can err on the side of being over-severe in our choice of clamping
operator and the associated WLU is still factored.52

49Note that CLˆπ automatically has this property, independent of D1, if its intersection
with each element of π consists of a single worldpoint.

50Note that both CLˆπ and CLˆπ(z) are implicitly parameterized by D1.
51Note that if there is some x′ ∈ ξ such that CLˆπ(x, r) = (x′, r) ∀ x, r, then WLU is a

special type of AU, with a delta function f .
52Sometimes WLUG,π′ (z) will be factored with respect to G for coordinate C ∩ π even

though π′ ⊆ π. For example, this is the case if G is independent of precisely which of the
elements of π′ contains z, so long as all of those elements are in π(z). However in general
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There are other advantages to WLU that hold even when π = π′. For exam-
ple, in general CLˆπ(z) need not lie on the set C (n.b., π and ˆπ are partitions
of ζ, not C). In such a case the function G(CLˆπ(z)) : C → R is not specified
by the function G(z) : C → R. In this situation we are free to choose the values
G(CLˆπ(z)) to best suit our purposes, e.g., to maximize learnability.
An associated advantage is that to evaluate the WLU for coordinate C ∩ π,

we do not need to know the detailed structure of C. This is what using WLU
for the coarser partition π rather than the AU for the original coordinate C ∩π′
gains us. Given a choice of clamping element, so long as we know G(z) and π(z),
together with the functional form of G for the appropriate subsets of ζ, we know
the value of WLUG,π(z). These advantages are borne out by the experiments
reported in [17].

(v) WLU in repeated games

As an example of WLU, say we have a deterministic and temporally invertible
repeated game (see App. D). Let the {ω1, ω2, . . . , ωJ} and {θ1, θ2, . . . , θL} be
two sets of generalized coordinates of CT (not necessarily repeating coordinates).
Consider a particular player/agent, and presume that ∀t′ there is a single-valued
mapping from rt

′ → (w1, w2, . . . , wJ ), and one from (x
t′ , rt

′

) → (q1, q2, . . . , qL)
(both implicitly set by C). So the player’s context at time t′ fixes the values of
the ωi (defined for time T ), and by adding in the player’s move at that time we
also fix the values of the θi. Say we also have a utility U that is a single-valued
function of (w1, w2, . . . , wJ , q1, q2, . . . , qL).
Take π to be the partition of ζ whose elements are specified by the joint

values of the {ω1, ω2, . . . , ωJ}. Take CLˆπ to be a set of z sharing some fixed
values of {θ1, θ2, . . . , θL}. Note that U is constant across the intersection of CLˆπ

with any single element of π, as required for it to define a WLU.
Intuitively, CLˆπ(z) is formed by “clamping” the values of the {θ1, θ2, . . . , θL}

to their fixed value while leaving the {ω1, ω2, . . . , ωJ} values unchanged. More-
over, since rt

′ → (w1, w2, . . . , wJ ) is single-valued, we know that any dependency
of the important aspects of z (as far as U is concerned) on our player’s move
at time t′ is given by (a subset of) the values {q1, q2, . . . , qL}. (Recall that all
values xt

′

are allowed to accompany a particular rt
′

.)
Now by Thm. 10, we know that WLUU,π is factored with respect to U for

coordinate C ∩π′ for any partition π′ that is a refined version of π. In addition,
ρt

′ ⊆ π. So WLUU,π is factored with respect to U for the coordinate given by

C ∩ ρt′ = ρt
′

, i.e., it is factored for our player’s context coordinate at time t′.
When the {θi} are minimal in that none of them is a single-valued mapping

of rt
′

(i.e., none can be transferred into the set of {wi}), we say they are our
such factoredness will not hold. Even if it doesn’t though, say G is relatively insensitive to
which of the elements of π′ contains z, over the set of all such elements that are in π(z).
Then WLUG,π′ (z) will be quite close to factored for coordinate C ∩ π. This often allows us
to be “sloppy” in using WLU’s, by taking π′ to be only those degrees of freedom C ∩ π with
“significant impact” on the value of G.
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player’s effect set [17].53 Often a player’s behavior can be modified to ensure
that a particular set of {θi} contains its effect set for some particular time.
When we can do this it will assure that some associated variables {ωi} specify
(a partition π that gives) a WLUG,π for our player’s move at that time that is
factored with respect to G.

(vi) WLU in large systems

Consider the case of very large systems, in which G typically depends signifi-
cantly on many more degrees of freedom than can be varied within any single
element of ρ (i.e., depends more on the value of r than on where the system
is within that r). So we can write G(x, r) = G1(x, r) +G2(r) where the values
of G2 in C are far greater than those of G1, and correspondingly the changes
in the value of G1 as one moves across C are far smaller than those of G2. In
such cases, with ρ = C ∩ π as usual, the learnability of G is far less than that
of WLUG,π. This is due to the following slightly more general theorem:

Theorem 11 Let κ and π ⊆ κ be two partitions of ζ. Write H(z) = H1(z) +
H2(κ(z)), where H is defined over all ζ, and consider the agent ρ = C ∩ π. Fix
l ∈ λ ⊆ ν, and define

M ≡ {max
z,z′
[H1(z)−H1(z

′)]}2

and

L ≡
∫

dk′ dk′′ P (k′; l)P (k′′; l)[H2(k
′)−H2(k

′′)]2.

Then independent of f , CLˆκ, x
1 and x2,

Λf (WLUH,κ; l, x
1, x2)

Λf (H; l, x1, x2)
≥ L

2M
−
√

L

M
.

Note that as κ becomes progressively coarser and coarser, L shrinks. So such
coarsening of the clamping element will typically lead to worse learnability. In
fact, in the limit of κ = ∅, WLUH,κ just equals H minus a constant. So in that

53Sometimes the (q1, q2, . . . , qn) value specifying the clamping element of an effect set can
intuitively be viewed as a “null action”, so that clamping can be viewed as “removing agent ρ
from the system”. Intuitively, in this case we can view WLU as a first order subtraction from
G of the effects on it of specifying those degrees of freedom not contained in the effect set
(hence the name “wonderful life” utility—c.f. the Frank Capra movie). More formally, in such
circumstances WLU can be viewed as an extension of the Groves mechanism of traditional
mechanism design, generalized to concern arbitrary (potentially time-extended) world utility
functions, and to concern situations having nothing to do with valuation functions, (quasi-
linear) preferences, types, revelations, or the like. (See [7, 2, 14, 2, 10, 16, 8, 27, 13].) Due
to its concern for signal-to-noise issues though, this extension relies crucially on re-scaling of
G. (Indeed, if one just subtracts the clamped term without any such re-scaling, ambiguity
can be badly distorted, so that performance can degrade substantially [23].) In addition, this
extension allows alternative choices of the clamping operator, even clamping to illegal (i.e.,
not ∈ C) worldpoints. This extension also can be used even in cases where there is no action
that can be viewed as a “null action”, equivalent to “removing the agent from the system”.
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limit, WLUH,κ and H must have the exact same learnability — in agreement
with Thm. 11 and the fact that L = 0 in that limit.
When L greatly exceeds M the bound in Thm. 11 is much greater than 1.

So if we take H = G and κ = π, Thm. 11 tells us that for very large systems,
setting the private utility to G’s WLU rather than to Gmay result in an extreme
growth in learnability.54 In particular, for λ = ν ∩ σ, in large systems it may be
that L >> M∀ l such that P (l | s) is non-infinitesimal. Under the first three
premises, assuming WLUG,κ and G obey the conditions in Coroll. 4(i),(ii), this
means that setting the private utility to WLU will result in larger expected
intelligence of the agent than will setting it to G. Moreover, since that WLU is
factored with respect to G, this improvement in term 3 of the central equation
will not be accompanied by a degradation in term 2. This ability to scale well
to large systems is one of the major advantages of WLU and AU.

(vii) WLU in spin glasses

As a final example, consider a spin glass with spins {bi}. For each spin i let ~b−i
be the set of spins other than i, and for each i let hi and Fi be any two func-
tions such that the Hamiltonian can be written as H(~b) = hi(bi,~b−i) + Fi(~b−i).

In particular, for H(~b) = ∑

jkHjkbjbk +
∑

j Hjbj , we can have Fi(~b−i) =
∑

j 6=i,k 6=iHjkbjbk +
∑

j 6=iHjbj , and hi(bi,~b−i) = Hibi + Hiib2i +
∑

j 6=i[Hij +
Hji]bjbi/2. Since at equilibrium ~b minimizes H, and therefore given the equilib-
rium value of~b−i, at theH-minimizing point bi is set to the value that minimizes
hi(bi,~b−i).
We can view this as an instance of a collective where H is the (negative)

world utility G for a system of “agents” ρ with move bρ, and gρ = hρ. For all ρ,

at the ~b that maximizes G, bρ is set to the value that maximizes −hρ given ~b−ρ.
More generally, hi(bi,~b−i) = H(~b)−Fi(~b−i) is factored with respect to G(~b) (cf.
Thm. 2), with the context for each agent ρ being ~b−ρ and C = ζ being the set of

all vectors ~b. So any ~b (locally) maximizing G also simultaneously maximizes all
of the −hi. Frustration then is a state where all the agents’ intelligences equal
1, but the system is at a local rather than global maximum of G.
Consider a particular spin/agent, ρ. Embed C, the set of all possible ~b,

in some larger space that allows the spin ρ to take on additional values, and
redefine ζ to be that larger space. Let π be an associated ζ-partition such that
ρ ≡ C ∩ π. Take CLˆπ to be some set off of C. Extend the domain of definition
of hρ by setting hρ(CLˆπ(~b) = 0 ∀ ~bρ 6∈ C. Then WLUG,π = −hρ, i.e., WLU is
the “local Hamiltonian” perceived by spin ρ, whereas G is the Hamiltonian of
the entire system.
So by Thm. 11, if the number of nonzero coupling strengths between ρ and

the other spins is much smaller than the total number of nonzero coupling
strengths in the system, then the learnability of ρ’s local Hamiltonian far exceeds

54Trivially, since learnability of AU is bounded below by that of WLU, its learnability must
exceed that of a team game at least as much as WLU’s does.
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that of the global Hamiltonian. Accordingly, consider casting the evolution of
the spin system as an iterated game, with each spin controlled by a learning
algorithm, and each gρ,st set to either spin ρ’s local Hamiltonian at time t,
or to the global Hamiltonian at that time. (See App. D.) Then since WLU is
factored with respect to G, we would expect (under the first three premises,
and assuming conditions 4.1(i)(ii) hold, etc.) that at any particular timestep of

the game ~b is closer to a local peak of the global Hamiltonian if the agents use
the value at that timestep of their local Hamiltonians as their private utilities,
rather than use the value of the global Hamiltonian at that timestep.
If we also incorporate techniques addressing term 1 in the central equation,

then we can ensure that such local peaks are large compared to the global peak.
Moreover, if we have the spins use a WLU with better learnability, we would
expect faster convergence still. Similarly, if the spins use AU rather than their
local Hamiltonians, then since this increases learnability, performance of the
overall system should improve further still. (Roughly speaking, such a change in
private utilities is equivalent to having the agents use mean-field approximations
of their local Hamiltonians as their rewards rather than the actual values of
their local Hamiltonians.) More generally, any modification of the system that
induces higher learnability (while maintaining factoredness of the individual
spins’ private utilities with respect to the original Hamiltonian) should result in
faster convergence to the minimum of the original Hamiltonian. The foregoing
is borne out in experiments reported in [24].
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A Intelligence, Percentiles and Generalized CDF’s

A useful example of intelligence is the following:

Nρ,U (z) ≡
∫

dµρ(z)Θ[U(z)− U(z′)] (A.1)

with the subscript on the (usually normalized) measure indicating it is restricted
to z′ ∈ ρ(z) (usually it is also nowhere-zero in that region). For consistency with
its use in expansions of CDF’s, the Heaviside function is here taken to equal 0/1
depending on whether its argument is less than 0 or not. (Having Θ(0) = 0 in
Eq. A.1 is also a valid intelligence operator.) Intuitively, this kind of intelligence
quantifies the performance of z in terms of its percentile rank, exactly as is
conventionally done in tests of human cognitive performance. Note that this
type of intelligence is a model-free quantification of performance quality; even if
z is set by an agent that wants large Nρ,U and Nρ,U (z) turns out to be large “by
luck”, we still give that agent credit. The analogous coordinateless expression is
given by NU (z) ≡

∫

dµ(z′)Θ[U(z)− U(z′)] where µ runs over all of C.
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There is a close relationship between CDF’s and intelligence in general, not
just percentile-based intelligence. Thm. 3 provides an example of that relation-
ship. For percentile-based intelligence though the relationship is even deeper. In
particular, coordinateless percentile-based intelligence can be viewed as a gen-
eralization of cumulative distribution functions (CDF’s). This generalization
applies to arbitrary spaces serving as the argument of the underlying probabil-
ity density function (not just R1) and does not arbitrarily restrict the “sweep
direction” (said direction being from −∞ to +∞ for the conventional case). In
particular, for the special case of z ∈ Rn and invertible U(.) where |∇zU(z)| = 1
a.e., |∇zNU (z)| gives the probability density µ(z) and 0 ≤ NU (z) ≤ 1 ∀ z, just
like with the conventional CDF for which the underlying space is R1. (In fact,
for U(z ∈ R1) = z + constant, NU (z) is identical to the conventional CDF of
the underlying distribution µ(z).) For the more general case, intuitively, U itself
provides the flow lines of the sweep.
Percentile-type intelligence is arbitrary up to the choice of measure µ, and

in a certain sense essentially any intelligence (in the sense defined in the text)
can be “expressed” as a percentile-type intelligence. As an alternative to these
kinds of intelligences, one might consider standardizing a utility U by simply
subtracting some canonical value (like the expected value of U) from U(z).
This operation doesn’t take into account the width of the distribution over U
values however, and therefore doesn’t tell us how significant a particular value
U(z)−E(U) is. To circumvent this difficulty one might “recalibrate” U(z)−E(U)
by dividing it by the variance of the distribution, but this can be misleading
for skewed distributions; higher-order moments may be important. Formally,
even such a recalibrated functions runs afoul of condition (i) in the definition of
intelligence.
One important property of percentile-type intelligence is that with uncount-

able ζ and a utility U having no plateaus in ζ, if P (ˆr | r, s) = µr(ˆr) and is
independent of r, then P (NU (z) | s) is constant, regardless of U and µ. More
formally,

Theorem A.1 Assume that for all y in some subinterval of [0.0, 1.0], for all
r in suppP (. | s) there exists ˆr such that the intelligence Nρ,U (r, ˆr) = y.
Restrict attention to cases where the intelligence measure µr(ˆr) = P (ˆr | r, s)
and is independent of r. For all such cases, P (NU (z) | s) is flat with value 1.0,
independent of both µ and U .

Proof: We use the complement notation discussed in App. B. Write

P (Nρ,U (r, ˆr) = y | s) =
∫

dr dˆr′ P (r | s)P (ˆr′ | r, s)P (Nρ,U (r, ˆr′) = y | r, s)

Next write P (Nρ,U (r, ˆr) = y | r, s) as the derivative of the CDF P (Nρ,U (r, ˆr) ≤
y | r, s) with respect to y. Now by assumption there exists a ˆr such that
Nρ,U (r, ˆr) = y. So we can rewrite that CDF as

P (Nρ,U (r, ˆr
′) ≤ Nρ,U (r, ˆr) | r, s),
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where the probability is over ˆr′, according to the distribution P (ˆr′ | r, s).
We can rewrite this CDF as

P (U(r, ˆr′) ≤ U(r, ˆr) | r, s),

by property (ii) of the general definition of intelligence. In turn we can write
this as

∫

dˆr′ P (ˆr′′ | r, s)Θ(U(r, ˆr)− U(r, ˆr′))

=

∫

dˆr′ µ(ˆr′)Θ(U(r, ˆr)− U(r, ˆr′) (by assumption)

= Nρ,U (r, ˆr) (by definition of intelligence)

= y.

Therefore the derivative of our CDF = 1. QED.

Intuitively, this theorem says that the probability that a randomly sampled
point has a value of U ≤ the y’th percentile of U is just y, so its derivative = 1,
independent of the underlying distributions. Note that both the assumption that
P (ˆr | r, s) is independent of r and having µ(ˆr) = P (ˆr | s) is “natural” in
single-stage games—but not necessarily in multi-stage games (see App. D).
If the conditions in the theorem apply, then choice of U is irrelevant to term

3 in the central equation. If we choose a “reasonable” U this means that we
cannot have P (ˆr | s) = µ(ˆr) if we want to have choice of coordinate utility
make a difference.
Note though that the assumption about the subinterval of [0.0, 1.0] will be

violated if U has isoclines of non-zero probability. This will occur if µ has delta
functions, or if ζ is a Euclidean space and U has plateaus extending over the
support of P (z | s). A particular example of the former is when ζ is a countable
space—the theorem does not apply to categorical spaces.

B Theory of Generalized Coordinates

It can be useful to view coordinates as “subscripts” on “vectors” z. Similarly, in
light of their role as partitions of C, it can be useful to view separate coordinates
as separate sets, complete with analogues of the conventional operations of set
theory. As explicated in this appendix, these two perspectives are intimately
related.
Now define zρ ≡ ˆρ(z), so zˆρ = ρ(z). Typically we identify the elements

of zρ not by the sets making up ˆρ(z), but rather by the labels of those sets.
This notation is convenient when ζ is a multi-dimensional vector space, since it
makes the natural identification of contexts with vector components consistent
with the conventional subscripting of vectors. For example, say ζ = R3, with
elements written (x, y, z). Then a context for an “agent” making “move” x, ρx,
is most naturally taken to be the partition of R3 that is indexed by the moves
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of the other players, i.e., the values of y and z. In other words, specifying y and
z gives a line delineating the remaining degrees of freedom of setting z ∈ R3

that are available to agent x in determining its move, and each such line is an
element of the partition ρx. For this ρx, we can take the complement ˆρx to be
the partition of R3 whose elements are planes of constant x, i.e., whose elements
are labeled by the value of x. We can then write ˆρx(z) = zρx ≡ zx. With this
choice zx is just z’s x value (recall we identify an element of zx by its label).
This is in accord with the usual notation for vector subscripts
To formulate a set theory over coordinates, first note that coordinates are not

just sets, but special kinds of sets—a coordinate’s elements are non-intersecting
subsets of C whose union equals C. So for example to have ρ1 ∪ ρ2 be a coor-
dinate, it cannot be given by the set of all elements of ρ1 and ρ2, as it would
under the conventional set theoretic definition of the union operator. (If the
union operator were defined in that conventional manner, its elements would
have non-zero intersection with one another.) This means that we cannot sim-
ply view coordinates as conventional sets and define the set theory operators
over coordinates accordingly; we need new definitions.
To flesh out a full “set-theory” of coordinates, first note that the complement

operation has already been defined. (Note that unlike in conventional set theory,
here the complement operator is not single-valued.) We can also define the null
set coordinate ∅ as the coordinate each of whose members is a single z ∈ C. So
∅ is bijectively related to ζ, and ˆ∅ can be taken to be the coordinate consisting
of a single set: all of C.
To define the analogue of set inclusion, given two coordinates ρ1 and ρ2, we

take ρ1 ⊆ ρ2 iff each element of ρ1 is a subset of an element of ρ2. Intuitively,
ρ1 is a finer-grained version of ρ2 if ρ1 ⊆ ρ2, with ρ1(z) always providing at
least as much information about z as does ρ2(z). So ρ1 is a delineation of a
set of degrees of freedom that includes those delineated by ρ2. Note that ∀ ρ,
∅ ⊆ ρ ⊆ ˆ∅, just as in conventional set theory.
One special case of having ρ1 ⊆ ρ2 is where every element of ρ1 occurs in ρ2,

as in the traditional notion of set inclusion. (For our purposes we can broaden
that special case, which is what we’ve done in our definition.) Note also that
the ⊆ relation is transitive and that both ρ1 ⊆ ρ2 and ρ2 ⊆ ρ1 iff ρ1 = ρ2,
and that ρ1 ⊆ ρ2 means there are ˆρ1 and ˆρ2 such that ˆρ2 ⊆ ˆρ1, just as in
conventional set theory.
The other set-theory-like operations over coordinates can be defined by gen-

eralizing from the special case of conventional vector subscripts. For exam-
ple, ρ1 ∩ ρ2 is shorthand for a coordinate whose members are given by the
intersections of the members of ρ1 and ρ2. We make this definition to ac-
cord with the conventional vector subscript interpretation of zρ1∪ρ2 as hav-
ing its elements be the surfaces in ζ of both constant zρ1 and constant zρ2 .
(E.g., when ζ = R3 and has elements written as (x, y, z), “zx∪y” means zx,y,
which is the set of points of constant zx and zy.) Given this interpretation,
write zρ1∪ρ2 = ˆ(ρ1 ∪ ρ2) ≡ ˆρ1 ∩ ˆρ2. This then means that the elements of
ρ1 ∩ ρ2 = zˆρ1∪ˆρ2 should be surfaces of constant zˆρ1 = ρ1(z) and constant
zˆρ2 = ρ2(z), exactly as our definition of the intersection operator stipulates.
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Note that ρ1∩ρ2 ⊆ ρ1, as one would like. Intuitively, the intersection operator
is just the comma operator given by Cartesian products. (E.g., when ζ = R3

and has elements written as (x, y), zx ∩ zy is indexed by the vector (zx, zy).)
Finally, the intersection operator defines the union operator as ρ1 ∪ ρ2 =

ˆ(ˆρ1 ∩ ˆρ2) = ˆ(zρ1 ∩ zρ2). To illustrate this, in the example of R3, where the
elements of ρx are lines of constant (y, z), and the elements of ρy are lines of
constant (x, z), the elements of ρx∪ρy are planes of constant z. Similarly, when
ρ1 ⊆ ρ2, ρ2\ρ1 is shorthand for a particular coordinate ρ ⊆ ρ2 that is disjoint
from ρ1 (i.e., such that ρ1 ∩ ρ = ∅) and such that ρ1 ∪ ρ = ρ2. Both operations
are not single-valued, in general.
Note that in analogy to set theory, any coordinate ρ1 such that there is no

ρ2 ⊆ ρ1 is equal to the null set coordinate. The analogue of a “single-element
set” is a coordinate ρ that contains only itself and the null set. This is any
coordinate all of whose members but one consist of a single z ∈ C, where that
other member consists of two such z.

C Miscellaneous Proofs

Proof of Thm. 1: Choose any z′, z′′ ∈ ρ(z). sgn[Nρ,U1
(z′) − Nρ,U1

(z′′)] =
sgn[U1(z

′)−U1(z
′′)] for all such z′ and z′′, by definition of intelligence. Similarly,

sgn[Nρ,U2
(z′)−Nρ,U2

(z′′)] = sgn[U2(z
′)−U2(z

′′)] for all such points. But by hy-
pothesis, Nρ,U2

(z′′) = Nρ,U1
(z′′) and Nρ,U2

(z′) = Nρ,U1
(z′). So sgn[Nρ,U1

(z′)−
Nρ,U1

(z′′)] = sgn[Nρ,U2
(z′) − Nρ,U2

(z′′)]. Transitivity then establishes the for-
ward direction of the theorem.

To establish the reverse direction, simply note that sgn[U1(z
′) − U1(z

′′)] =
sgn[U2(z

′)−U2(z
′′)] ∀ z′ ∈ ρ(z), by hypothesis, and therefore by the first part of

the definition of intelligence, U1 and U2 have the same intelligence at z
′′. Since

this is true for all z′′ ∈ ρ(z), U1 and U2 have the same intelligence throughout
ρ(z). QED.

Proof of Thm. 2: Consider any z′, z′′ ∈ ρ(z). We can always write sgn[U2(z
′′)−

U2(z
′)] = sgn[Φ(U2(z

′′), ρ(z)) − Φ(U2(z
′), ρ(z))], due to the restriction on Φ.

Therefore U1 and U2 have the same intelligence at z
′, by the first part of the

definition of intelligence. Since this is true ∀ z′ ∈ ρ(z), U1 and U2 are factored
at z. This establishes the backwards direction of the proof.

For the forward direction, use Thm. 1 and the fact that the system is factored
to establish that ∀ z in C, ∀ z′′, z′ ∈ ρ(z), U1(z

′) = U1(z
′′) iff U2(z

′) = U2(z
′′).

Therefore for all points in ρ(z), the value of U1 can be written as a single-valued
function of the value of U2. Since Thm. 1 also establishes that U1(z

′) > U1(z
′′)

iff U2(z
′) > U2(z

′′), we know that that single-valued function must be strictly
increasing. Identifying that function with Φ completes the proof. QED.

Proof of Thm. 3: CDF(V (ω, k) | la, k) < CDF(V (ω, k) | lb, k) means that for
any fixed z′, with y ≡ V (z′),

P (w : V (w, k) ≤ y | la, k) < P (w : V (w, k) ≤ y | lb, k).
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This is equivalent to

P (z : V (ω(z), κ(z)) ≤ y | la, k) < P (z : V (ω(z), κ(z)) ≤ y | lb, k),
i.e.,

P (z : V (z) ≤ y | la, k) < P (z : V (z) ≤ y | lb, k).
Since z ∈ k in both of these probabilities, by the second part of the definition
of intelligence we get

P (z : Nκ,V (.,k)(z) < Nκ,V (.,k)(z
′) | la, k)

< P (z : Nκ,V (.,k)(z) ≤ Nκ,V (.,k)(z
′) | lb, k) ∀z′ ∈ k.

This in turn is equivalent to CDF(Nκ,V (.,k) | la, k) < CDF(Nκ,V (.,k) | lb, k).
Next write E(Nκ,V (.,k) | n, k) =

∫ 1

0
dy y P (Nκ,V (.,k) = y | n, k). Integrate by

parts to get

E(Nκ,V (.,k) | la, k)− E(Nκ,V (.,k) | lb, k) =
∫ 1

0

dy [CDF(Nκ,V (.,k) | lb, k)− CDF(Nκ,V (.,k) | la, k)].

Since ∀y,CDF(Nκ,V (.,k) | la, k)(y) < CDF(Nκ,V (.,k) | lb, k)(y), this last integral
cannot be negative. The analog for equalities of CDF’s and expectations rather
than inequalities follows similarly QED.

Proof of Lemma 1: Since both Pi are normalized and they are distinct (if
they aren’t distinct, we’re done), ∃u∗ such that P1(u

∗) > P2(u
∗). By our con-

dition concerning the Pi, P1(u) > P2(u) ∀u > u∗. Similarly there exists a u
everywhere below which P2 exceeds P1. Accordingly, there is a greatest lower
bound on the u∗’s, T . ∀ y ≤ T, P1(u ≤ y) ≤ P2(u ≤ y), and therefore by the
non-negativity of φ′, ∀ y ≤ φ(T ), P1(u : φ(u) ≤ y) ≤ P2(u : φ(u) ≤ y). So the
CDF of φ according to P1 is less than that according to P2 everywhere below
T . Therefore if there is to be any y value at which the CDF of φ according to
P1 is greater than that according to P2, there must be a least such y value, and
therefore a corresponding least such u, u′. We know that u′ > T . However for all
u > T , P1(u) > P2(u). Therefore P1(u : φ(u) ≥ φ(u′)) ≥ P2(u : φ(u) ≥ φ(u′)).
Summing the P1 probabilities of φ(u) exceeding and being less than φ(u

′), and
doing the same for P2, we see that both Pi cannot be normalized, which is
impossible. QED.

Proof of Thm. 4: When the ψ’s both equal γρ and λ = ν, by its definition H
must be the actual associated n-conditioned distributions over x, P (x | na) and
P (x | nb).
To complete the proof we must demonstrate that there is at least one

parametric form for H that obeys the condition in the theorem when one of
the ψ’s does not equal γρ and/or λ 6= ν. We do this by construction. First
take the derivative of each ambiguity (one for each x) to get the convolutions
∫

dy1dy2Pψ(y
1; l, x1)Pψ(y

2; l, x2)δ(y−(y1−y2)). Multiply each such convolution
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by y and integrate the result over all y. This gives us the differences between the
means of all the distributions Pψ(y; l, x) (one distribution for each x). Translate
all those means,M(ψ, l, x), by the same amount so that the lowest one has value
1. Then take P [ψ;λ](x1 | l) ∝ eM(ψ,l,x).

Use the relation between ordered and unordered ambiguity to rewrite the
condition in the theorem as tU (x

1, x2)A(ψa; la, x1, x2) < tU (x
1, x2)A(ψb; lb, x1, x2).

Consider some particular pair x1, x2, where without loss of generality tU (x
1, x2) =

1. IntegrateA(y;ψa; la, x1, x2)−A(y;ψb; lb, x1, x2) by parts. So long as y[A(y;ψa; la, x1, x2)−
A(y;ψb; lb, x1, x2)] goes to 0 as y goes to either positive or negative infinity, the
result is

−[(M(ψa, la, x1)−M(ψa, la, x2))− (M(ψb, lb, x1)−M(ψb, lb, x2))].

By hypothesis, tU (x
1, x2) times this expression must be negative. Therefore

P [ψa;λ](x1|la)
P [ψa;λ](x2|λ)

> P [ψb;λ](x1|lb)

P [ψb;λ](x2|lb)
. Now apply Lemma 1. QED.

Proof of Coroll. 2: Expand E(U | r, s) =
∫

dndxP (n | r, s)U(x, r)P [ν](x | n).
By the second premise we can write this integral as
∫

dndxP (n | r, s)U(x, r)P [ν,σ](x | n, s) =

∫

dndxP (n | r, s)U(x, r)P [gs;ν,σ](x | n, s)

=

∫

dndxP (n | r, s)U(x, r)P [gs;ν,σ](x | n, s,W )

=

∫

dnP (n | r, s)E[gs;ν,σ](U | n, s,W ).

QED.

Proof of Coroll. 3: For both ψ = gsa and ψ = gsb , expand

E[ψ;ν,σ](Nρ | n, sb) =
∫

dr
P (n | r, sb)P (r | sb)

P (n | sb) E[ψ;ν,σ](Nρ | n, r, sb).

Rearranging terms gives the hypothesis inequality of our corollary. Now apply
Coroll. 2 to the consequent inequality of the third premise with Ω = η = ∅.
QED.

Proof of Thm. 5: By condition (iv), the quantity y∗ defined there must equal
gsa(x

∗, r). Now fix x1 and x2. By conditions (ii) and (iii), for both of those

moves xi, gsa(x
i, r′) has either the value 0 or 1 for all r′ arising in the expansion

of A(gsa ;n, x
1, x2). Combining this with the value of y∗, we see that for any r

and any pair (x1, x2), one of the following four cases must hold:

I) gsa(x
1, r) = 0, and

P (gsa = y;n, x1) is a delta function about 0, and

P (gsa = y;n, x2) is an average of two delta functions, centered about 0
and about 1;
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II) gsa(x
1, r) = 1, and

P (gsa = y;n, x1) is a delta function about 1, and

P (gsa = y;n, x2) is an average of two delta functions, centered about 0
and about 1.

(Cases (III) and (IV) are the same as (I) and (II), just with x1 and x2 inter-
changed.)

Without loss of generality assume that we’re in case (II). Then expand
A(y;U, gsa ;n, x

1, x2) as

∫

dy1 dy2P (gsa = y1;n, x1)P (gsa = y2;n, x2)Θ[y−(y1−y2) sgn[U(x1, r)−U(x2, r)]].

(C.2)
This evaluates as

∫

dy2 P (gsa = y2;n, x2)Θ[y − (1− y2) sgn[U(x1, r)− U(x2, r)]].

Now sgn[gsa(x
1, r)−gsa(x2, r)] equals 0 or 1 for case (II). So by condition (i), and

the factoredness of gsa and gsb , this must also be true for sgn[U(x
1, r)−U(x2, r)].

Given that y2 cannot exceed 1, this in turn means that the theta function is
nonzero only for non-negative y. Accordingly, so is the ambiguity.

This character of the ambiguity holds for all four cases; for all of them the
ambiguity A(y; gsa , n, x

1, x2) is 0 up to y = 0 where it may have a jump, and
then is flat up to 1, where if the first jump did not go up to 1 it now has a second
jump that gets it up to 1. So its support is assuredly non-negative. QED.

Proof of Thm. 6: Define m ≡ tU (x
1, x2). Our condition means that

∫

dy1 dy2Θ[y − (y1 − y2)m]P (Va(x
1, ρ) = y1 | l′)P (Va(x2, ρ) = y2 | l′) =

∫

dy1 dy2Θ[y − (y1 − y2)m] P (KVb(x
1, ρ) + h(x1) = y1 | l)P (KVb(x2, ρ) + h(x2) = y2 | l),

i.e.,
∫

dy1 dy2Θ[y − (y1 − y2)m][P (Va(x
1, ρ) = y1 | l′)P (Va(x2, ρ) = y2 | l′)]

=

∫

dr1 dr2Θ[y −mK(Vb(x1, r1)− Vb(x2, r2))−K(h(x1)− h(x2))]P (r1, r2; l)

=

∫

dr1 dr2Θ[y/K −m(Vb(x1, r1)− Vb(x2, r2))−m(h(x1)− h(x2))/K]P (r1, r2; l)

=

∫

dy1 dy2Θ[{y/K −m(h(x1)− h(x2))/K} − (y1 − y2)m]

P (Vb(x
1, ρ) = y1 | l)P (Vb(x2, ρ) = y2 | l).

QED.
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Proof of Thm. 7: To prove (i), first marginalize out y2 from the equality re-
lating PVa and PKVb+h, and then use the resultant equality between probability
distributions to form an equality concerning the two associated variances of y1.
The resultant formula for K holds for any x1, and therefore it holds under
arbitrary averaging over the x1.

To prove (ii), use the equality relating PVa and PKVb+h to relate the expected
values of the difference (y1 − y2), evaluated according to the two distributions
PVa and PVb :

∫

dr1 dr2 P (r1, r2; l′, x1, x2)[Va(x
1, r1)− Va(x2, r2)]

= h(x1)− h(x2) +K

∫

dr1 dr2 P (r1, r2; l′, x1, x2)[Vb(x
1, r1)− Vb(x2, r2)].

Next collect terms to get an expression for [h(x2)−h(x1)]/K in terms of expected
values of Va and Vb. Finally plug in the definition of Λf and evaluate K to verify
our equation for [h(x2)− h(x1)]/K. QED.

Proof of Thm. 8: To prove (i), note that since P (r′; l) = P (r′; l′), and since
Va and Vb have the same lead utility, E(Va; l

′, x1)−E(Va; l′, x2) = E(Vb; l, x
1)−

E(Vb; l, x
2). Therefore the drop in learnability means that

∫

dx f(x)Var(Va; l
′, x) <

∫

dx f(x)Var(Vb; l, x). Plugging this into Thm. 7(i) gives the result claimed.

To prove the second part of (ii), for pedagogical clarity definem ≡ tVA(x
1, x2)

and write the derivative as
∫

dr1 dr2 P (r1, r2; l′, x1, x2)δ(m[Va(x
1, r1)− Va(x2, r2)])

=

∫

dr1 dr2 P (r1, r2; l, x1, x2)δ(m[K{Vb(x1, r1)− Vb(x2, r2)}+ h(x1)− h(x2)])

= K−1

∫

dr1 dr2 P (r1, r2; l, x1, x2)

δ(m[Vb(x
1, r1)− Vb(x2, r2)]− m[Λf (V b; l, x

1, x2)− Λf (Va; l′, x1, x2)]
√

∫

dxf(x)V ar(Vb; l, x1, x2)
),

where Thm. 7(ii) was used in the last step. By hypothesis, the difference in
learnabilities equals zero though. This establishes the result claimed.

To prove the first part of (ii), use similar reasoning to write the value of the
ambiguity at the origin as

∫

dr1 dr2 P (r1, r2; l′, x1, x2)Θ(m[Va(x
1, r1)− Va(x2, r2)])

=

∫

dr1 dr2 P (r1, r2; l, x1, x2)

δ(m[Vb(x
1, r1)− Vb(x2, r2)]− m[Λf (V b; l, x

1, x2)− Λf (Va; l′, x1, x2)]
√

∫

dxf(x)V ar(Vb; l, x1, x2)
).
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(iii) is immediate from Thm. 7(i).

Finally, to prove (iv), without loss of generality take K < 1, and use the trick
in (ii) with s∗ = s to increase K to 1. Doing this reduces the maximal slope of
the associated ambiguity. In addition, it results in a right-shifted version of the
ambiguity A(Vb; l, x

1, x2). Therefore this reduced maximal slope is the same as
the maximal slope of A(Vb; l, x

1, x2). QED.

Proof of Coroll. 5: Due to their all obeying Coroll. 4(ii), all utilities share
the same m, which equals all of their m′’s. Write

A(y;V ∗(., r), V ∗; lt∗ , x
1, x2)

=

∫

dr1 dr2 P (r1, r2; lt∗ , x
1, x2)Θ[y −m(V ∗(x1, r1)− V ∗(x2, r2))]

=

∫

dr1 dr2 P (r1, r2; lt, x
1, x2) ×

Θ[({y/Klt∗ ,V
∗,lt,Vt} −∆t,t∗,x1,x2)−m(Vt(x1, r1)− Vt(x2, r2))].

On the other hand,

A(y;Vt(., r), Vt; lt, x
1, x2) =

∫

dr1 dr2 P (r1, r2; lt, x
1, x2)Θ[y−m(Vt(x1, r1)−Vt(x2, r2))].

By comparing our formulas for the two ambiguities, we see that as long as

y

Kt,t∗
−∆t,t∗,x1,x2 ≤ y ∀ y ∈ [Dt,x1,x2 , Bt,x1,x2 ],

it follows that A(Vt(., r), Vt; lt, x
1, x2) ≥ A(V ∗(., r), V ∗; lt∗ , x

1, x2). Furthermore,
by our formulas for algebraic manipulation ofK’s, we know thatKlt∗ ,βKt,t∗ ,lt,Vt =
Klt∗ ,βKt,t∗ ,lt∗ ,V

∗Klt∗ ,V
∗,lt,Vt . By Thm. 8(iii), this just equal βKlt∗ ,V

∗,lt,Vt =
βKt,t∗ .

Accordingly, Lt,t∗,V ∗,x1,x2 is the set of values β by which one could multiply
Kt,t∗ and still have the desired inequality hold, given the values of Dt,x1,x2 and
Bt,x1,x2 . Lt,t∗,V ∗ is then defined as the set of such multiples for which we can be
assured that the inequality holds for every (x1, x2) pair. So for every β in that
set, we know that (βV ∗, lt∗) has better ambiguity than does (Vt, lt), for every
single (x1, x2) pair. Accordingly, by Coroll. 1, it has better expected intelligence
as well. That means that so long as β ∈ ∪tLt,t∗,V ∗ , it follows that (βV ∗, lt∗) has
better expected intelligence than some (Vt, lt). QED.

Proof of Thm. 9: By Thm. 2, a utility U1 is factored with respect to U2 for
agent ρ at z iff we can write it as U1(z

′) = Φr(U2(z
′)) for some r-parameterized

function Φ whose first partial derivative is positive across all z ′ ∈ ρ(z). Any
such function can always be written as Fr(U2) − D for some function D only
dependent on ρ(z) and some f -parameterized functionFr whose derivative is
positive. This establishes (i).
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To minimize the learnability of U1 given Φ, l, and U2, first note that since
D is independent of x, the numerator in the definition of Λf (U1; l, x

1, x2),
E(U1; l, x

1) − E(U1; l, x
2), is independent of the choice of D. So we need only

consider the denominator. Rewrite that denominator as

Ef(x)[Var(U1; l, ξ)]

= (1/2)

∫

dx f(x)

∫

dr′ dr′′ P (r′; l)P (r′′; l)[U1(x, r
′)− U1(x, r

′′)]2

where we have used the fact that Var{A(τ} = (1/2)
∫

dt1 dt2 P (t1)P (t2)[A(t1)−
A(t2)]

2 for any random variable τ with distribution P .

Bring the integral over x inside the other integrals, expand U1, and introduce
the shorthand D1(x, r) ≡ Fr(U2(x, r) to get

(1/2)

∫

dr′ dr′′ P (r′; l)P (r′′; l)

∫

dx f(x)[D1(x, r
′)−D1(x, r

′′)−(D(r′)−D(r′′))]2.

The innermost integral is minimized for each r′, and r′′ so long as for each r′

and r′′,

D(r′)−D(r′′) =
∫

dx f(x)[D1(x, r
′)−D1(x, r

′′)].

This can be assured by picking D(r) = Ef(x)(D1(ξ, r)) for all r. This establishes
(ii).

Since E(U1; r, s, x
1) − E(U1; r, s, x

2) = E(U2; r, s, x
1) − E(U2; r, s, x

2), the
ambiguity shift in going from U2 to U1 equals

(E(U1; l, x
1)− E(U1; l, x

2))

{

1−
√

Ef (Var(U2; l, ξ))

Ef (Var(U1; l, ξ))

}

.

So what we need to do is minimize
Ef (Var(U2;l,ξ))
Ef (Var(U1;l,ξ))

.

Now for our choice of D, by the reasoning above,

Ef (Var(U1; l, ξ)) = (1/2)

∫

dr′ dr′′ P (r′; l, )P (r′′; l)Varf(x)(D1(ξ, r
′)−D1(ξ, r

′′)).

Now again use the fact that Var{A(τ} = (1/2)
∫

dt1 dt2 P (t1)P (t2)[A(t1)−A(t2)]2
for any random variable τ with distribution P and associated function A to ex-
pand the Varf into a double integral. Next rearrange terms, and again use that
fact, this time to reduce the integral over r′ and r′′ into a single variance. QED.

Proof of Thm. 10: Any change to z that doesn’t move it out of the set B ∩
π′(z) doesn’t move it out of B ∩ π(z), since all z in any element of π′ lie in the
same element of π. Therefore that change to z doesn’t change π(z). That means
in turn that it does not change D1(CLˆπ(z).) So D1(CLˆπ(z).) can be written
as a function that depends only on B ∩ π′(z). Therefore it is of the form for the
secondary utility required for the difference utility to be factored with respect
to agent B ∩ π′(z). QED.
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Proof of Thm. 11: Note that H(CLˆκ(z)) can be written as a function of
κ(z), and therefore of ρ(z). Accordingly, expand the numerator term in the
definition of learnability in terms of r to see that that it has the same value for
H and WLUH,κ.

Write out WLUH,κ(z) = H1(z)−H1(CLˆκ(z)) to see that the denominator
term for Λf (WLUH,κ; l, x

1, x2) is bounded above by
∫

dx f(x)

∫

dr′ P (r′; l)[H1(x, r
′)−H1(CLˆκ(x, r

′))]2.

In turn, the greatest possible value of the term in square brackets is M . So that
denominator term is bounded above by M .

Write the denominator term for Λf (H; l, x
1, x2) as

(1/2)

∫

dx f(x)

∫

dr′ dr′′ P (r′; l)P (r′′; l)×

[{H2(κ(r
′))−H2(κ(r

′′))}+ {H1(x, r
′)−H1(x, r

′′)}]2

= (1/2)

∫

dx f(x)

∫

dr′ dr′′ P (r′; l)P (r′′; l)

{[H2(κ(r
′))−H2(κ(r

′′))]2 + [H1(x, r
′)−H1(x, r

′′)]2 +

2[H2(κ(r
′))−H2(κ(r

′′))][H1(x, r
′)−H1(x, r

′′)]}.

The third of the integrals summed in this last expression is bounded below
by

−
√
M

∫

dx f(x)

∫

dr′ dr′′ P (r′; l)P (r′′; l)|H2(κ(r
′))−H2(κ(r

′′))|,

which in turn is bounded below by −
√
ML, due to concavity of the squaring

operator. The second of our integrals is bounded below by 0. Finally, the first
of these integrals equals L/2 exactly. Combining, the denominator term for
Λf (H; l, x

1, x2) is bounded below by L/2−
√
ML. QED.

D Repeating Coordinates, Multi-Step Games,
and Constrained Optimization

Say we have a set of coordinates of ζ, indicated by {ζ1, ζ2, . . . , ζT }, with as-
sociated images of C written as {C1, C2, . . . , CT }. Conventionally the index t
is called “time” or the “timestep”. An associated repeating coordinate is a
set {λ1, λ2, . . . , λT } such that ∀ t, λt(z) = λ(ζt(z)) for some function λ whose
domain is given by the union of the ranges of the coordinates {ζ i}, Z. For a de-
terministic set {ζi}, there is a set of single-valued functions {Ei}, mapping Z
to Z, such that ζi+1 = Ei(ζi) ∀ i ∈ {1, . . . , T−1}. The set is time-translation-
invariant if Ei is the same for all i, and (temporally) invertible if the Ei

are all invertible.
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In close analogy to conventional game theory nomenclature, we say that
we have a set of players {i}, each consisting of a separate triple of repeating
coordinates {ρti}, {ξti}, and {νti}, if for each t and i the triple (ρti, ξti , νti ) act as
the context, move, and worldview coordinates, respectively, of an agent. If in
addition T > 1, we sometimes say we have a multi-step game, and identify
each “step” with a different time.
Often we want to consider the intelligences of the players’ agents with respect

to some associated sequences of private utilities. We can do this if in addition to
the players we have a repeating coordinate {σt}, s1 being the design coordinate
value set by the designer of the collective, and git(z) ≡ gi,σt(z)(z) being the

private utility of player i at time t.55 In this way each player is identified with
a sequence of agents.
A multi-stage game is one in which for every i, git is the same function

of zT ∈ Z. A normal-form (version of a multi-stage) game is the system ζ1

with associated coordinates and set of allowed points C1, where P (z1) is set
by marginalizing P (z). So in particular, P (gi1(z1) = v) =

∫

dz P (zT | z1)δ(v −
giT (z

T )). Intuitively, a normal form game is the underlying multi-stage game
“rolled up” into a single stage, that stage being set by the initial joint state of
the players.
If for every i, git is the same function from zt ∈ Z to the reals, then we say

we have an iterated game. More generally, if for each player i all of the {git}
are the same discounted sum over t′ ∈ {1, . . . , T} of Ri(zt

′

) for some real-valued
reward function Ri that has domain Z, then each player’s agents must try to
predict the future, and we have a repeated game.
Note that conventional full rationality noncooperative game theory of nor-

mal form games, involving Nash equilibria of the private utilities, is simply the
analysis of scenarios in which the intelligence of z with respect to each player’s
private utility, given the context set by the other players’ moves, equals 1. This
fact suggests many extensions of conventional noncooperative game theory based
on the formalism of this paper. For example, we can consider games in which
C 6= ζ, i.e., not all joint-moves are possible. Another modification, applicable if
we use the percentile-type of intelligence, is to restrict dµρ to some limited “set
of moves that player ρ actively considers”. This provides us with the concept
of an “effective Nash equilibrium” at the point z, in the sense that over the set
of moves it has considered, each player has played a best possible move at such
a point. In particular, for moves in a metric space, we could restrict each dµρ

55An interesting topic is whether for a particular player there is a set of functions {U t(zt)}
such that the values {xt} induce largeNρt,Ut (z

t), ∀ t ∈ {1, . . . , T}. When there is such a set, it
would seem natural to interpret the player as a set of “agents” with associated private utilities
{Ut}. However unless we can vary the private utility that the time t “agent” is supposedly
trying to maximize, we have no reason to believe that the value xt really is set by a learning
algorithm trying to maximize that private utility. (We might have a coordinate akin to the
explicitly non-learning spins in Ex. 1 of [22].) This means that for such an interpretation be
tested, the private utility must be part of some {σt}, so we can set it. Our modifying it must
then induce associated changes in the moves consistent with the supposition that a learning
algorithm is controlling those moves to try to maximize those values of the private utilities,
as discussed in the subsection on the first premise.
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to some infinitesimal neighborhood about z, and thereby define a “local Nash
equilibrium” by having ρ’s intelligence with respect to utility γρ equal 1 for each
player ρ.
More generally, as an alternative to fully rational games, one can define a

bounded rational game as one in which the intelligences equal some vector ~ε
whose components need not all equal 1. Many of the theorems of conventional
game theory can be directly carried over to such bounded-rational games [19] by
redefining the utility functions of the players. In other words, much of conven-
tional full rationality game theory applies even to games with bounded rational-
ity, under the appropriate transformation. This result has strong implications
for the legitimacy of the common criticism of modern economic theory that its
assumption of full rationality does not hold in the real world, implications that
extend significantly beyond the Sonnenschein-Mantel-Debreu Theorem equilib-
rium aggregate demand theorem [11].
Note also that at any point z that is a Nash equilibrium in the set of the

player’s utilities, every player’s intelligence with respect to its utility must equal
1. Since that is the maximal value any intelligence can take on, a Nash equilib-
rium in those utilities is a Pareto optimal point in the values of the associated
intelligences (for the simple reason that no deviation from such a z can raise any
of the intelligences). Conversely, if there exists at least one Nash equilibrium in
the player utilities, then there is not a Pareto optimal point in the values of the
associated intelligences that is not a Nash equilibrium.
Note that the moves of some player i may directly set the private utility

functions of the agent(s) of some other player i′ in a multi-step game. In partic-
ular, the private utilities of i’s agents might explicitly involve inferences about
the effect on P (G | st) of various possible choices of g(i′)t . Loosely speaking,
when an agent of player i changes the learning algorithm, move variable, world-
view variable, and/or private utilities of (the agents of) other players, and does
so gradually, based on considerations of how to improve P (G | st), we refer
to its learning algorithm as engaging in macrolearning; that agent’s moves
constitute on-line modification of s to try to improve G. We contrast this with
microlearning, in which one agent’s moves are not viewed as directly setting
other agents’ private utility functions, in loose analogy with the distinction be-
tween macroeconomics and microeconomics.56

In any kind of game, each agent only works to (try to) maximize its current
private utility.57 However git will not be mutually factored (with respect to
moves xt) with either the utilities git′ 6=t or with G, in general. Intuitively, moves
that improve the current private utility may hurt the future one, and may even

56In general, we wish to optimize G subject to the communication restrictions at hand.
When the nodes are agents, such restrictions apply to the argument lists of their private
utilities. More generally though, the nodes can communicate with each other in ways other
than via their private utilities. Indeed, part of macrolearning in the broadest sense of the
term is modifying such extra-utility “signaling” and “bargaining” among the nodes, to try to
improve performance of the overall system. None of these “low level” issues are addressed in
this paper.

57Formally, the first premise applies to moves and private utilities that share the same time,
since here the full agent is defined for a single time.
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(due to those future effects) hurt G. (See [1] for an example of this). In repeated
games where G is itself a discounted sum, appropriate coupling of the reward
function of the player with that of G can ensure factoredness of those two
reward functions. However in iterated games—which for example are those that
arise with the Boltzmann learning algorithms considered in [17]—there is no
such assurance. And even for repeated games with discounted sum G’s, simply
having each of the player’s rewards be factored with respect to the associated
reward of G does not ensure that the player’s full private utility is factored with
respect to G.58

Another subtlety arises if there is randomness in the dynamics of the system
at times t′ > t, and we are considering a utility function at time t that depends
on components of z other than zt (e.g., we have a multi-stage game). The
problem is that in general we require utility functions to be expressible as a
single-valued function of the move and context of any agent. So in particular
our utility must be such a function of (xti, r

t
i), despite the stochasticity at times

t′ > t.
One way around this problem is not to cast the problem as a multi-step game,

and instead have contexts explicitly includes future states of the system. We can
keep the game-theoretic structure though if we have z specify the state of the
pseudo-random number generator underlying the stochasticity, and then have
that state be included in rti . This encapsulates the stochastic dynamics within
a deterministic system. Another approach is to recast utilities and associated
intelligences in terms of partial worldpoints zt

′≤t rather than full worldpoints
that include time to the future of t. As an example, starting with a conventional
utility U , we could define a new utility Û(z) ≡ E(U | zt′≤t). Since Û(z′) = Û(z)
if (z′)t

′≤t = zt
′≤t, Nρ,Û (z) only judges z by the quality of its components for

times previous to the future.
There is another subtlety that can arise even in deterministic games, from the

general requirement that any move can accompany any context. The problem
is that this requirement is, on the face of it, incompatible with constrained
optimization problems, in which typically for any moment t C forbids some of
the potential joint-states of the agents at that time. The simplest way around
this difficulty, when it is feasible, is simply to choose a different set of move
coordinates for the agents, one in which the constraints do not restrict the
agent’s moves. Another way around this difficulty is to transform the problem
by means of a function that maps any (unconstrained) pair (x, r) to an allowed
(constrained) joint-state of all agents, which in turn is what is used to determine

58In practice factoredness of reward functions often results in approximate factoredness
of associated utilities if t is large enough so that the system has started to settle toward a
Nash equilibrium among the players’ reward functions. In turn, such settling toward a Nash
equilibrium is expedited if we set s to give a good term 3 in the “reward utility version” of
the central equation, in which all utilities are replaced by the associated reward functions.

For the more general scenario where factoredness of reward functions does not suffice, one
can guarantee factoredness of the utilities by using reward functions set via “effect sets”. As
discussed in the discussion of the WLU, such reward functions can ensure factoredness by (in
essence) overcompensating for all possible future effects on G of a player’s current action. A
more nuanced approach is investigated in [20].
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utility values.
No such function is needed however if the constrained optimization problem

can be cast as traversing the nodes in a graph with fixed fan-out, so that the
constraints don’t apply to the moves directly. To see this, first consider an
iterated game with an “environment” repeating coordinate {θt}. Say that the
game is a Markovian control problem with N players, i.e., a multi-stage game
where G(z) only depends on the value qT and

P (qt | qt−1, x1
1, x

2
1, . . . , x

t−1
1 , x1

2, . . . , x
t−1
N ) = P (qt | qt−1, xt−1

1 , xt−1
2 , . . . , xt−1

N )

= v(qt, xt−1
1 , xt−1

2 , . . . , xt−1
N )

where v is independent of t ∈ {1, . . . , T − 1}.59
For a graph-traversal version of this problem the dynamics is single-valued,

so we can write v(q′, q, x1, . . . , xN ) = δ(q′ − x1x2 . . . xN (q)) for some function
of q and (x1, . . . , xN ) that is written as x1x2 . . . xN (q). (For uncountable q, this
is a continuum-limit graph.) So any constraints o on optimizing G—on finding
the optimal node q in the graph—are reflected in the graph’s topology.
This kind of problem is a (fixed fan-out) undirected-graph-traversal problem

if in addition the values of each ξi form a group, in the following sense:

i) ∀ q ∈ θ, ∃!(I1, I2, . . . , IN ) ∈ {(x1, x2, . . . xN )} such that I1I2 . . . IN (q) = q;

ii) ∀ q ∈ θ, ∀ (x′1, x′2, . . . x′N ) ∈ {(x1, x2, . . . xN )}, ∃!((x′)−1
1 , (x′)−1

2 , . . . , (x′)−1
N ) ∈

{(x1, x2, . . . xN )} such that (x′)−1
1 (x

′)−1
2 . . . (x′)−1

N x′1x
′
2 . . . x

′
N (q) = q.

In practice, search across such a graph is easiest when the identity and inverse
elements of each group of moves are independent of q, and G does not vary too
quickly as one traverses the graph.
Finally, as an illustration of off-equilibrium benefits of factoredness, consider

the case where ζ is a Euclidean space with an iterated game structure where
every ρt(z) is a manifold and all of those manifolds are mutually orthogonal
everywhere on C. Presume that all utilities are analytic. Then for small enough
step sizes, having each player run a gradient ascent on its reward function must
result in an increase in G, for a factored system. (However such a gradient ascent
may progressively decrease the values of some players’ utilities.)
To see why G must increase under gradient ascent, first, as a notational

matter, whenM is a manifold embedded in ζ define ∇MF (z) to be the gradient
of F in some coordinate system forM , expressed as a vector in ζ. Let Iρt be the
tangent plane to ρt(z) at z. Then if G is factored with respect to gρt ,∇Iρ(gρt(z))
must be parallel to ∇Iρt

(G(z)). (If there were any discrepancy between the

directions of those two gradients, there would be a direction within ρt(z) in which
one could move z and in so doing end up increasing gρt but decreasing G.) So
the dot product between those gradients is non-negative, and therefore changing

59Note that in this problem, G is not a direct function of the players’ joint-move at
any time. Rather the joint-move specifies the incremental change to another variable—the
environment—which is what directly sets the value of G. See App. E on gradient ascent over
categorical variables.
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z → z+ |α|∇Iρt
(gρt(z)) for infinitesimal α cannot decrease G(z). Generalizing,

note that for any utility U the gradients ∇Iρt
(U) (one for each ρt) are mutually

orthogonal, since the underlying manifolds are. Therefore having all those dot
products be non-negative means that moving z an infinitesimal amount in ζ in
the direction with components in each plane Iρt given by ∇Iρt

(gρt(z)), cannot

decrease G(z). So gradient ascent works for factored systems.
Similarly, fix t, and consider two worldpoints z′ and z′′ that are infinitesi-

mally close, but potentially differ for every player. Then it may be that for no
player ρ does ρt(z′) = ρt(z′′); every player sees a different set of the moves of
its opponents at z′ and z′′. Nonetheless, again using non-negativity of the dot
products, the system’s being factored means that there must be at least one
player ρ for which sgn[Gt(z′) − Gt(z′′)] = sgn[gρt(z

′) − gρt(z
′′)]. (Compare to

Thm. 1.)

E Example — gradient ascent for categorical
variables

This example illustrates the many connections between traditional search tech-
niques like gradient ascent and simulated annealing on the one hand, and the
use of a collective of agents to maximize a world utility on the other.
Say we have a Cartesian product spaceM ≡M 1×M2×· · ·ML, where each

M i is a space of |M i| categorical (i.e., symbolic, non-numeric) variables. Write
a generic element of M as m, having components mi, i ∈ {1, . . . , L}. Consider a
function h(m) → R that we want to maximize. Because M is not a Euclidean
space, we cannot use conventional gradient ascent to do this. However we can
still use gradient ascent if we transform to a probability space.
To see how, take ζ to be the space of Euclidean vectors comprising the Carte-

sian product S|M
1|×S|M2|×· · ·S|ML|, where each S|M

i| is the M i-dimensional
unit simplex. Define the function R(z) ≡∑

m∈M (
∏L
i=1 zi,mi)×h(m). The prod-

uct zP ≡ (
∏L
i=1 zi,mi) gives a (product) probability distribution over the space

of possible m ∈ M . (Intuitively, zi,j = P (mi = j).) Accordingly, R(z) is the
expected value of h, evaluated according to the distribution zP .
Define m∗ ≡ argmaxm h(m). Then

argmaxzR(z) = [ δ(z1,1 − 0), δ(z1,2 − 0), . . . , δ(z1,m∗
1
− 1), . . . , δ(z1,|M1| − 0);

. . . , δ(z2,m∗
2
− 1), . . . ;

. . .

. . . , δ(zL,m∗
L
− 1), . . . ] ,

i.e., the z that maximizes R, z∗, is a Kronecker delta function about the m
that maximizes h. However unlike m, z lives in (a subset of) a Euclidean space.

So if we make sure to always project ∇R(z) onto S |M1| × S|M
2| × · · ·S|ML|,

the space of allowed z, we can use gradient ascent over z values to climb G—
and thereby maximize h. Intuitively, as opposed to conventional gradient ascent
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over the variable of direct interest (something that is meaningless for categorical
variables), here we are performing gradient ascent over an auxiliary variable, and
in that way maximizing the function of the variable of direct interest.60

Note that R is a multilinear function over the (sub)vector spaces {S |Mi|},
and its maximum must lie at a vertex of that space. There are |M i| components
of the gradient of R for each variable i, giving

∑L
i=1 |M i| components altogether.

The value of the component corresponding to the j’th possible value of M i is
given by the expected value of h conditioned on mi = j. So calculating ∇R(z)
means calculating

∑L
i=1 |M i| separate expectation values. Furthermore, at z∗,

every component of the gradient has the same value, namely h(m), and at all
other z the value of every component of the gradient is bounded above by
h(m).61

Unfortunately, calculating ∇R(z) exactly is prohibitively difficult for large
spaces. However we can readily estimate the components of the gradient instead
by recasting it as a technique for improving world utility in a collective. Define
G(z ∈ ζ) ≡ R(zT ∈ ζT ), where z is the history of joint states of a set of agents
over a sequence of T steps in an iterated game, zt being the state at step t
of the game (see App. D). Define zti as the vector given by projecting z

t onto

the i’th simplex S|M
i|, i.e., the time t-value of the vector (zi,1, zi,2, . . . , zi,|Mi|).

Have all LT of the Cartesian product variables zt1× zt2× · · · zti−1 × zti+1 × · · · ztL
be (the value of) a generalized agent coordinate ρti, x

t
i = zti being the value of

the associated move. So for every agent, G is a single-valued function of that
agent’s move and its context, as required.62

The dynamical restrictions coupling all these distributions gives us C. To
design that dynamics, note that even though R(zt) is in no sense a stochastic
function of zt, because of functional form of its dependence on the agents’ moves
we can use Monte Carlo-like techniques to estimate various aspects of R(zt). In
particular, we can estimate its gradient this way, and then have the dynamics use
that information to increase R’s value from one timestep to the next, hopefully

60By our choice of R, here we are only considering distributions over M that have all L of
the variables statistically independent. Doing so exponentially reduces the dimension of the
space over which we perform the gradient ascent, compared to allowing arbitrary distributions
over M . However there may be other restrictions on the allowed distribution that results in
even better performance. In the translation of the gradient ascent of R(z) into a collective
discussed below, such alternative stochastic forms of the distribution overm would correspond
to having agents each of whose moves concerns more than one of the mi at once.

61To establish the first claim, simply note that z∗ is a delta function, To establish the
second, note that the gradient component E(R | mi = j) is just the expected value of R
under a different distribution, z′, where z′ and z are equal for all components not involving
M i, but z′ has a delta function for those components. Since expected R under any distribution
is bounded above by R(z∗), it must be for z′. Accordingly, each of the components of the
gradient is bounded above by h(m), which establishes the claim.

62Strictly speaking, we need to encode in either rti or xti the other information specifying

the full history, e.g., the values of zt
′
for t′ < t. Otherwise that pair of coordinates do not

form a complement pair. For completeness, we can choose to encapsulate all such information
in rti , as the current value of the seed of an invertible random-number generator used for the
stochastic sampling that drives the dynamics (see below). None of the analysis presented here
depends on this choice though.
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reaching the maximum by time T (in which case we have ensured that G is
maximized).
More precisely, at the end of each step t, each agent (i, t) independently

samples its distribution zti to choose one of its actions mi ∈ M i. That set of L
samples gives us a full vector mt. Next, we evaluate a function of mt, indexed by
(i, t), whose expectation (according to zt) is the private utility for that agent.
(Note that the joint-action mt is not the joint-move of the agents at time t.
That is zt.)
Combining that function’s value with other information (e.g., the similar

values for i for some times t′ < t) provides us a training set for that agent
controlling variable i. This training set constitutes the worldview for agent (i, t+
1), nt+1

i ∈ νt+1
i , and is used by the learning algorithm of agent (i, t+1) to form

a new zt+1
i . This is done by all L agents, giving us a zt+1, and the process

repeats.63

This dynamics produces a sequence of points {mt} in concert with a se-
quence of distributions {zt}, which (if we properly choose the private utilities,
learning algorithms used to update the zi, etc.) will settle to m

∗ and δ(m−m∗),
respectively. As an example, for all i have the function evaluated at mt be
h(mt), so that the private utility of each agent (i, t) is R(zt). Have the asso-
ciated training set for (i, t) be a set of averages of h(m), one average for each
of the possible mi. Have the average for choice j ∈ M i be formed by summing
the previously recorded h(m) values that accompanied each instance where mi

equalled j, where the sum is typically weighted to reflect how long ago each
of those values was recorded. So each of the |M i| components of nti is nothing
other than a (pseudo) Monte Carlo estimate of the components for variable M i

of the gradient of R(z) at the beginning of timestep t.64 In other words, they are
estimates of the components of the gradient of the private utility at the current
joint-move.
Accordingly, let the learning algorithm for each agent (i, t + 1) be the fol-

lowing update rule:

zt+1
i = zti + α

[

nt+1
i −

∑

j n
t+1
i,j

|M i| (1, 1, . . .)
]

,

where the term in square brackets is the projection of νi,t onto its unit simplex

S|M
i|, the vector (1, 1, . . .) being normal to that simplex. To keep z in its unit

simplex, have α shrink the shorter the distance along νi,t from zti to the edge of

that associated simplex, S|M
i|. The result is that each variable in the collective

performs a Monte Carlo version of gradient ascent on G and therefore on h.
Moreover, the learning algorithm is a reasonable choice for an agent i trying to

63A faster version of this process has all of the agents at a given time share the same m
rather than each use a new sample of zt. This can introduce extra correlations between the
moves of the agents though, which may violate our assumption of statistical independence
among the {M i}.

64It would be exactly Monte Carlo if not for the steps updating the {zt
′<t}. It is to account

for that updating that the data going into the training set is aged.
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modify its move zti to increase its private utility. Accordingly, we would expect
it to obey the first premise.65

Note that maximizing G is just a problem in design of collectives. This
suggests many modifications of the scheme outlined above. In particular, one
might try many other learning algorithms besides Monte Carlo gradient ascent
to try to find the z that maximizes G. For example, in a Boltzmann learning
algorithm, each zti is given by a Gibbs distribution over the |M i| possible values
of its variable, with the |M i| “energies” going into that distribution given by
the components of νti . Using the sampling scheme with this distribution may be
better than gradient ascent if the tendency of the latter to get trapped circling
local maxima is a concern (say due to the inaccuracy inherent in the Monte
Carlo estimating of that gradient). Similarly, one can use many private utilities
besides R, in particular ones that try to exploit the first premise. Moreover,
all such approaches can be used even if the G and the z’s are not an expected
utility and associated probabilities over categorical spaces, respectively. The
idea of inserting learning agents into a search problem to recast it as a problem
in the design of collectives is much more general.
As an example, return to the gradient ascent learning algorithm, and con-

sider replacing h(m) with some h∗(m) that is factored with respect to h for
variable i. This will result in a new R,R∗. The partial derivatives of R∗ with
respect to the |M i| components associated with the value of variable i equal
the corresponding derivatives of R, up to an overall additive term that is inde-
pendent of mi. Accordingly, if we set zi to maximize R

∗ rather than R, while
having all other coordinates still maximize R, we will arrive at the exact same
optimizing distribution over m.
Extending this, we can have each coordinate use an associated R∗ based on

an h∗ that is factored for that coordinate, and it will still be the case that if
each zi is set to maximize the associated R

∗ we end up with the same delta
function over m as if all coordinates were set to maximize R. However there is
one crucial way that use of R∗’s differs uniform use of R. This arises from the fact
that rather than ascending the exact gradient, we are ascending a Monte Carlo
estimate of it. That estimation necessarily introduces noise into the ascent. If
we can minimize that noise, the ascent should be much quicker. This in fact is
exactly what is done when we chose the h∗’s to each have as small ambiguity as
possible.66

65Note that the updates are invariant with respect to translations upward or downward of
the function h, since such a translation of h induces an identical translation in R and therefore
in nti. Similarly, so long as there are at least two j for which the associated nt+1

i,j have different

values, zt+1
i 6= zti ; the updating never halts. This reflects the fact that there are no local

maxima.
66There are other ways of affecting ambiguity besides the choice of private utility of course,

and they have to be traded off other factors in general. As an example, optimizing the step
sizes of the agents depends on associated ambiguities. If the stepsizes used by agents other
than i are too big, then the gradient estimate for coordinate i will be a poor approximation
to the true direction of maximal ascent. To see this, note that if the stepsizes used by agents
other than i are too big, then the actual context r for agent i at timestep t + 1 will differ
significantly from the r at the timestep t. However it is that latter r that determines the value
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From this perspective, the idea of casting a search problem as a problem in
design of collectives can be motivated as a way to extend gradient ascent so it
can be used with categorical variables, by transforming the search to be over
a numeric space. Furthermore, even if the underlying space is numeric, casting
the search problem as a problem in design of collectives has the advantage over
gradient ascent that it naturally allows for large jumps in that underlying space,
whether the original space is categorical or numeric, the recasting has the ad-
vantage that it allows the search to be decomposed, into a set of parallel searches
(one for each agent). If desired, those parallel search can then be implemented
on a parallel computer.
More generally, there is nothing about this decomposition that restricts

its use to cases where the original global search algorithm is gradient ascent.
So in particular, the decomposition can be used directly over a categorical
space, without first transforming the search to a numeric space. Moreover, the
search/learning algorithms of the individual agents in the decomposition need
not be direct analogues of the original global search procedure. So in particular,
those individual algorithms need not restrict their agents to only change their
states by an infinitesimally small amount, as in gradient ascent. All of these ex-
tra capabilities flow from recasting the search problem as a design of collectives
problem.
Another modification of vanilla gradient ascent dynamics follows from notic-

ing we are only estimating the gradient of R, rather than evaluating it exactly,
and that the estimation is a variant of Monte Carlo. These observations make it
natural to modify gradient ascent dynamics by inserting a simulated-annealing-
style keep/reject procedure at the end of every timestep. However we cannot do
the naive thing, and run that keep/reject procedure on the pair of (the value
of R(zt) before timestep t’s modification to zt), and (that value of R after the
modification). This is because we can no more evaluate R exactly than we can
its gradient. However we do know what the value of h is for the starting m of
timestep t and for the new m generated in that timestep. So we can run the
keep/reject procedure based on those two values of h.
In fact, we can we can always insert such a simulated-annealing-style keep/reject

procedure at the end of each timestep, regardless of the private utility function
and/or learning algorithm. This is exactly what is done in the technique of
Intelligent Coordinates (IC), sometimes called “Computational Corporations”
[26]. From the perspective of design of collectives, IC was motivated as a way to
improve techniques that focus exclusively on terms 2 and 3 in the central equa-
tion (e.g., by the setting of the private utility). By its insertion of a keep/reject
procedure, IC boosts the performance of such techniques by leveraging term 1 in

n at timestep t + 1. So having those stepsizes too large means that P (r | n) will be broad.
This in turn usually induces broad distributions over agent i’s private utility values for each
of its candidate moves. Usually this means that the ambiguity is quite large.

Conversely, if the stepsize of agent i is too small, then it will be slow in increasing the value
of its private utility. So while agent i benefits from having the stepsizes of other agents be as
small as possible, its stepsize cannot be too small. Since this holds for all agents, we have to
trade off the two effects when determining the optimal stepsize.
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the central equation while not degrading terms 2 or 3. Another way of viewing
IC is as a variant of a conventional simulated-annealing-style keep/reject search
algorithm. In this variation each searched variable is made “smart”, its explo-
ration values being the moves of game-playing computer algorithms (agents),
rather than as in conventional algorithms, to random samples of a probability
distribution.67

As a final example of an approach to optimization suggested by extending
this gradient ascent example, consider replacing the gradient term with the
move of a learning agent in the gradient update rule, rather than replacing
the zti term. There are several subtleties with implementing such an idea in
practice [9]. One is that typically the value of a utility will change with t even
if all the agents freeze their moves with this new approach, since such freezing
means that the agents are traversing the surface, only in a constant direction.
This contrasts with the typical case where the learning agents set the {zti}
directly, and can often result in large ambiguities. Nonetheless, especially when
in constrained optimization problems like graph traversal, this alternative might
be the approach of choice. (See App. D.)

F General situation where the second premise
holds

We will illustrate a case where
∫

dnP (n | r, s)P [ν](x | n) =
∫

dnP (n | r, s)P [ν,σ](x |
n, s), and therefore the second premise holds.
Consider the integral

∫

dnP (n | r, s)P [ν](x | n) arising in the second premise.
Expand the distribution in terms of H, and for simplicity say that H does not
depend on n directly. Next suppose that P (n | r, s) is relatively peaked for fixed
r and s. This provides a scale length of the ambiguity arguments of H, given by
how much they vary as n moves across that peak. Say that H is a slowly varying
function of its arguments on that scale length. (This is particularly reasonable
if ambiguities vary little as one traverses the peak in P (n | r, s).) Under these
circumstances we can pull the integral over n inside the H to operate directly
on the vector of H’s n-dependent arguments, i.e., replace

∫

dnP (n | r, s) | n)H{A(γρ;n,x
i,xj)}(x) → H{

∫

dnP (n|r,s)A(γρ;n,x
i,xj)}(x).

Next, consider each term
∫

dnP (n | r, s)A(γρ;n, xi, xj) appearing inside
the H. If we expand that ambiguity and pull in the integral over n, we get

67An analogue of IC is a well-run human corporation, with G the corporation’s profit, the
players i identified with the employees, and the associated git given by the employees’ compen-
sation at time t. The corporation is factored if each employee’s compensation directly reflects
its effect on G. If each compensation package also has good ambiguity, the employees can read-
ily discern how their behavior affects their compensation. Finally, the exploration/exploitation
process is analogous to management’s deciding whether to maintain or abandon a particular
set of decisions by the employees. These similarities are the basis of the name “computational
corporation”.
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expressions of the form
∫

dnP (n | r, s)P (gρ,σ(x1, ρ))P (gρ,σ(x
2, ρ)). Now again

assume P (n | r, s) is relatively peaked, this time on the scale of variations in
P (gρ,σ(x, ρ)). This allows us to replace

∫

dnP (n | r, s)P (gρ,σ(x1, ρ))P (gρ,σ(x
2, ρ)) →

∫

dnP (n | r, s)P (gρ,σ(x1, ρ) | n)
∫

dn′P (n′ | r, s)P (gρ,σ(x2, ρ) | n′).

Expand the first integral in this product as
∫

dr′
[

∫

dnds′ρδ(gs′ρ(x, r
′)− y)P (r′, s′ρ | n)P (n | r, s)

]

(and similarly for the second).
Say that the first distribution in the integrand is peaked, in s′ρ, about some

h(n), and that the second one is peaked about the n lying in the preimage
h−1(s). (This is exactly true if n specifies s precisely.) Then we can replace

∫

dnds′ρδ(gs′ρ(x, r
′)− y)P (r′, s′ρ | n)P (n | r, s) →

∫

dnδ(gs(x, r
′)− y)P (r′, s′ρ | n)P (n | r, s)

We would have arrived at the exact same expression if we had made the
analogous approximations in expanding

∫

dnP (n | r, s)P [ν,σ](x | n, s) instead.
Hence these approximations justify the second premise. However the second
premise can hold even if not all of those approximations of peaked distributions
are valid, so long as there is sufficient cancellation among the contributions
from the wings of the distributions (e.g., it will hold if ν ⊆ σ regardless of
such peakedness). So the second premise is weaker than these approximations.
In fact, under those approximations, we could always replace the ambiguities
arising in H with their averages according to P (n | r, s), something which we
do not do in the current analysis.

G An alternative definition of ambiguity

Note that rather than P (y1, y2;ψ; l, x1, x2), the difference of the distributions
of utility values at x1 and x2, one could consider the distribution of differences,

P ∗(y1, y2;ψ; l, x1, x2) ≡
∫

drdsP (r, s | l)δ(y1 − ψs(x1, r))δ(y2 − ψs(x2, r)),

and the associated ambiguity A∗. Now almost all of the theorems and corollaries
presented below hold for ambiguities based on A∗ as well as A, so we could use
A∗ rather than A if we wanted to. Moreover, P is P ∗ modified to preserve the
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marginals of the random variables ψ1 and ψ2 while making those variables be
independent:

P (y1, y2;ψ; l, x1, x2) = P ∗(y1;ψ; l, x1, x2)P ∗(y2;ψ; l, x1, x2).

So A∗ fixes (P ∗ which fixes P which fixes) A, but not vice-versa, i.e., A contains
less information than A∗. Furthermore, of all ambiguities based on a distribution
with the same marginals as P ∗, A is the “widest”, having the largest region in
which it is neither 0 nor 1.
However all of this does not mean that we are just being more conservative

by using A rather than A∗, i.e., that we are discarding certain predictions con-
cerning orderings of CDF’s that we would make if we used A∗, while keeping
other such predictions. That’s because in general A can shrink in going from
one l to another (i.e., its value can decrease for at least one y and not increase
for any y) while A∗ does not, and vice-versa.68 So either choice of ambiguity
may result in predictions that would not have been made with the other choice.
In this paper we restrict attention to learning algorithms whose behavior

depends on increasing/decreasing ambiguities based on A rather than on A∗.
This seems to be the case for most real-world learning algorithms, and therefore
A rather than A∗ seems to be the appropriate quantity to plug into our results.
Only if the learning algorithm exploits information in n about the relation of
utility values at the same r would changes in A∗ be a better predictor of asso-
ciated changes in what move the algorithm is likely to make. This is rarely the
case though. For example, training sets formed in the course of multi-step games
(see App. D) contain information about utility values for move/context pairs
(one such pair for each preceding timestep), rather than for multiple moves in
a particular context.
Despite this though, since A∗ fixes A but not vice-versa, parameterizing H

in terms of A∗ rather than A would make H more flexible. However since the
premises only involve A, not A∗, to simply the exposition here we will write H
in terms of A.
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