
Static Stability Analysis of Embedded, Autocoded

Software

Eric Feron∗ and Arnaud Venet†

1 Introduction

Embedded software-based control systems are commonly constructed using model-based design
environments such as MATLAB/SimulinkTMfrom MathWorks. These environments allow the
system designer to establish critical properties ensuring the reliability of the system (stabil-
ity, disturbance rejection, etc.) directly at the model level, using a rich mathematical toolset.
However, the software implementation substantially transforms the mathematical model by
introducing numerous programming artifacts (aggregate data structures, pointers) and alter-
ing the numerical representation (platform-dependent floating/fixed-point arithmetic, and, in
the most extreme cases, conversion from continuous-time dynamics to discrete-time dynamics).
Verifying that the reliability properties of the system are preserved by the implementation is ex-
tremely challenging, yet in many cases critically important. Model-based design environments
usually come with an autocoder i.e., a code generation tool that automatically synthesizes an
implementation of the embedded controller from the specification of its model. Autocoders
are getting increasingly used in practical applications for they greatly simplify the implemen-
tation process. In many corporations however, including aerospace and automotive industries,
autocoding is essentially precluded because its properties are considered to be not adequately
trustworthy.

Static program analysis tools have recently proven successful in tackling the certification of
embedded software-based control systems. ASTREE [3], developed by P. Cousot’s team in
France, can automatically verify the consistency of floating-point arithmetic in the electric-
command control system of the A380, Airbus’ super-jumbo carrier. C Global Surveyor [7],
developed by Kestrel Technology LLC, can verify the absence of pointer manipulation errors
in the mission-control software of NASA’s Mars Exploration Rovers. However, the scope of
static analysis has been essentially limited to robustness properties, i.e., ensuring the absence
of runtime errors during the execution of the program. Verifying functional properties by static
analysis for a system to be used in the field requires (1) translating a reliability property of the
model into the implementation setting, using the appropriate data structures and numerical

∗Georgia Institute of Technology, feron@gatech.edu
†Kestrel Technology, 4984 El Camino Real #230, Los Altos, CA 94022, arnaud@kestreltechnology.com

1



libraries, and (2) tracking the evolution of this property over all execution paths using abstract
interpretation techniques. This process requires a tight coupling between the model description
and its implementation. While such tight coupling is rarely achieved in practice, it can exist
at least when the implementation is automatically generated from the model. Autocoders, like
Real-Time StudioTMfor SimulinkTM, are increasingly being used in industry for the development
of embedded control software. This means that static analysis techniques specialized for codes
automatically generated from high-level models can be developed to meet market needs.

The approach we are investigating consists of translating the formal proof of reliability prop-
erties of an embedded logic into a dedicated static analyzer that automatically carries out the
corresponding proof on the code generated from the model. Whereas today’s commercial (and
even known academic) static analyzers for embedded mission- and safety-critical software are
handcrafted, we propose to use our prior research to construct the dedicated static analyzer au-
tomatically. Ultimately, the system designer would be provided with a fully automated engine
that performs verification of the generated code without requiring any additional information
other than the high-level model specification.

The paper is organized as follows. In Sect. 2 we describe the challenges posed by the analysis of
autocoded embedded control software and how they are addressed in our approach. In Sect 3
we propose a research agenda toward the analysis of reliability properties for embedded control
software. Section 4 discusses current issues that come up during the design of the static analysis.

2 Challenges

There are two major challenges in developing a tool for the automated verification of reliability
properties of embedded control software automatically generated from a high-level model:

1. How do we translate a property of the high-level model into a property of the code
generated from that model? What are the features of the autocoder we must know to
effectively build this translator?

2. How do we specify the basic components of the static analyzer required to verify the
desired property? How do we specialize the analyzer to the code generated by a given
autocoder?

We discuss these challenges in the following subsections.

2.1 Property Translator

The autocoder of the model-based design environment generates code from the model in a
predictable way. Therefore, we expect to be able to map a property of the model’s variables

2



into a property of the data structures used in the model’s implementation. Commercial model-
based design environments offer rich libraries of basic components for building systems and the
properties of interest may greatly vary depending on the nature of the system designed.

The model-based design environment we have chosen is the Matlab/SimulinkTMtool suite; the
family of systems we are beginning with is that of closed-loop dynamical systems, represented on
the one hand by a family of differential equations that capture the system’s physics, and on the
other hand the closed-loop control algorithm and its associated code. The functional properties
we are interested in include closed-loop systems stability, closed-loop system performance (eg
tracking performance), and reachability analyses. We are currently interested in describing
how to map that property to the implementation by conducting an extensive study of the code
generated from a benchmark of systems in that family.

2.2 Static Analysis Specification Framework

Checking the transposed property of the model on the code may require a specific analysis
algorithm that takes into account the underlying computational model (floating/fixed-point)
and the nature of the reliability property (linear or ellipsoidal invariants). Moreover, the code
generated by the model-based design environment may use programming language constructs
(like pointers or union types in C) that pose a difficulty for the static analyzer. These constructs
may require dedicated analysis algorithms (pointer analysis, type analysis) specially tailored
for the particular structure of code produced by the autocoder. These static analyzers are
strongly specialized toward the family of models and properties considered. This does not
require rewriting the analyses from scratch for each of these configurations. We need a library
of baseline static analysis algorithms (pointer analysis, floating-point analysis, type analysis,
etc.) and a framework for combining them in a way to address each configuration’s unique
requirements. We are in the process of establishing a taxonomy of static analysis algorithms and
describing a specification framework for expressing arbitrary combinations of these algorithms.

3 Research Agenda

3.1 Overview of the problem: Illustrative example

Consider a dynamical system described by the following equations of motion

d
dtx = y
d
dty = u + w

(1)

where x is the variable to be controlled, u is a control variable, and w a disturbance whose
value is unknown (for example wind gusts). We assume a sensor system is able to read x.

3



A typical embedded system design problem is to come up with a logic that, based upon suc-
cessive readings of x(t) over time, is able to generate a sequence of control inputs u(t) such
that the “closed-loop” system is stable (that is, the variable x never grows out of bounds),
and achieves proper disturbance rejection, that is, minimizes the deviations of x generated by
w. Control systems engineering provides a convenient framework to achieve such performance
requirements, by using linear dynamical systems as a modeling framework for such a logic. For
example, the logic may be specified by the dynamical system:

d
dtx1 = y,
d
dtx2 = −10x2 + y,
u = −0.01x1 + 9

10x2 − 10y

(2)

and it is indeed easy to check (via a simple eigenvalue computation, for example) that the
system specification consisting of (3) and (2) is stable, and therefore correctly achieves the most
important requirement for the embedded system. An alternative and more powerful stability
criterion consists of computing an invariant for (3) together with (2). Such an invariant might
easily be obtained by considering the evolution over time of V (x, y, x1, x2), with

V (x, y, x1, x2) =


x
y
x1

x2


T 

768.5818 −0.5000 0.8254 −6.3254
−0.5000 82.5378 50.0000 6.7959
0.8254 50.0000 495.5018 4.4932
−6.3254 6.7959 4.4932 0.6616




x
y
x1

x2


The level sets of V are ellipsoids, and, in the absence of perturbations w, the system (3) together
with the logic specification (2) satisfies

d

dt
V ≤ 0

for any initial condition. This in turn ensures all variables of the closed-loop system specification
remain bounded, and therefore the system is stable.

Consider now the implementation of the logic (2): This implementation must replace the
continuous-time system (3) by a difference scheme instead, with or without variable time step.
Other significant differences may exist, including the coding of all variables in floating-point
arithmetic. The invariant function V may, however, still be used to prove the stability of the
system (3) together with the implementation of the controller specification (2). This is what we
propose to achieve by conducting static analysis on the code generated from the model, using
Abstract Interpretation techniques. Kestrel Technology has a substantial body of implemented
analyzers based on abstract interpretation and libraries [7, 6] available. These algorithms are
being incorporated in CodeHawk, a generic static analysis development framework that enables
the automated construction of static analyzers from a set of requirements.

3.2 From system-level properties to implementation-level properties

In the case of the reliability property presented in the previous section (stability), we have to
prove the preservation of an ellipsoidal invariant. This property is expressed on a continuous

4



model and has to be transformed so that it can be checked directly on the implementation of a
discrete model extracted from the continuous formulation. This process can be split up in two
separate steps:

(1) Generate a discrete executable model from a continuous formulation.

(2) Translate the discrete executable model into an actual program.

The first step is a standard mathematical transformation that is fairly independent from the
choice of a particular autocoder. In order to assess the feasibility of our approach, we are
designing a static analysis framework that operates on the executable model of (1). This ex-
ecutable model can be seen as the most detailed operational formulation that can be stated
independently from the characteristics of the target programming language. Since this formu-
lation does not use low-level programming language constructs we can focus on the algorithmic
aspects of the static analysis. We assign a syntax and semantics to this operational model in
order to conduct formal reasoning on it and define its abstract interpretation rigorously. The
connection between this intermediate operational model and the actual implementation is in-
vestigated independently by studying the code generated from a benchmark of representative
models that we are building build for that purpose.

3.3 Tailoring the analyzer to the property to verify

The executable model of the system introduces a complex control-flow with loops that represents
the iterative computation of the control logic over discretized time. This has the effect of
breaking down the simple formulation of the original logic into a number of intermediate steps.
This means that the original invariant that holds at some points in the executable code does
not hold at some others. Therefore, the analysis must be able to model how the invariant is
transformed by elementary operations of the executable model. We need what is called in the
jargon of Abstract Interpretation an abstract domain. In the case of ellipsoidal invariants, we
need to construct an abstract domain that can represent all possible ellipsoidal invariants over a
given set of variables as well as the associated semantic transformers. The semantic transformers
model the effect of elementary operations like initializing a variable or incrementing its value.

The executable model on which we are working hides low-level implementation details, there is
one feature of the target platform that we must take into account at this level because of its
impact on the design of the abstract domain: the computational model of reals (floating/fixed-
point arithmetic). How roundoffs are performed and imprecision is propagated is extremely
important, because the accumulation of roundoff errors can cause a violation of the invariant
and compromise the stability of the control system. This issue extends to other discretizations
that may be performed automatically, such as time discretization. Tracking the propagation of
roundoff and discretization errors requires a proper abstraction of the floating-point computa-
tional model that is amenable to mechanized analysis.

The design of the abstract domain is the most critical aspect of our approach. It requires ex-
pertise both in Abstract Interpretation and Control Theory in order to devise a representation

5



of invariants that will effectively enable checking the correctness of the executable model with
good performance. Fortunately, there is a substantial body of work already published that ad-
dresses many the problems involved in the design of such abstract domains, like the inference of
numerical invariants for floating-point computations [5] or the discovery of ellipsoidal invariants
for the analysis of linear digital filters [4], with extensions to uncertain dynamical systems [1].
Abstract domains specialized for certain properties can be combined in various ways in order
to obtain more expressive ones that can handle more complex properties. Therefore, the effort
of building a new abstract domain is incremental. We plan to use CodeHawk as a repository of
abstract domains as well as a generator for building new abstract domains from combination
of existing ones.

3.4 Analyzing implementation artifacts

Studying the analysis of the executable model provides us with the core concepts for carrying
out the verification at the implementation level. In order to translate these concepts into an
actual analyzer that operates at the generated code level, we need a number of auxiliary analyses
whose purpose is to recover structural data from the implementation artifacts. For example,
consider the following function which has been taken out of the C code generated by Real-Time
Studio from the sample continuous model described in Section 3.1.

static void rt_ertODEUpdateContinuousStates(RTWSolverInfo *si , int_T tid)
{

time_T tnew = rtsiGetSolverStopTime(si);
time_T h = rtsiGetStepSize(si);
real_T *x = rtsiGetContStates(si);
ODE1_IntgData *id = rtsiGetSolverData(si);
real_T *f0 = id->f[0];
int_T i;

int_T nXc = 2;

rtsiSetSimTimeStep(si,MINOR_TIME_STEP);

rtsiSetdX(si, f0);
logic_derivatives();
rtsiSetT(si, tnew);

for (i = 0; i < nXc; i++) {
*x += h * f0[i];
x++;

}

rtsiSetSimTimeStep(si,MAJOR_TIME_STEP);
}

6



This function updates the control variables at each time step accordingly to the specified logic.
In order to recover the original components of the continuous model we must perform a pointer
analysis that is able to distinguish between elements of arrays accessed through pointers (like
x and f0) and a numerical analysis that is able to infer the range of index variables (like i)
used for manipulating the model data. If we consider pointer analysis for example, there is a
broad spectrum of existing algorithms that greatly differ in terms of precision and scalability.
Depending on the structure of the code produced by the generator or just the family of models
considered, we may have to choose different algorithms. In order to achieve this we need a high
level of flexibility for specifying the set of analyses to be performed on the code.

We plan to use the CodeHawk static analysis generator that precisely enables the rapid devel-
opment of efficient analyzers from a list of requirements. What has to be studied, however, is
how to state these requirements for this specific application, i.e., how to recover the structure
of the high-level model. This means that we have to determine a formalism that both specifies
which combination of analysis to use and how to tie the results of the analysis back to the
model components. This formalism would ultimately be integrated within CodeHawk. We are
now studying the features that such a formalism should possess and we will propose a tentative
definition from experiments conducted on a benchmark of models using CodeHawk.

4 Some Current Issues: Designing the Collecting Semantics

When analyzing code, a central issue is the design of what is called the collecting semantics [2].
The collecting semantics describes how much information from the original program must be
retained in order to verify the desired property. The collecting semantics forms the base model
on which static analysis is conducted. Higher levels of semantic collection allow one to define
more compact models of the software execution, but this task may also be more complex, since
information must be collected over several lines of code and then linked into a compact model.
Thus, lower semantic levels (like “line-by-line” analyses) are more desirable from the standpoint
of analyzer simplicity and adaptability. We now show on a simple example that testing typical
control-related invariants raises interesting issues with respect to the collecting semantics.

Consider a C code implementation of the simple recursion

for(;;) {
x+ = Ax;
x = x+;

}

(3)

In this infinite recursion, x ∈ Rn is the state of the system, and the matrix A ∈ Rn×n is a
square matrix. We assume the matrix A to be stable, that is, all trajectories x converge to zero,
which is equivalent to the spectral radius of A being strictly less than 1. A typical invariant
used to prove this property is a quadratic function of the state x, that is, a function of the
form V (x) = xT Px, where P ∈ Rn×n is a positive definite, symmetric matrix. Such quadratic

7



invariants can always be found if the matrix A is stable, and the monotonic decay of V is
equivalent to the matrix inequality (in the sense of the partial order of symmetric matrices):

AT PA− P ≤ 0

Assume such a matrix P is known. A software implementation of (3) might include several
lines of code to carry the line x+ = Ax, and then several other lines of code to implement
x = x+. When n > 1, the latter command can raise significant issues, especially if they are
distributed throughout the code as is often done. Indeed, each line of code corresponds to the
substitution of one entry of the state vector x at a time. The effect on the invariant is, most
often, disastrous. Indeed, considering for example a substitution of pointer values of the kind

for (i =0; i < n; i++) {
∗(x + i) = ∗(x+ + i);

}

Then the value of the invariant V after the first line of this recursion is
a1x
x2
...

xn


T

P


a1x
x2
...

xn

 ,

where a1 is the first row of the matrix A, and the difference between this and V (x) = xT Px is
a1x
x2
...

xn


T

P


a1x
x2
...

xn

− xT Px,

or 
a1x− x1

0
...
0


T

Px + xT P


a1x− x1

0
...
0

 +


a1x− x1

0
...
0


T

P


a1x− x1

0
...
0

 .

the last of the three terms is positive, such that the candidate invariant xT Px decays if and
only if, writing a1 = [a11 a12 . . . an

1 ] and introducing b = [a11− 1 a12 . . . an
1 ], we have, for any

x:
xT bT p1x + xT pT

1 bx ≤ 0

where p1 is the first row of P . However, it is well known from linear algebra that such an
inequality is possible only if b and p1 are collinear and oriented in the same direction, which
is usually not the case. Thus, the invariant xT Px does not decay line-by-line, and we must
first collect the entire substitution of x by x+ before the invariant decays. This substantially
constrains the design of the collecting semantics and the static analysis, since all possible
execution traces of a loop must be collected and represented by one semantic object.

8



Conclusion

Static analysis of embedded software arising from autocoded specifications is a necessary step
towards broad and safe acceptance by the industrial community. This paper has outlined a
research program aimed at achieving this task by exploiting the underlying structure arising
from this type of software, using abstract interpretation and control systems analysis methods.
The execution of this research is an oingoing activity and its findings will be reported in future
publications.

References

[1] Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V. Linear matrix inequalities
in system and control theory. SIAM Studies in Applied Mathematics 15 (1994).

[2] Cousot, P. Semantic foundations of program analysis. In Program Flow Analysis: Theory
and Applications, S. Muchnick and N. Jones, Eds. Prentice-Hall, Inc., Englewood Cliffs,
1981, ch. 10, pp. 303–342.

[3] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
and Rival, X. The ASTRÉE Analyser. In Proceedings of the European Symposium on
Programming (ESOP’05) (2005), vol. 3444 of Lecture Notes in Computer Science, pp. 21–30.

[4] Feret, J. Static analysis of digital filters. In European Symposium on Programming
(ESOP’04) (2004), no. 2986 in LNCS, Springer-Verlag.

[5] Miné, A. Relational abstract domains for the detection of floating-point run-time errors.
In ESOP’04 (2004), vol. 2986 of LNCS, Springer, pp. 3–17.

[6] Venet, A. A scalable nonuniform pointer analysis for embedded programs. In Proceedings
of the International Static Analysis Symposium, SAS 04 (2004), vol. 3148 of Lecture Notes
in Computer Science, Springer, pp. 149–164.

[7] Venet, A., and Brat, G. Precise and efficient static array bound checking for large
embedded C programs. In Proceedings of the International Conference on Programming
Language Design and Implementation (2004), pp. 231–242.

9


