
An Emergency Landing Planner for Damaged Aircraft

Nicolas Meuleau∗ and Christian Plaunt and David E. Smith and Tristan Smith†
Intelligent Systems Division

NASA Ames Research Center
Moffet Field, California 94035-1000

{nicolas.f.meuleau, christian.j.plaunt, david.smith, tristan.b.smith}@nasa.gov

Abstract

Considerable progress has been made over the last 15 years
on building adaptive control systems to assist pilots in flying
damaged aircraft. Once a pilot has regained control of a dam-
aged aircraft, the next problem is to determine the best site
for an emergency landing. In general, the decision depends
on many factors including the actual control envelope of the
aircraft, distance to the site, weather en route, characteristics
of the approach path, characteristics of the runway or landing
site, and emergency facilities at the site. All of these influence
the risk to the aircraft, to the passengers and crew, and to peo-
ple and property on the ground. We describe an emergency
landing planner that takes these various factors into consid-
eration, and proposes possible routes and landing sites to the
pilot, ordering them according to estimated risk. We give an
overview of the system architecture and input data, describe
our modeling of risk, describe how we search the space of
landing sites and routes, and give a preliminary performance
assessment for characteristic emergency scenarios using the
current research prototype.

1. Introduction
On July 19, 1989, United flight 232, a DC-10 enroute from
Denver to Chicago, suffered an uncontained failure of the
fan blades in the number two (rear) engine. The resulting de-
bris severed hydraulic lines in the airplane’s tail resulting in
loss of all hydraulic fluid and consequent loss of all aircraft
control surfaces. Miraculously, a DC-10 flight instructor on
board the aircraft was able to regain some semblance of con-
trol using differential thrust from the two remaining engines.
An emergency landing was subsequently attempted at Sioux
City, IA. Because of the high landing speed, high descent
rate, and limited control, the aircraft broke up on impact,
but 10 of 11 crew members and 175 of the 285 passengers
survived the accident (NTSB 1990).

This accident, and others involving structural damage
to aircraft, motivated research on adaptive control systems
aimed at allowing a pilot to continue to fly a damaged air-
craft using stick inputs. The adaptive controller translates
those inputs into novel combinations of thrust vectoring and
∗Carnegie Mellon University
†Mission Critical Technologies

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

control surface movements in order to achieve the pilots in-
tent. Testing of these controllers in full motion simulation
and in test aircraft has been very successful so far (see for
example (Burcham et al. 1996; Burken and Burcham 1997;
Gundy-Burlet et al. 2004)). As a result, such control sys-
tems are being seriously considered for next generation mil-
itary and civil transport aircraft. This capability, while quite
remarkable, only addresses the first piece of the problem –
regaining control of the aircraft. Once this is achieved, the
next problem is to determine the best site for an emergency
landing. In general, the decision depends on many factors
including the actual control envelope of the aircraft, distance
to the site, weather en route, characteristics of the approach
path, characteristics of the runway or landing site, and emer-
gency facilities available at the site. All of these influence
the risk to the aircraft, to the passengers and crew, and to
people and property on the ground. A purely secondary con-
sideration is airline and passenger convenience.

Although pilots are highly trained in emergency proce-
dures, structural damage and the consequent changes in
flight characteristics strain the limits of their intuition and
ability to assess different possible options. It would there-
fore be very useful to have an automated system that could,
in seconds, generate and evaluate different possible emer-
gency landing plans, and present the best options to the pilot.
Furthermore, as the flight progresses, it is necessary to con-
tinually update and re-evaluate the set of options to take into
account the changing location, altitude and velocity of the
aircraft, subsequent degradation or failures that change the
predicted control envelope, and updated weather and airport
information.

Fundamentally, this problem is a 3D path planning prob-
lem involving dynamics (aircraft speed and direction), with
complex optimization criterion. It may, for example, be pos-
sible for the aircraft to fly through a region of moderate tur-
bulence, but because of the limited control authority there
is increased risk of loss of control. It might also be easier
(as it was for United 232) for the aircraft to make right turns
rather than left turns, or to handle a right crosswind rather
than a left crosswind.

Traditionally, difficult path planning problems have been
solved using either discretization of the space or by gener-
ating probabilistic road maps. As we will explain in more
detail later, both of these approaches have proven problem-



Figure 1: An overview of the IFPG Architecture in IRAC,
including the Emergency Landing Planner.

atic for this domain. Instead, we generate “roadmaps” by
starting with a 2D visibility graph, and augmenting the edge
set in the vertical dimension to allow paths above, below
or through obstacles where possible. This systematic ap-
proach to roadmap construction is proving to be reason-
ably effective because of the columnar nature of obstacles
in this domain. The planning search is then a hybrid dis-
crete/continuous version of A* that searches for paths of low
risk in this roadmap.

In the sections that follow, we give an overview of the sys-
tem architecture, describe how obstacle information is ob-
tained, describe how we assess risk, and describe the details
of our prototype path planning algorithm.

2. Architecture
The Emergency Landing Planner is one component of the
Integrated Flight Planning and Guidance (IFPG) subsystem
of the Integrated Resilient Aircraft Control (IRAC) Project
(see Figure 1). In the IFPG architecture, when some sort of
damage or failure occurs that impairs the aircraft in some
significant way, several things happen. First, the Adap-
tive Flight Control subsystem helps the pilot retain or re-
gain control of the aircraft. While this is happening, the
IFPG subsystem dynamically gathers: airport and obstacle
data from the Integrated Intelligent Flight Deck (IIFD); air-
craft health information from the Integrated Vehicle Health
Management (IVHM) subsystem; and aircraft control limi-
tations from the Maneuvering Envelope subsystem. It then
uses this information to construct the 3D planning problem
to be solved by the Emergency Landing Planner.

As the Emergency Landing Planner finds usable solutions
that do not violate any of the obstacle or controllability con-
straints, it consults the Trajectory Planner to refine these so-
lutions into more detailed flight plans. (The trajectory plan-
ner has a much more detailed but computationally more ex-
pensive model of aircraft performance and dynamics.) The
pilot then chooses from among the proposed flight plans.

This IFPG emergency planning architecture allows for
flexibility in the amount of autonomy delivered by the IFPG
subsystem. The pilot can choose any of the solutions pro-
posed by the IFPG subsystem based on experience, and
on the information and predictions delivered by the IIFD,4
IVHM, and Adaptive Flight Control subsystems.

The planning problem to be solved consists of the follow-

ing:
1. The start state, consisting of the current position, speed,
direction, and altitude of the aircraft.
2. The control envelope for the damaged aircraft, including
airspeed range, allowable bank angles, descent range, and
control responsiveness.
3. The potential landing sites within the estimated land-
ing range of the aircraft, together with the characteristics of
those landing sites, such as urban density, runway length and
width, weather conditions, and emergency facilities.
4. All of the “obstacles” that must be considered while flying
to any landing site. Some of these may be hard obstacles like
terrain, but others may be regions with weather conditions
that simply present increased risk.

Within these constraints, the Emergency Landing Plan-
ner searches, based on explicit modeling preferences, for the
best solutions that can be found. These are then presented to
the pilot (see Figure 5) as possible landing sites. Alterna-
tive landing sites are regularly re-evaluated to account for
the evolution of the plane’s situation.

3. Obstacles
To determine the best routes and landing sites, the planner
has to consider a set of dynamic and static obstacles. These
obstacles are derived from various on-line sources. There
are five rough categories of obstacle data:

• Terrain

• Urban development

• Special Use Airspace (SUA) and Temporary Flight Re-
strictions (TFRs)

• Radar observations (rain, showers, thunderstorms)

• Icing and turbulence reports

Terrain, urban development, SUA, and TFRs are all rela-
tively static, so the obstacles can be constructed on a daily
basis and cached. Radar observations and icing and turbu-
lence reports are much more dynamic, and must be con-
structed in real time for the region in the vicinity of the
aircraft. Terrain represents hard obstacles that the aircraft
cannot violate. The other areas are all soft obstacles that the
aircraft can violate, but with increased risk. In general, that
risk is a function of the controllability of the aircraft, and, in
the case of weather obstacles, of the severity of the weather.
All of these obstacles are columner in nature – that is, they
have a 2D boundary, a floor, and a ceiling. We represent
them using convex polygons together with their floor and
ceiling altitudes, and the associated risk.

4. Assessing Risk
There is risk associated with various phases of an emergency
landing – en route, approach, landing, and emergency re-
sponse. We use expected loss of life as our measure of risk,
because it allows us to take into consideration casualties on
the ground, as well as passengers and crew. It is difficult
to give precise estimates of risk, given all the uncertainty
associated with aircraft capabilities, pilot performance, and
weather. However, our purpose here is simply to provide a



rough means of ranking alternatives for presentation to the
pilot, and to allow the pilot to focus on the most critical fac-
tors affecting the decision on landing site. We do not intend
to display this numeric information to the pilot.

4.1 En Route Risk
The primary factors influencing risk en route to the land-
ing site are: controllability of the aircraft, distance and time
to the site, complexity of the flight path (e.g. number of
turns), weather along the path (thunderstorms, icing, and
turbulence), and risk of further deterioration in aircraft per-
formance and handling. The en route portion of the flight is
generally at sufficiently high altitude (in the US) that terrain
is not an issue.

We represent controllability in terms of the probability
of retaining control for different flight regimes. Let Pstable
represents the probability of maintaining control at each in-
finitely small step of a traverse or, loosely speaking, the
probability of succeeding per nautical mile (nm). Then for a
flight leg of length D, the probability of succeeding is:

Pleg = (Pstable)
D

If weather is involved in a leg, we take the probability of loss
of control to be:

Pleg =
(
Pstable ∗ P

S
w
)D

where Pw is the probability of an undamaged aircraft suc-
cessfully traversing light weather, and S is the severity of
the weather (thunderstorm, icing, or turbulence) with 1 be-
ing light and 5 being extreme. Initially, we have chosen
Pw to be 0.9. For a normally functioning transport aircraft,
(Pstable ≈ 1), this means that the chance of maintaining
control when flying through extreme thunderstorms, icing or
turbulence is .95 ≈ .59/nm. This may prove to be too low,
but for now, it biases the planner away from routes through
serious weather obstacles.

Risk of further deterioration in aircraft capabilities is dif-
ficult to assess. Ultimately, we assume that this risk will be
given to us by the control and diagnostic systems, and will
depend on the nature of the damage or failures. For now,
we assume that the probability of maintaining control in the
face of further degradation is relatively high, but not one:
Pdegr = .99/nm. This introduces an additional factor in-
side the distance exponent in the calculation of Pleg, which
introduces a mild bias for selecting shorter routes and closer
landing sites.

There is additional risk associated with initiating and con-
cluding turns, so if we let Pturn be the probability of main-
taining control for a turn, the probability of success for a
route with multiple legs and T turns is taken to be:

Proute = (Pturn)T ∗
∏

l∈legs
Pl

Given the probability information for a route, the expected
risk (number of fatalities) is the product of the number of
persons onboard the aircraft and the probability of failure
along the route:

Riskroute = B ∗ (1− Proute)
where B is the number of persons onboard the aircraft.

4.2 Approach Risk
When the aircraft reaches the approach environment (low al-
titude in the vicinity of the landing site) several additional
risk factors come into play, including urban development
along the approach path, ceiling, and visibility. Assuming
the aircraft navigation equipment is functioning normally,
there is little additional risk associated with approaches
where the ceiling is at least 1000 ft above the Decision Al-
titude (DA) for the approach (typically 200 ft for a standard
ILS approach). However, if the ceiling is below the DA, the
risk is high. We take the probability of success when a ceil-
ing is present as:

PCeil =


1 if Ceil ≥ 1000 + DA
Ceil−DA

1000 if 1000 + DA > Ceil ≥ DA
0 if Ceil < DA

Similarly, there is little risk when the visibility is greater than
3 miles, and extreme risk when it is less than half a mile. We
therefore take the probability of loss due to ceiling as:

PVis =

 1 if Vis ≥ 3
V is−.5

2.5 if 3 > Vis ≥ .5
0 if Vis < .5

We assume that loss of control of a transport category air-
craft over a densely populated area will cause loss of life
within at least a .1 square mile area. Thus, if the approach
path takes us a distance D over population density N the
risk is:

Risk = (.1N +B)
(
1− PCeil ∗ PVis ∗ Pleg

)
where Pleg is the probability of success for the final ap-
proach leg, as calculated for en route flight. Thus, if con-
trollability is still high (e.g. loss of one engine), and weather
is good, there is little bias against approach paths over heav-
ily populated areas. However, if controllability or weather is
poor, there is additional bias against high population density
approach paths.

4.3 Runway Risk
The primary risk factors associated with runway choice are
runway length, width, and relative wind. In general, the
length required is determined by landing speed, braking con-
dition, and relative wind. Landing speed can be much higher
than normal if controllability is low, but we assume this is
given to us as part of the control envelope. As a general
rule, an aircraft needs about 40ft of runway for each knot of
speed at touchdown, thus:

Runway-reqd ≈ 40 ∗ (Approach-speed− Headwind)
This can go up by as much as a factor of two if braking qual-
ity is poor (water, snow, or ice on the runway). It can also
go up considerably if pitch or speed controllability is poor,
so these two factors need to be added to the above equation.
If runway length is sufficient, as computed above, there is
no additional risk; risk increases as the runway length is re-
duced below that. We therefore compute probability of suc-
cess due to runway overrun as:

Plength =
Rnwy-length
Rnwy-reqd



when Rnwy-reqd > Rnwy-length. Thus, if the runway
length is zero, the result is considered equivalent to a crash.
Similar factors are required if the runway width is low, if
aircraft speed is high, or if the crosswind is too high, given
aircraft controllability. So overall, the probability of a suc-
cessful landing can be assessed as:

Prnwy = Plength ∗ Pwidth ∗ Pspeed ∗ Pxwind

4.4 Airport Risk
Finally, the risk of landing at a particular airport is influ-
enced by the availability of emergency facilities at the air-
port and in the surrounding community. If facilities are ab-
sent this can result in greater loss of life if the aircraft loses
control on landing, or if it runs off the end of the runway.
If we represent emergency facilities as being a number be-
tween zero (no facilities) and 1 (good facilities) we can esti-
mate the facilities risk as follows

Riskldg = B ∗
(
1−

(
Prnwy

)(2−facil))
Thus, if emergency facilities are good, no additional risk is
incurred, but if they are poor, the risk increases somewhat.

Taken together, all of this risk information for route, ap-
proach, runway, and airport facilities allow us to evaluate
different possible emergency landing plans.

5. Path Planning
The role of path planning is to determine the best path from
the current position of the plane to any candidate landing
site. There has been extensive previous work on path plan-
ning and obstacle avoidance. See (Choset et al. 2004) for a
survey of this field. Our research in the IRAC project lead
us to experiment with several approaches, including cell de-
composition, roadmaps, and probabilistic algorithms.

Our first attempt was to do a 3D cell decomposition of the
Euclidean space and search this decomposition using A* for
the best paths from the current position to runways within
range. There were two problems with this approach. First,
even using cells that are one square mile and 1000 ft thick,
the search space was very large (typically 2-3 million cells).
Performance was not adequate when there were significant
weather or terrain obstacles present. Second, the resulting
paths had lots of artificial zig-zag turns in them, even if the
actual travel could be in a straight line. Since turning in-
creases risk, this artificially biased the search against paths
that did not go 0, 45, or 90 degrees to the axes of the grid.
To get around this second problem, we tried doing cell de-
composition in “configuration space”, which included air-
craft descent rate, turn rate, and heading, in addition to lo-
cation. This search space was so large that it proved com-
pletely impractical to do any kind of systematic search. We
therefore also experimented with the construction and use
of probabilistic roadmaps in the 6D configuration space.1
While this approach typically finds a path in the space, the
paths are often highly non-optimal as illustrated in Figure 2,

1To do this, we extended the Object-Oriented Programming
System for Motion Planning (OOPSMP) software package devel-
oped at Rice University.

Figure 2: Meandering path generated using OOPSMP in the
6D space.

and the search time can vary wildly depending on the ob-
stacles present, and the points chosen by the probabilistic
algorithm. A further problem with this approach is that it is
not clear how to adapt it to consider both paths that traverse
through weather obstacles as well as paths that go around
those obstacles.

As a result, we have adopted a somewhat different, more
systematic method of generating long-range roadmaps that
relies on the typical characteristics of obstacles in this do-
main.

5.1 Roadmaps
A roadmap is a topological representation of the environ-
ment that captures the connectivity of the free space. Sev-
eral types of roadmaps have been proposed in the literature.
In this work, we adapt one of the earliest and most common
techniques: the visibility graph. This graph is defined in
two-dimensional space. Remember that obstacles are repre-
sented as 2D polygons with an associated floor, ceiling and
risk. For the purpose of building the initial visibility graph,
we consider all obstacles above a certain risk level, ignore
the floors and ceilings of the obstacles, and use only their
two-dimensional polygonal representation. In order to ac-
count for aircraft dynamics and turn radius, we expand the
size of each obstacle by an amount determined by aircraft
controllability. The nodes V of the visibility graph include:
the start location v0, the possible destinations vg , and all the
obstacle vertices (corners between two edges of the poly-
gons). The edges E are straight lines between vertices that
do not traverse any obstacle (see Fig. 3). In 2D, the visibil-
ity graph is guaranteed to contain the shortest path from the
start to the goal. Unfortunately, this property does not hold
if the same approach is applied in higher dimensions, or if
some of the obstacles are soft.

The reduced visibility graph or tangent graph is a sub-
graph of the visibility graph that is also guaranteed to con-
tain the the shortest 2D path. Because it contains fewer
edges, it is easier to solve. It is based on the observation
that the shortest path traverses only edges that are tangent
to obstacles. Therefore, non-tangent edges can be safely re-
moved from E (see Fig. 3). Determining the set of tangent
edges can be a difficult problem (Liu and Arimoto 2004).
Instead of computing this set exactly, we eliminate edges
whose extremities are not “locally tangent” to an obstacle.



Figure 3: Three types of roadmaps (from left to right): visibility graph (58 edges), tangent graph (45 edges), and extended
tangent graph (69 edges). The aircraft is represented by the small triangle in the center of the figure, and the targeted landing
site is the small circle at the top of the figure.

Consider an edge e incident to vertex v, between two sides
s and s′ of the polygonal obstacle. Then, e is locally tan-
gent in v if s and s′ fall on the same side on the line passing
through e. A tangent edge may not contain an extremity that
is not locally tangent (but the converse is not true). There-
fore, we can safely eliminate edges with an extremity that
is not locally tangent. This eliminates fewer edges than the
real tangent graph; however, since testing for local tangency
is very cheap, it is a good overall compromise.

So far, we have limited the discussion to a 2D framework.
In our emergency landing domain, obstacles have a floor and
a ceiling, and it is sometimes possible to fly above, below or
through some of them. To account for this possibility, the
tangent graph is augmented with a set of secondary edges
and vertices.

To build secondary edges, we first consider connecting v0
to vg . We enumerate all obstacles that intersect the segment
between these two vertices and all ground-level variations
along this segment. As shown in Fig. 4, the path from v0 to
vg is divided into a series of slices inside of which the ground
level is constant and the same set of obstacles is traversed.
We represent this cut through the 3D space by a chain of
(secondary) vertices and edges: there is one secondary edge
for each slice in Fig. 4 and one secondary vertex between
each two consecutive slices.

Similar operations are repeated for connecting different
pairs of vertices in the 2D map:
• v0 or vg to any corner of an obstacle, if the segment inter-

sects another obstacle and does not have any non-locally
tangent extremity;

• Two corners of different obstacles, if the segment inter-
sects a third obstacle and does not have any non-locally
tangent extremity.

Next, primary edges (those originally present in the tangent
graph) are replaced by chains of secondary edges to account
for ground level variations along those edges (if the ground
level is constant along the edge, it is left untouched).

We call the resulting graph an extended tangent graph
(see Fig. 3). We can associate with each edge e of E

ice

turb.

ice

terrain

R-min
R-max

sli
ce
-1

sli
ce
-2

sli
ce
-3

sli
ce
-4

sli
ce
-5

sli
ce
-6

sli
ce
-7

sli
ce
-8

sli
ce
-9

Figure 4: Cut of the 3D space along the segment from the
plane (v0) to the targeted landing site (vg). The cut is di-
vided into 9 slices where ground elevation and obstacles are
constant. Each slice is represented by a secondary edge in
the extended tangent graph. Secondary vertices’s are added
between each two consecutive secondary edges.

a set of altitudes with equivalent cost or risk. It is rep-
resented as a finite set of altitude intervals and denoted
Ue = {(fi, ci), i = 1, 2, . . . , ke}. Notations f and c stand
for floor and ceiling as intervals (fi, ci) represent tunnels
along e through which the plane can navigate. If e traverses
no obstacle, then Ue contains a single interval ranging over
all possible altitudes. For instance, slice 3 in Fig. 4 contains
five tunnels (altitude intervals) and slice 8 only one tunnel.

The extended tangent graph contains more edges than the
tangent graph, and often contains more edges than the vis-
ibility graph. Although it is not guaranteed to contain the
shortest path in 3D space, it allows for some possibilities of
movement that are not represented in the 2D graphs, such
as going above, below, or through an obstacle. In the next
subsection, we show how to determine, given the vertical
maneuverability of the plane, what trajectories are possible
in the 3D cut of Fig. 4.



5.2 Hybrid A*
The extended tangent graph G is a 2D topological map that
accounts for some opportunities of movement in the 3D
space, such as going above, below, or through an obstacle.
In our prototype planner, this graph is exploited by a 3D path
planning algorithm called Hybrid A* (HA*). HA* is an ex-
tension of the A* algorithm that can handle a form of con-
tinuous state variables. It can also be seen as a deterministic
special case of the HAO* algorithm (Meuleau et al. 2009).
Table 1 summarizes the relations between these algorithm.

discrete states hybrid states
deterministic A* HA*
stochastic AO* HAO*

Table 1: Relationship between algorithms.

The basic principle of HA* is to reason about hybrid
states s = (v, h), where v is a vertex of G and h ∈ R. Being
in state (v, h) represents being at location v and altitude h.
States are called hybrid because they have a discrete compo-
nent v and a continuous component h. The 3D path planning
problem is formalized as the problem of finding a sequence
of hybrid states leading from the plane to the targeted run-
way, which are all particular hybrid states. An important
characteristic of this problem is that there are (uncountably)
infinitely many states that are reachable from a given posi-
tion, which must be accounted for during optimization.

HA* addresses this issue by computing finite partitions of
the (infinite) hybrid-state space. Then it performs standard
A* search in the space of partitions. The partitions are built
on the fly, as the search progresses.

Formally, HA* associates with each vertex v of G a finite
set of intervals Rv = {(li, ui), i = 1, 2, . . . , kv} represent-
ing the altitudes at which v can be reached from the current
position of the plane. For convenience, we denote an alti-
tude interval by the triple [v, l, u] where v is the vertex of G
to which the interval is attached, and l and u are the bounds
on altitude.

The sets Rv , v ∈ V , can be computed incrementally, by
propagating altitude intervals into G. An interval I0 is cre-
ated to represent the initial situation of the plane: if v0 is
the vertex representing the plane and h0 is the current al-
titude, then I0 = [v0, h0 − ε/2, h0 + ε/2], where ε is any
very small positive number. This seed is added to Rv0 and
then pushed through every edge starting in v0, which creates
new altitude intervals that are propagated through the graph
in turn.

Given an edge e = (v, v′) of length d(v, v′) and a tun-
nel (f, c) ∈ Ue, pushing an altitude interval [v, l, u] through
(f, c) consists of computing a new altitude interval [v′, l′, u′]
such that:

u′ = min {min {u, c} − ρnd(v, v′), c}
l′ = max {l − ρxd(v, v′), f} (1)

where ρx > 0 is the maximum descent rate of the plane and
ρn its minimum descent rate. (If the plane can still climb,
then ρn < 0.) The first line of Eqn. 1 may be understood
as follows: if the set of reachable altitudes in v is (l, u),

Algorithm 1 Hybrid-A* for 3D shortest path
1: // Initialization
2: Create I0 = [v0, h0 − ε/2, h0 + ε/2] representing the plane.

Set g(I0) = 0. Compute h(I0) as the Euclidean distance from
v0 to vg . Set f(I0) = g(I0) + h(I0). Add I0 to OPEN.

3: // Main Loop
4: while OPEN 6= ∅ do
5: Pick I = arg maxI′∈OPEN [f(I ′)].
6: if the target is included in I then
7: return(success).
8: end if
9: Remove I from OPEN, add I to CLOSED.

10: for all edges e = (v, v′) ∈ G such that g(I) + d(v, v′) is
lesser than the plane range do

11: for all tunnels (fi, ci) ∈ Ue do
12: Compute interval I ′ = [v′, l′, u′] obtained by pushing

I through (fi, ci) using Eqn. 1.
13: if I ′ is consistent (l′ <= u′) then
14: Set g(I ′) = g(I) + d(v, v′). Compute h(I ′) as

the Euclidean distance from v′ to vg . Set f(I ′) =
g(I ′) + h(I ′).

15: MERGE(I ′).
16: end if
17: end for
18: end for
19: end while
20: return(failure).

then when we enter the tunnel (f, c) leading from v to v′,
our maximum altitude is min {u, c}. During the traversal of
the tunnel, our altitude may increase by the amount−ρnd at
most (which may be positive or negative depending on ρn).
Finally, our altitude when we exit the tunnel can not exceed
c. The second line of Eqn. 1 is derived from a symmetric
equation:

l′ = max {max {l, f} − ρxd, f}

taking into account the fact ρx > 0. Note that if the new
interval is inconsistent (l′ > u′), then it is discarded.

Pushing an altitude interval (l, u) through an edge e of G
consists of pushing it through every tunnel of Ue, and then
taking the union of the resulting intervals. It creates at most
as many interval as there are tunnels in Ue. This operation is
the basis of the reachability analysis performed by HA*.

The HA* algorithm is presented in Alg. 1. It is a very
similar to standard A*, the main difference being that ver-
tices v ∈ V are replaced by altitude intervals. It impacts the
algorithm in the following ways:

• The OPEN and CLOSED lists contain altitude intervals
instead of nodes. The algorithm stops when the target
is included in the most promising interval picked from
OPEN (line 6).

• Instead of listing all possible successors of a node, HA*
pushes an interval through an edge to get all its successor
intervals (lines 11 to 13).

• When a new node is created, regular A* goes through
a series of tests to check whether this node is already
present in OPEN or CLOSED. In HA*, the situation is



Algorithm 2 MERGE(I), where I = [v, l, u]
1: // Intersection with intervals in OPEN
2: for all intervals I ′ = [v, l′, u′] ∈ OPEN such that (l, u) ∩

(l′, u′) 6= ∅ do
3: Call I ′′ the interval of v defined by (l, u) ∩ (l′, u′).
4: if g(I) < g(I ′) then
5: Replace I ′ with I ′ \ I ′′ in OPEN.
6: Set g(I ′′) = g(I) and h(I ′′) = h(I).
7: Add I ′′ to OPEN.
8: end if
9: end for

10: // Intersection with intervals in CLOSED
11: for all intervals I ′ = [v, l′, u′] ∈ CLOSED such that (l, u) ∩

(l′, u′) 6= ∅ do
12: Call I ′′ the interval of v defined by (l, u) ∩ (l′, u′).
13: if g(I) < g(I ′) then
14: Replace I ′ with I ′ \ I ′′ in CLOSED.
15: Add I ′′ to OPEN.
16: Set g(I ′′) = g(I) and h(I ′′) = h(I).
17: end if
18: end for
19: // Intervals intersecting with none of OPEN and CLOSED
20: Compute the set difference of I and every interval in OPEN

and CLOSED. The result is a set of altitude intervals called
∆.

21: for all intervals I ′ = [v, l′, u′] ∈ ∆ do
22: Add I ′ to OPEN.
23: Set g(I ′) = g(I) and h(I ′) = h(I).
24: end for
25: delete(I);

more complex because a newly created interval I may in-
tersect partly with intervals in OPEN, partly with intervals
in CLOSED, and partly with none of the two. Therefore,
the test is replaced by a call to the function MERGE, de-
scribed in Alg. 2. This procedure ensures that each hy-
brid state included in the new interval I receives the same
treatment as discrete states in standard A*.

HA* exhibits the same convergence properties as A*, that is,
it is guaranteed to be optimal if the heuristic is admissible. A
proof of this statement is obtained by adapting the proof of
convergence of HAO* (Meuleau et al. 2009) to the particular
case of deterministic problems.

6. Results, Status and Issues
We have tested our initial prototype planner in standalone
fashion on a number of scenarios generated using real and
synthetic weather data. Figure 5 shows a screen shot of the
results for an aircraft over northeastern Arizona. In the map
on the left side, the aircraft position is represented by the
small triangle in the center, and there are various terrain and
weather obstacles depicted. The right hand side provides a
ranked list of the best options for an emergency landing. For
each option, the airport and runway are given, along with
runway length, distance, and any significant risk factors. In
this case, the highest ranking option is for the aircraft to pro-
ceed around the line of thunderstorms to its west and land
on runway 03 at Flagstaff (KFLG), as depicted on the map.
Runway 21 at Flagstaff is closer and has more favorable

winds, but would require flying through the thunderstorm
line to get to the approach point. Likewise, Grand Canyon
(KGCN) runway 21 is also slightly closer and longer, but
would again necessitate flying through a line of thunder-
storms. Figure 6 shows what happens to the path to Flagstaff
runway 03 when the range of the aircraft is reduced. In
this case, the only way to reach this runway involves fly-
ing through the thunderstorm line, which increases risk. As
a result, the best options are now the runways at Winslow
(KINW), as shown in the list in Figure 7. A similar result
occurs when the controllability of the aircraft is reduced; in
that case Winslow is preferred because the paths are more
direct and involve less turning.

Our performance objectives for the Emergency Landing
Planner are to provide these option lists within ten seconds
of any significant change to the state and controllability of
the aircraft, and to continually update the lists as the aircraft
position and state evolve. Our preliminary testing indicates
that we are within range of these objectives and expect that
some minor optimization will allow us to meet them.

The Emergency Landing Planner and the other compo-
nents shown in Figure 1 are being integrated into a full mo-
tion 767 simulator for testing with a number of different
damage models and scenarios. In early 2010, a small group
of airline pilots will be subjected to several different dam-
age scenarios with and without the assistance of the adaptive
controller and the Emergency Landing Planner. We intend to
record objective data on pilot performance, and also ask the
pilots to provide subjective assessments of the systems and
interfaces. There are a number of user interface issues asso-
ciated with presenting alternatives to the pilot. For example,
how many alternatives should we present at a time? Should
we give pilots the ability to modify the ranking criteria, and
if so how? In an emergency, pilots have little attention to
spare, and user interfaces need to be simple and intuitive.
We do not have ready answers to these questions, and ulti-
mately this will require input from pilots and other experts
on human factors in the cockpit.

While our path planning algorithm performs well, it is not
guaranteed to find the optimal path in all cases. In particular,
the augmented visibility graph contains only a subset of the
possible ways of going above, below, and through obstacles.
In addition, the algorithm largely ignores aircraft dynamics.
It gets away with this by expanding the size of obstacles to
allow for the turning and control limitations of the aircraft.
In most cases, this works fine, but if the aircraft is only able
to turn in one direction, a large looping path may be neces-
sary to get to one or more landing sites. In these situations,
probabilistic road map (PRM) techniques seem to be more
effective. We are considering a hybrid approach in which the
initial roadmap is constructed using the augmented visibility
graph, probabilistic techniques are used to further augment
this roadmap, and hybrid A* is used to search the resulting
graph. Ideally this would allow us to construct the roadmap
quickly, take aircraft dynamics into account, but do a bet-
ter job of searching for good solutions than is possible using
only PRM techniques



Figure 5: A display of possible emergency landing sites for a damaged aircraft (small center triangle) over central Arizona.
Sites are ranked according to decreasing risk, with the primary risk factors for each possibility listed. Risks depicted above
include runway length (RLg), runway width (RWi), facilities (Fcl), and en route weather (Enr).

Figure 6: Path to Flagstaff when range is decreased

Acknowledgments
This work was supported by the Intelligent Resilient Air-
craft Control program of the NASA Aeronautics Research
Mission Directorate. We thank John Kaneshige and Ste-
fan Campbell for help with the FLTZ trajectory planning
software, and the full motion simulator. We thank United
Captain Mietek Steglinski for discussion on the factors most
relevant to deciding between alternative emergency landing
sites.

References
Burcham, F. W.; Maine, T. A.; Fullerton, C. G.; and Webb,
L. D. 1996. Development and flight evaluation of an emer-
gency digital flight control system using only engine thrust
on an F-15 airplane. Technical Report TP-3627, NASA.
Burken, J. J., and Burcham, F. W. 1997. Flight-test results
of propulsion-only emergency control system on MD-11
airplane. J. Guidance, Controls and Dynamics 20(5):980–
987.

Figure 7: Top options when range is decreased.

Choset, H.; Lynch, K.; Hutchinson, S.; Kantor, G.; Bur-
gard, W.; Kavraki, L.; and Thrun, S. 2004. Principles of
Robotic Motion: Theory, Algorithms, and Implementation.
Cambridge, MA: MIT Press.
Gundy-Burlet, K.; Krishnakumar, K.; Limes, G.; and
Bryant, D. 2004. Augmentation of an intelligent flight
control system for a simulated C-17 aircraft. JACIC
1(12):526–542.
Liu, Y., and Arimoto, S. 2004. Computation of the tangent
graph of polygonal obstacles by moving-line processing.
IEEE Trans. on Robotics and Automation 823–830.
Meuleau, N.; Benazera, E.; Brafman, R.; Hansen, E.; and
Mausam. 2009. A heuristic approach to planning with
continuous resources in stochastic domains. JAIR 34:27–
59.
NTSB. 1990. Aircraft accident report – United Airlines
flight 232. Technical Report NTSB/AAR-90/06, National
Transportation Safety Board.


