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Abstract. In this paper we present an alias analysis which is able to
infer position-dependent equality relationships between pointers in recur-
sively defined data structures or arrays. Our work is based on a semantic
model of the execution of a program in which every allocated object is
identified by a timestamp which represents the state of the program at
the instant of the object creation. We provide a simple numerical ab-
straction of timestamps which is accurate enough to distinguish between
elements of arrays or list-like structures. We follow the methodology of
Abstract Interpretation to derive a sound approximation of the program
semantics from this abstraction. The computability of our analysis is then
guaranteed by using an abstract numerical lattice to represent relations
between timestamps.

1 Introduction

Most program manipulation techniques, from compile-time optimization to au-
tomatic verification, rely on an alias analysis to ensure the soundness of their
results. The precision of the analysis has a substantial impact on the effective-
ness of the applications which use the aliasing information [15]. However, among
the numerous alias analyses existing in the literature few can provide accurate
information in the presence of recursive data structures [10-12,21,23,24]. The
analyses described in [12] and [21] can infer the shape of a structure (for example
a list or a tree) and prove that this shape is preserved under certain operations.
Deutsch [10,11] has been the first one to propose a nonuniform alias analysis,
that is an analysis where the aliasing relationships are parameterized by the po-
sition of the elements in recursive data structures. In a previous work [23, 24] we
have shown how to extend the applicability and precision of Deutsch’s analysis
by using a richer abstract domain. In this paper we present a new technique for
computing position-dependent aliasing information which is both simpler and
more expressive than the existing models.

The nonuniform alias analyses designed so far [10,11,23,24] rely on a store-
less model of the memory introduced by Jonkers [16] in which aliasing is explicitly
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Let ¢ be a counter for the loop, then:
void copy(List 11, List 12) { pl(—>next)'—>val = 11(—>next)’ —>val

List pl, p2; p2(—>next)'—>val = 12(—>next)’ —>val
pl = 11; for all 4, j such that j =i+ ¢
p2 = 12; As a consequence of these relations:
while(pl != null) { 11(—>next)'—>val = 12(—>next)! —>val
pl->val = p2->val; for all ¢, j such that j =4
pl = pl->next;
P2 = p2->next; After abstraction we have:
} pl(—>next)*—>val = 11(—>next)"—>val
} p2(—>next)*—>val = 12(—>next) —>val

11(—>next)*—>val = 12(—>next) —>val

Fig. 1: Limitation of analyses based on an aliasing relation

given by means of an equivalence relation over the access paths into the data
structures manipulated by the program. The key idea of the abstraction is to
represent the position of an element in a recursive structure by a tuple of coun-
ters denoting the number of times each recursive component of the structure
has to be unfolded to give access to this element. Nonuniform aliasing relation-
ships can then be expressed by using linear constraints on these counters. For
instance, these analyses can discover that the n-th element of the list returned
by a list copy function can only be aliased to n-th element of the list given as
an argument to the function. However, this model has some drawbacks:

— Representing aliasing explicitly by a binary relation over access paths is
costly (the number of alias pairs can increase quadratically by means of
transitive closure) and redundant (if two elements in a structure are aliased,
then all their common descendants are).

— The aliasing information remains precise as long as recursive structures are
manipulated recursively, that is bottom-up. In the case of a list which is
modified by an iterative top-down algorithm, these analyses will give poor
results as illustrated in Fig. 1 where = denotes the aliasing relation. The
loss of precision comes from the fact that these analyses cannot represent
relationships between more than two data structures. In the iterative list
copy program of the figure, the aliasing relationships between 11 and p1 on
one hand, and 12 and p2 on the other hand are related via an implicit loop
counter. Since this information is lost by the abstraction, these analyses will
compute a uniform approximation of the aliasing. The problem is that in
practice list operations are implemented iteratively for efficiency purposes.

— There is no obvious way of representing array structures in these models
since it would imply considering paths of data accessors which may contain
integers, i.e. word languages over an infinite signature. It means that all clas-
sical algorithms over finite automata which underlie these analyses should
be redesigned, which represents a considerable effort. This is a major restric-



tion, since arrays are pervasively used in common programming languages
as object containers.

We propose to relieve these limitations by using a different semantic model
as a basis for a nonuniform alias analysis which can cope with recursive data
structures and arrays as well.

We start with a store-based semantic model in which the memory is described
by a graph. Classically, in these models newly allocated objects are anonymously
represented by fresh nodes which are added to the store. Instead, we explicitly
identify each object with a timestamp which is an abstraction of the execution
state at the moment of the object creation. This semantics of memory allocation
was suggested in [9]. Burke, Carini, Choi and Hind [3] use a similar idea but
they apply a k-limiting scheme which does not allow their analysis to distinguish
between elements nested beyond depth k in a structure. In our model we abstract
a timestamp by an integer which intuitively represents the number of times the
corresponding allocation instruction has been executed in the current function
call. This abstraction is precise enough to deal with common algorithms for
iterating over a list or an array. We specify our analysis in the framework of
Abstract Interpretation [5, 6,4, 7] by deriving an approximation of the program
semantics from an abstract representation of the memory.

In order to construct the abstract domain we need to know the shape of
the memory graph. We use Steensgaard’s analysis [22] for simplicity, but this
information can be provided by any extant pointer analysis. The edges of this
graph are then decorated with numerical constraints relating the timestamps
of the source and target nodes together with the element index in the case of
arrays. These enriched storage graphs form our abstract representation of mem-
ory. Therefore, the abstract semantics simply amounts to performing arithmetic
operations on integers. Array operations fit smoothly in this model and the
analysis can infer nonuniform aliasing information relating arrays and recur-
sive structures by means of numerical relations between timestamps. As far as
we know, this is the first static analysis which can provide position-dependent
aliasing information in the presence of arrays.

The paper is organized as follows. In Sect. 2 we define the syntax and seman-
tics of the simple first-order programming language that we will use to describe
our analysis. Section 3 presents the abstract interpretation framework which
underlies the design of the analysis. In Sect. 4 we show how to construct the
abstract domain upon the abstract storage graph provided by a prior static
analysis. We sketch how to compute this abstract graph by using Steensgaard’s
algorithm. Section 5 describes the abstract semantics of a program. We discuss
extensions to this analysis in Sect. 6.

2 Definition of the Language

We will describe our analysis by using a simply-typed first-order imperative
language. There are only two types of values in our language: integers, denoted
by the type ¢, and pointers, denoted by the type o. We assume that we are



provided with a set V of variable names and a set F of symbols denoting the
fields of structured objects. A program P is a set of function declarations:

fun f(z; :7,..., 00 : 7)) : T =localvy : 7],...,v, : T}, in emd

where the 7, TJ’-’S and 7 are types, the z;’s represent the function parameters
and the v;’s are local variables. A command cmd is defined by the following
grammar:

emd == {emd ; ... ; emd} sequential composition

| while bool do emd iteration

| if bool then cmd else emd  condition
| return z function return
| z:= f(z1,...,2,) function call
| z:= malloc memory allocation
| z[i] =y array update
| z.f:=y field update
| z:=yli] array access
| z:=y.f field access
| z:=expr simple assignment
where x,y,i,21,...,2, € V and f € F. The syntax of expressions is defined as
follows:
expr = null null reference
| n integer constant
| z4+n incrementation
bool :=xz<y|xz<n|z=mnull boolean expressions

| bool & bool | not bool

where z,y € V and n € IN. We assume that the variables appearing respectively
on the lefthand and righthand sides of an assignment are distinct. The syntax
is intentionally minimalist for the sake of clarity. We assume that programs are
well-formed with respect to the usual context rules and well-typed with respect
to types ¢ and o. We use a very loose representation of memory: an object does
not hold any information about its type or size. All memory operations are valid
except when a null pointer is involved. We represent the store by a graph in which
the nodes are the allocated objects and the edges denote fields of structures or
elements of arrays. Therefore, in this model an object can be both viewed as an
array and a structure, and both kinds of operations apply. The purpose is to
simplify the definition of the semantic rules.

The execution of a program P is modelled by a small-step operational seman-
tics. We suppose that every command c¢md in the program is uniquely labelled
by £ : emd. We denote by L the set of labels in P. For each /¢ : emd whre cmd is
not a return command, we denote by next(¢) the label of the unique command
which follows emd in the control flow graph of the enclosing function. We denote
by entry(f) the label of the entry point of a function f, by params(f) the tuple
of formal parameters of f and by locals(f) the set of local variables of f. We



(S,:{l' :cmd; ...}, 0,M)— (S, 0': cmd, o, M)

[b]o = true, o' = o{ce < o(ce) +1}
(S,¢:whilebdo ' : emd, 0, M) — (S, ¢' : emd, o', M)

[b]o = false
(S, :whilebdo ¢' : emd, o, M) — (S, next(?), o, M)

[b]o = true
(S, £ :if b then £y : emd; else s : cmds, 0, M) — (S, ¢y : cmdy, 0, M)

[b]o = false
(S,2:if b then ¢, : emd, else Uy : emds, 0, M) — (S, {5 : cmdz, o, M)

S=S5".0":y:=f(x1,...,2,),0")
(S, : return z, 0, M) — (S',next(¢'), o'{y < o(x)}, M)

17y ifz:
for all = € locals(f) : ¢'(z) = {0 T ifi : LO ,params(f) = (p1,...,Pn),

forall 1 <i<n:o'(p;) = o(x;),for all £ € loops(f) : o'(cy) =0
(Sag Y= f(xly' . '7xn)797 M> - (S(ga Q):entrY(f))Q,)M>

Fig.2: Concrete semantics of the language: control structures.

choose a model of the memory suggested by Deutsch [9] where all objects are
uniquely identified with a timestamp which is an image of the execution state
at the instant of the object creation. The sequence of return points occurring
in the call stack at the execution of a malloc seems the most obvious choice
for timestamps. However, this information is not sufficient to identify uniquely
an object because of loops. The idea is to enrich this timestamp by attaching
to each return point in the call stack the number of times every loop of the
enclosing function has been executed. Then we can unambiguously refer to an
object via its timestamp.

More formally, we denote by loops(f) the set of labels of all while loops
occurring in the function f. We associate to each £ € loops(f) a distinct counter
¢ in V. A timestamp is a sequence (€1, 01) - - - (€, 0n) Where, for each 1 < i < n,
{; is the label of a function call, and p; is an environment mapping every loop
counter of the function containing ¢; to an integer. We denote by L7 the special
timestamp representing a null pointer. Let T be the set of all timestamps. We
denote by vars(f) the set of local variables, formal parameters and loop counters
of the function f. A state s of the operational semantics is a tuple (S, ¢, o, M),



o = stamp(S.(¢, 0))
(S, : x :=malloc, g, (N, E)) = (S,next({), o{x < o},(N U {c}, E))

o(z) = L7
(S,¢: i[j; ZZ L0, M) = 02

o(@) # L7, B' = E = ({o(z)} x {f} X 5)
(S,€:x.f:=y,0 (N, E)) = (S,next(l), 0, (N, E"U{(e(z), f, 0(y))}))
o@) # L7, E' = E - ({o(x)} x {e(0)} x T)

(S,€:xli] ==y, 0,(N, E)) = (S, next((), o, (N, E"U{(e(), 0(i), 0(v))}))

oly) =17
e {L 2] e
e

(Sag L= y-f: 0, (Nv E)> - <S) neXt(é)v Q{l‘ « U}) (N) E)>

o' if (e(y), e(i),0’) € E
17 otherwise

o) # Lrio = {
<S;£ = y[z], 0, (Nv E)> - (Sa neXt(é% Q{l’ «— U}: (Nv E)>

(S,0: 2 :=e,0,M) — (S,next((), o{x « [e]e}, M)

Fig. 3: Concrete semantics of the language: assignment commands.

where £ is the label of a command, ¢ is an environment mapping each x € vars(f),
where f is the function enclosing the command labelled by ¢, to a timestamp
in 7 if z has type o, to an integer otherwise. The component S of the state s
is a call stack, that is a sequence ({1, 01)-..(¢n,0,) where, for all 1 < i < n,
£; is the label of a function call and p; is an environment at that point. The
component M of s is a memory configuration, that is a labelled directed graph
(V,E), where V. C T and E CV x (FUIN) x V. We denote by M the set of all
memory configurations. We also consider a special error state {2 which is used
to model runtime errors. We denote by X the set of all states s. The operational
semantics is then given by a transition relation — € p(X x X).

If o is an environment, A CV, z € V and v € T ¥ IN, we denote by g|4 the
restriction of the domain of p to the variables of A, and by ¢{z <+ v} the environ-



ment which maps z to v and every variable y # x to o(y). If S = (£1, 01)...(€n, 0n)
is a call stack and, for all 1 < i < n, f; is the function enclosing the command
labelled by ¢;, we define the timestamp corresponding to S as follows:

stamp(S) = (éla Ql|100ps(f1)) s (éna Qn|100ps(fn))

The transition relation of the small-step operational semantics is then defined by
a set of rules in Fig. 2 and Fig. 3. Notice that whenever a function is called, all
local variables are initialized to 0 or L7 accordingly to their type. The semantics
[e] of an expression maps an environment g to a value of the corresponding type
as follows, boolean expressions being interpreted over the usual boolean algebra
(true, false, A, V, -):

[null]o = L7 [z <ylo = (o(z) < o(y))
[n]Jo=mn [z < nJo = (o(z) <n)
[ +n]o=o(z)+n [er & ex]o = [er]o A [ez2]e

[z = null]o = (o(z) = L7) [not e]o = —[e]o

We assume that there is an entry function main in the program P which takes
no arguments. The initial state ip of the program is then defined as follows:

ip = (g, entry(main), o;, (0,0))

where p; maps every local variable of main to 0 or L+ accordingly to its type.
Our purpose is to analyze the collecting semantics S of P [4] which consists of
all the states reachable from ip by the transition relation:

S={seX|ip>s}
Example 1. We consider the following program:
make(n : 1) : o = copy(l : 0) : o0 =
local i : ¢, cell : o, local 1 : 4, j : 4,
p: o, val : o in { t:o,m:o{

11: while n > 0 do { 110: t := malloc ;
111: while not(1 = null) do {

12: cell := malloc ; - _
13: val := malloc ; 112: t[11 = l.val ;
14: cell.next := p ; 113: m o 1.next ;
15: cell.value := val ; 114: % o o
16: p := cell ; 115: ? ': % 15
17: i:=n-1; 116: =135
18: n:=1 3
. 117: return t

} ’ }

19: return p



main() : ¢ =
local 1 : o, t : o in {

118: 1 := make (10) ;
119: t := copy(l) ;
120: return O

}

The function make creates a list in a bottom-up way and the function copy
stores pointers to the elements in an array by a top-down traversal of the list.
At program point 120 we have:

o(1) = (118,{}).(12, {c11 = 1})
o(t) = (119,{}).(110, {c111 — 0})

The aliasing between the list and the array are expressed by the following edges
in the memory graph:

((118,{}).(12,{c11 > i}),value, (118,{}).(13, {c11 > i}))
((1187 {})'(12> {cll =+ 1}))neXt7 (1187 {})'(127 {Cll = .7}))
(118, {})-(12, {21 = 1}),next, L7)

(119, {}).(110, {c1z1 = 0}), 7, (118, {}).(13, {cxs = i}))

for 1<i<10,1<j<09. O

We use the methodology of Abstract Interpretation to build a sound approxi-
mation of the collecting semantics.

3 Abstract Interpretation

The collecting semantics can be expressed as the least fixpoint of the the com-
plete U-morphism IF defined over the lattice (p(X),0,U, X, N) as follows [4]:

VX ep(X): F(X)={ip}U{seX|3s' € X:s — s}

In general the iterative computation of this fixpoint does not terminate and &
is not finitely representable.

Abstract Interpretation [5,6,4,7] offers various constructive frameworks for
computing a safe approximation of S. In this paper we follow the methodology
defined in [7] which consists of designing an abstract semantic specification (D¥, C
, Lt~ TF* U, V) where (D*,C) is a partially ordered set, the abstract domain,
related to concrete states by a monotonic operator v : (D!, C) = (p(X),C),
the concretization function. The abstract semantics is described by a function
IF* : D! — D, satisfying the following soundness condition:

FoyCyol*

The element L* of Df provides us with an abstraction of the initial state, that
is {ip} C v(L*). The join U : D* x D* — D' is an associative and commuta-
tive operation which computes an upper-bound of two elements in D*, and the
widening V : D* x D — D! is a binary operation over D! which satisfies the
following conditions:



1. Ve,y € D¥ : 2 C 2Vy, y C zVy
2. For every increasing sequence (z,,),>0 of elements of D¥, the sequence (y,,)z>0
defined as follows:

Yo =o
Ynt+1 = ynvxn+1

is ultimately stationary.

Intuitively V can be seen as an upper-bound operation which entails convergence
when applied repeatedly.

We use this abstract semantic specification to compute the abstract iteration
sequence (IF%),>o which mimicks the iterative fixpoint computation of IF:

¥, o ) C

IF! VIF*(IF%)  otherwise

Theorem 1 (Cousot & Cousot[7]). The sequence (IF%,), ¢ is ultimately sta-
tionary. If N € IN is such that ]Ft}\,_i_1 = ]Fg\,, then for alln > N, ]ng = ]Fg\, and
S C ().

This theorem provides us with an effective algorithm for computing an approx-
imation of the collecting semantics S. We will apply this scheme to our alias
analysis. First, we construct the abstract domain specification, that is the tuple
(DY, E, L%,7,1, V).

4 Construction of the Abstract Domain Specification

The whole abstract specification will rely on the approximation of timestamps.
We choose a simple abstraction which only retains the total number of iter-
ations in the topmost environment of a timestamp. More formally, let ¢ =
(L1,emvr) ... (bn,0n) € T be a timestamp. Let f be the function enclosing the
command labelled by ¢,,. The abstraction a7 (o) of ¢ is then defined as follows:

ar(@) = Y oaler)

L€loops(f)

The null pointer reference is abstracted by a7 (LL7) = 0. This abstraction loses all
information about the shape of the stack and the iteration counters in the callers.
However, it is precise enough to capture common iterative object manipulations
which are performed within a same function. Moreover the associated semantic
operations are fairly simple as we will see in the next section. The specification
of our analysis can be readily adapted to more complex timestamp abstractions.

The abstraction of the environments and the memory will be based on re-
lations between integers. Therefore we need a computable representation of tu-
ples of integers. Numerous abstract numerical domains have been developed
for this purpose [17,8,13,14,18,19] with various levels of expressiveness. We



leave the choice of such a domain as a parameter of our abstract specification.
Following [11], we give a characterization of the primitive operations that an
abstract numerical domain implements and we construct the semantic specifi-
cations upon these operations. Therefore, choosing a particular numerical do-
main merely amounts to instanciating these basic operations. More precisely,
an abstract numerical domain is a collection of abstract domain specifications
(N‘”,,gv,ﬂ/,w : N‘ﬁ, — p(INV), Uy, V) indexed by finite sets of variables
V C V. We denote by T%, an element of N‘u} such that 'yV(T%,) = INV. The
primitive operations are characterized as follows:

— If S is a system of linear equality constraints over V', the operation add S :
N{", — N{", satisfies the following condition:
Yo € N{", v (add S(o*)) D {0 € 1w (0*) | o is a solution of S}

— If #1,...,2, € V, the operation delete,, ., : N‘ﬁ, — Nt satisfies the
following condition:

Vo € N‘ﬁ, : yv(deletezh“,,zn(gu)) D
{oeINY 130" € Ww(0*) : O'lveizr,n} = OlV—{z1, oz} }

— Ifzy,...,2, €V, the operation project, . : N{"/ — Nﬁ%1 tn} satisfies

the following condition:

» T

Vof € N¥ : Yiay . eny (Project,, o (09)) D {ol(ay, ony | © € 1 (0F)}

- If gg € N‘n, and gg € Ngv, then mix(gnl,gg) is an element of N‘ﬁ,uw which
satisfies the following condition:

Vo1 € 1 (0}) : Yoo € yw(0h) : Yo e NV
(olv=01Nolw =02) =>0€ 7VUW(miX(Qﬁ1) Qg))

Ezample 2. We consider the abstract numerical domain of Karr [17]. In this
domain an element p* of N‘ﬁ, is given by a system of linear equality constraints
over the variables of V. This system is kept in row-echelon normal form by using
Gauss algorithm. The operation add S(p*) simply corresponds to adding the
equations of S to the system p* and to normalize the resulting system. The
operations delete,, . .. consists of eliminating all the constraints involving the
variables z1, ..., z,. The operation project is dual to delete, i.e. we keep all the
constraints involving the given variables. The operation mix(pg,pg) consists of
taking the union of the systems pﬁ1 and pg. Karr’s domain satisfies the ascending
chain condition, therefore we can use the join operation Ly as a widening. O

For each label ¢ € L, if f is the function enclosing the command labelled by
£, we denote by vars@/ the set of variables vars(f). We suppose that we have an
abstract domain specification for memory configurations (M#, C M,J_uM,yM :
ME = ©(M),Upq, Vag). Then, the abstract domain D¥ is defined as follows:

Vi

Df = £ (N x M)



The order relation T over Df is the pointwise extension of the order relations
over the abstract numerical domains and M¥. The base element L* is given by

(0vars@es J—t/l\/t>l6£ where:

ok _Jadd{v=0]ve Vars@é}("l'iars@l) when ¢ = entry(main)
vars@t J‘gzars@f otherwise.

If s* € D* we denote by (o(s*@¢), M (s*@¢)) the couple s*(¢). The concretization
function is then defined as follows:

Vst € D¥ -
v(s*) = {23 U{(S,€,0,M) | 0 € Warsae(0(s*@L)) A M € yr(M(s*QL))}

This corresponds to the usual partitioning of execution states with respect to the
control points [4]. Note that for the sake of simplicity we do not try to handle
runtime errors precisely. The widening V and the join LI are defined by pointwise
application of the corresponding operators over the component domains.

Now it remains to define the abstract domain specification for memory con-
figurations. Intuitively, an abstract memory configuration is a storage graph in
which edges carry relations between the timestamps of the source and target
nodes. However, in order to construct this domain we need to know the shape of
the memory graph. We can compute the shape of the graph and the numerical
relations between timestamps simultaneously, by using the technique of cofibered
domains [23,24] and an associated widening operator. However, this would make
the presentation of the analysis quite complicated. For explanatory purposes, we
choose a simpler solution which consists of applying a flow-insensitive pointer
analysis prior to our analysis which can infer an abstract storage graph describing
the shape of the memory and the values of each pointer variable at every control
point. We use the graph produced by this preliminary analysis to construct the
abstract domain. We suppose that the results of this analysis are provided in
the following form:

— A graph G* = (V*, E*) where V¥ is a set of nodes and E* C V¥ x (Fw{O}) x
V% O being a special symbol denoting array elements.

— A function g mapping every couple (¢, z) where x € vars@f has type o, to a
vertex in G¥.

Moreover, G* must be deterministic: V(s,,t),(s',I',t') € Ef : (s = s/ Al =
') = t = t'. The abstract graph G* must also satisfy the following soundness
conditions:

Vo € vars@Q/ : (z : 0) = v(o(z)) = p(l, x)
V(S,t,0,(V,E)) €S :3w:T =V :{ Vo1, f 02) € E:(v(o), f,v(os)) € E
Y(o1,n,09) € E : (v(01),0,v(02)) € EF

We distinguish three variables s, t,i which will respectively denote the abstract
timestamp of the source vertex, the abstract timestamp of the target vertex and



the index of an array element for every edge of G¥. Then, we define the abstract
domain M* of memory configurations as:

M= I Moo x| I Meaiw

(s.f,t) EF (s,0,t)e B!

The order relation C a4 is the pointwise extension of the corresponding order
relations over the abstract numerical domains. The widening V r¢ and the join
Liaq are defined similarly. The abstract memory configuration L x4 maps every
vertex in E* to the base element Lf of the corresponding numerical lattice.
The concretization yu((M*) of an abstract memory configuration is the set of
memory graphs (V, E) such that there exists a mapping v : T — V# satisfying
the following conditions:

L. V(Ulafa 02) eL: (S = aT(Ul))t = aT(02)> € ’Y{s,t}(Mﬁ(V(Ul)af:V(UZ)))
2. Y(o1,n,02) € E:

(S = aT(Ul)ai =n,te 017‘(0'2)> € ’Y{s,i,t}(Mﬂ(V(Ul)v 4, V(U2)))

This completes the specification of the abstract domain. Note that, even though
the preliminary pointer analysis is flow-insensitive, our analysis is flow-sensitive.
The shape of the abstract storage graph is the same at all control points, but the
annotations which relate the timestamps associated to the nodes of this graph
do depend on the control flow.

Steensgaard [22] designed a points-to analysis which can compute the graph
G* in almost-linear time. The algorithm consists of assigning a distinct vertex
to each variable of the program. The analysis then constructs an equivalence
relation over these vertices, the edges of the graph linking the cosets of this
equivalence relation. Every statement in the program is analyzed once resulting
into the identification of vertices and/or the addition of new edges. The use
of a union-find structure to represent the equivalence relation over the vertices
makes this algorithm extremely efficient. We required that the abstract storage
graph G* be deterministic since it simplifies the presentation of our analysis.
This implies the use of unification-based pointer analyses like Steensgaard’s but
it is in no way an intrinsic limitation of our model. We could have formulated the
construction of our abstract domain by using an inclusion-based pointer analysis
like Andersen’s [1] as well.

Ezxample 3. The application of Steensgaard’s pointer analysis to the program
defined in Example 1 produces the following abstract graph:

Gﬂ = ({nla na, n3}a {(nlaneXta nl)a (nl ) value, ’fLQ), (TL3, D7 nQ)})
together with the corresponding assignment of nodes to variables:

{t » n3,1— n;,m— ny,cell = ny,p— ny,val — no}



1. [z := malloc]*(o*, M*) = ([delete, ; add {z = 2 tctoops(f) ce (o), M*)
2. [l = yJ (0, MP) = (gF, M¥{eh  ME(eF) Ugy 10y T(e)}) where
— et = (u(x),0, uly))
— T =[add {s = z,i=i,t = y} ; project,; ]
3. [o.f == yl*(o*, M*) = (o, M*{e* «~ M*(e*) Uy ey T(0)}) where
— e = (u(@), f, n(y))
— T =[add {s = z,t = y} ; project_ ;]
4 [0: 2 =yl MF) = (T(MF(EP), ), MF) where
— et = (u(x),0, uly))
— T = [mix ; delete, ;add {s = y,i =i,t = 2} ; project ,, .qa/l
5. 10 2 = y. [T (of, MP) = (T(M(e%), o), MF) where
— et = (u(@), f,n(y))
— T = [mix ; delete, ;add {s = y,t = z}; project,, .qa/]
6. [z := null]lﬁ(gﬂ, Mﬁ) = ([delete, ;add {z = 0}](gﬂ), Mﬂ)
[x = n]]u(gu,Mﬂ) = ([delete, ; add {z = n}](gu)7 M“)
8 [r:=y+ n]]ﬂ(gﬁ,Mﬂ) = ([delete, ;add {xr =y + n}](gﬂ),Mﬂ)

=

Fig. 4: Abstract semantics of basic commands.

5 Abstract Semantics of the Language

It now remains to specify the abstract semantic operator IF* : D! — D!, Let
st € D¥. Following the specification methodology of partitioned semantic trans-
formers [5, 4], we will define 5 = IF*(s*) by a system of semantic equations over
the variables sQ/¢, 5@/ for £ € L£. We will first define the interprocedural be-
haviour of the program. If f is a function of P we denote by callers(f) the set
of command labels which correspond to a call to f, and by returns(f) the set
of labels which correspond to a return command in f. Since our language is
first order this information is statically known. For the clarity of presentation,
we will denote by u ; v the composition v o u of two operations u and v.

Let f be a function of P with params(f) = {p1,...,pn}. Let £ : z :=
f(zy1,...,z,) be an element of callers(f). First, we bijectively replace every vari-
able v occurring in o(s*@¢) with a fresh variable v'. Then, we define the abstract
function call operation call? as follows:

call’(s*@¢) = (bind(project,, . .. (o(s*@P)), init), M (s*@r))
where
— bind = [mix ;add {p; = 21,...,pn = 7,,} ; project (5]

— init =[add {v =0 v € vars(f) A v & params(f)}]("l'gars(f))



Intuitively, this operation amounts to transferring the numerical relationships
between the arguments x1, . .., x, at the caller level into the callee environment.
All other local variables of the callee should be initialized to 0. The bijective
renaming is necessary to avoid name clashes in the case of a recursive call. The
semantic equation associated to the entry point of f can therefore be written as:

s Qentry(f) = Uvars(f) {call’(s*@¢) | ¢ € callers(f)}

Now let ¢ : z := f(z1,...,z,) be a function call command and ¢' : return y
be a function return command in f. First, we bijectively replace every variable
v occurring in vars(f) with a fresh variable v'. Then, we define the abstract
function return operation return§ as follows:

returnfz(su@l') = ([delete, ; add{z = y'} ; project., ] (return), M (s*@¢'))

where return = mix(project,, (o(s*@1")), o(s*@F)). Intuitively, this corresponds
to transferring the information about the return value computed at the callee
level back into the caller environment. As previously, the bijective renaming is
necessary to avoid name clashes in the case of a recursive call.

The abstract semantics of basic assignment commands is defined in Fig. 4.
The semantic equation corresponding to a program label ¢ can then be specified
as follows:

58 Qf = Uyarsar({[emd]* (s*@Q0") | £ = next(¢')}
U {returng,(sﬂ@l”) |0z = f(z1,...,2,) ANl =next({') A" € returns(f)})

Note that, for simplicity, we have abstracted away boolean expressions. We must
also add the identity transfer equation between the label £ of a sequential com-
position £: {¢' : emd; ; ...} and the label ¢’ of its first command. This completes
the definition of the semantic operator IF¥. The soundness of our definition is
ensured by the following theorem:

Theorem 2. Fovy C 701Fﬂ.

The system of fixpoint equations obtained in this way can be solved by applying
efficient iteration strategies [2]. In particular, it is not necessary to apply the
widening operations at each control point, but only at some points which cut
the cycles in the dependency graph.

Ezxample 4. We apply the analysis to the program of Example 1 by using Karr’s
abstract numerical domain [17] and the results of Steensgaard’s analysis de-
scribed in Example 3. Then, at program point 120, we obtain the following
abstract memory configuration:

(n1,next,ny) —» {s=t+1}
(n1,value,ng) — {s = t}
(n3,|:|,n2) —= {S =0,i= t}

together with the following abstract environment;:

{1=1,t=0}



This means that the analysis has been able to discover the ezact aliasing rela-
tionships holding at program point 120. As far as we know this is the only alias
analysis which is able to give this kind of results in the presence of lists and
arrays. (|

6 Conclusion

In this paper we have constructed a flow-sensitive alias analysis by Abstract
Interpretation which can infer position-dependent aliasing relationships. Our
work elaborates on the existing literature in this domain by providing a simpler
model of the memory which can cope with recursive data structures and arrays
within the same framework. This model also tends to be less costly than the
ones based on an equivalence relation [11,24]. An interesting aspect from the
theoretical viewpoint is that we have designed a technique to solve a entirely
symbolic problem in an purely arithmetic framework. Even the previous nonuni-
form alias analyses which used abstract numerical domains were heavily relying
on symbolic algorithms.

We will now explore the scaleability of this model to large-size programs.
We are rather confident in the results since flow-sensitive analyses based on nu-
merical domains have shown their ability to handle large programs, which is
confirmed by the recent apparition of commercial tools [20]. We will also inves-
tigate more sophisticated abstractions of timestamps. In particular, we should
encode the call stack more precisely in order to discover nonuniform aliasing
relationships which are created recursively. We would then obtain an analysis
framework which could be able to analyse recursive data structures and arrays
without any restriction on the computation patterns.

Acknowledgement. The author would like to thank the anonymous referees
for useful comments on a first version of this paper.
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