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ABSTRACT

In this paper, we first present a state/action representation
that allows robots to learn good navigation policies, but also
allows them to transfer the policy to new and more complex
situations. In particular, we show how the evolved poli-
cies can transfer to situations with: (i) new tasks (different
obstacle and target configurations and densities); and (ii)
new sets of sensors (different resolution). Our results show
that in all cases, policies evolved in simple environments and
transferred to more complex situations outperform policies
directly evolved in the complex situation both in terms of
overall performance (up to 30%) and convergence speed (up
to 90%).
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1. INTRODUCTION

Advances in mobile autonomous robots have provided so-
lutions to complex tasks previously only considered achiev-
able by humans. Such domains include planetary explo-
ration and unmanned flight where autonomous navigation
plays a key role in the success of the robots. One of the most
popular ways to mitigate the complex nature of robotic tasks
is to focus on simple tasks first and then transfer that knowl-
edge into more complex tasks. Such an approach is termed
transfer learning and is gaining more attention as of late [6].
The primary reason for the success of transfer learning is in
the decomposition of a task into either stages [6] or into sub-
tasks the knowledge of which is combined to accomplish the
more complex task [5].

In this work, we explore a neuro-evolutionary approach
whereby policies are incrementally evolved through tasks
with increasing degrees of difficulty [4]. Neuro-evolutionary
approaches fall in the policy search category where the aim is
to search directly across policies. This search, interspersed
with policy improvements through selection, allows for the
discovery of new and robust navigation strategies. Neuro-
evolutionary approaches have been successfully applied both
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to benchmark problems [2] and to real world control prob-
lems [1]. Often the policy (e.g. an artificial neural net-
work) is simple in construction and therefore is inexpensive
to modify and evaluate in practice, providing resource cost
benefits as well [3].

2. ROBOT NAVIGATION

Robot navigation is a critical first step in many key mo-
bile robot applications. Most current robot navigation al-
gorithms are computation intensive. In cases where robots
have limited resources, it is critical to focus on a simple map-
ping between incoming information and a navigation action.
Regardless of resources, the robot must have the ability to
choose safe and efficient paths through an environment to
reach a specific destination. This includes the ability to
avoid obstacles and maximize robot speed, while maintain-
ing a level of robustness to inaccuracies and noise in sensor
and actuator signals.

In this work, we selected a state space representation that
encodes as much information as possible from the sensors,
as simply as possible, using two state variables:

1. Object distance: Simulating ultra-sonic type sensors,
for each vehicle relative potential path heading angle,
a distance to the nearest object is provided.

2. Destination Heading: The difference between the po-
tential path heading and the vehicle relative destina-
tion heading is provided. This indicates the correction
required for the potential path.

To provide a space of actions that is as directly indicative of
robot task needs as possible, but abstract enough to reduce
the impact of non-determinism, the concept of path quality
is introduced. This quality is calculated in varying ways de-
pendent on the algorithm used, but represents the quality
of a potential path for the robot to take next. In produc-
ing a distribution of quality for all possible paths at each
time-step, the state of the environment is represented, and
a path can be chosen either via the maximum quality, or by
sampling to inject exploration behavior.

There are several ways to perform incremental evolution.
For our case, when the population fitness has converged,
the best network is chosen. The initial population for the
new situation is then “seeded” with this network by creating
mutants with the same procedure. The network remains
in the population, but a random network is chosen for the
first episode. The algorithm then progresses as usual, and
ranking of the networks proceeds with the same equation,
shown in Equation 1.
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Figure 1: The results of evolution are shown for two
source tasks; a) an open environment, and b) an envi-
ronment with a single obstacle. The target task is an en-
vironment dense with obstacles. The probabilistic navi-
gation and direct policy evolution on the target task are
shown for comparison.

The fitness function for the currently operating network
at the end of an episode is given by:
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where 7. is the number of time ticks the robot spends re-

covering from a collision with an obstacle or boundary wall,
[ and B; are the actual total path length of the robot during
the episode, and f; is the best possible (straight line from
start to destination). Similarly, 7; is the time spent to exe-
cute that path, where 3, is the shortest possible time. The
ratios are inverted if [ and 7; becomes larger, keeping the
range [0.0,1.0]. 7 are tuning constants, currently 1.0 and
10.0 respectively. This fitness requires that the policy navi-
gate the robot with the shortest possible path, as quickly as
possible, and of course without hitting anything.

3. EXPERIMENTAL RESULTS

Figure 1 shows the results of transferring policies from
two situations (initial task with no obstacles and initial task
with one obstacle), along with results from the probabilistic
navigation and a policy evolved directly for the dense obsta-
cle environment. This process tests whether the agent can
learn one portion of the state space first (path to destina-
tion) then learn to deal with obstacles. While seeding the
population in an open environment (no obstacles) starts be-
low —10, below a probabilistic algorithm, it still begins well
above the random policy and climbs quickly to significantly
exceed both. This is a significant result, indicating that the
transfer of policies in this domain not only improves learning
speed, but significantly improves overall performance. The
population seeded from an environment with a single obsta-
cle converges to a statistically similar performance, but does
begin at higher performance, indicating that the policy did
gain the ability to avoid obstacles in a specific situation.

Figure 2 show the results of transferring policies when
the sensing capabilities change, dropping from 180 to 16
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Figure 2: The results of evolution are shown for starting
with 180 sectors and moving to 16. The probabilistic
navigation and random initial population algorithms are
shown for comparison.

sectors. This experiment not only shows the potential for
policy transfer, but also the robustness of the state/space
representation. Indeed, in most cases, navigation algorithms
are designed to exploit all possible sensing information, and
suffer when that information is suddenly lost. These results
show that the policy transfer outperforms both the proba-
bilistic algorithm and policies evolved from scratch. This
is a strong robustness result, showing the effectiveness of
the state representation. While higher levels of informa-
tion are beneficial and exploited, a dramatic change in the
amount of that information does not significantly impact the
algorithms performance, and it can easily adjust to the new
situation.
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