
Automated Test Case Generation for an Autopilot
Requirement Prototype

Dimitra Giannakopoulou, Neha Rungta, Michael Feary
NASA Ames Research Center, Moffett Field, CA 94035

{dimitra.giannakopoulou,neha.s.rungta,michael.s.feary}@nasa.gov

Abstract—Designing safety-critical automation with robust

human interaction is a difficult task that is susceptible to a

number of known Human-Automation Interaction (HAI) vul-

nerabilities. It is therefore essential to develop automated tools

that provide support both in the design and rapid evaluation

of such automation. The Automation Design and Evaluation

Prototyping Toolset (ADEPT) enables the rapid development of

an executable specification for automation behavior and user

interaction. ADEPT supports a number of analysis capabilities,

thus enabling the detection of HAI vulnerabilities early in the

design process, when modifications are less costly. In this paper,

we advocate the introduction of a new capability to model-based

prototyping tools such as ADEPT. The new capability is based

on symbolic execution that allows us to automatically generate

quality test suites based on the system design. Symbolic execution

is used to generate both user input and test oracles; user input

drives the testing of the system implementation, and test oracles

ensure that the system behaves as designed. We present early

results in the context of a component in the Autopilot system

modeled in ADEPT, and discuss the challenges of test case

generation in the HAI domain.

Index Terms—human computer interactions, symbolic execu-

tion, testing, formal methods

I. INTRODUCTION

The design of automation behavior in the presence of
user interactions is a complex task that is susceptible to a
number of known Human-Automation Interaction (HAI) vul-
nerabilities. Such vulnerabilities can be generic, for example
non-determinism or incompleteness in requirements; or the
vulnerabilities can be specific to HAI, for example mode
confusion. Analysis of such vulnerabilities is better performed
during the early design stage, where both the analysis cost
and the cost of making modifications are lower. It is a well
known fact that the cost of finding and fixing errors in a system
increases by an order of magnitude as we move from one phase
of the software development process to the next.

It is essential to develop automated tools that provide
support both in the design and quick prototyping of such
automation. Several tools have been developed for performing
analyses in this domain. In this paper, we focus on the Au-
tomation Design and Evaluation Prototyping Toolset (ADEPT)
developed at NASA Ames [10]. ADEPT was constructed to
enable the rapid development of an executable specification for
automation behavior and user interaction. More specifically, a
design of the system and its associated interface are described
in ADEPT in a concise, hierarchical, and tabular form. This
abstract model is used to generate a prototype of the system
and its interface as a Java program.

ADEPT supports a number of analysis capabilities that
help in creating robust designs and prototypes that can be
used as requirements for the construction of the actual system
implementation. This work advocates the introduction of a new
capability to model-based prototyping tools such as ADEPT.
We propose an approach based on symbolic execution to
automatically generate quality test suites based on the system
design. We generate both user input and test oracles; user
input drives the testing of the system implementation, and
test oracles ensure that the system conforms to the ADEPT
specification. Even though our work is discussed in the context
of the ADEPT toolset and symbolic execution project (SPF)
of the Java Pathfinder tool (JPF), the approach is general.
The ideas presented in this work can be applied to other
HAI design toolsets where the specification models have clear
semantics. Similarly, a wide variety of tools that support
symbolic execution can be used to generate the test cases. As
part of the future work, we intend to experiment with other
symbolic execution engines.

Our approach consists of translating ADEPT models into
Java programs that can be symbolically executed by SPF.
The translation takes into account the fact that our goal is to
generate test cases. Our translation process generates programs
that are different from (more abstract than) the prototypes that
are generated by the ADEPT tool. In the context of this work,
user inputs are of two types: (a) sequences of user actions
that describe interactions with the user interface; for example,
pressing buttons and (b) values entered when prompted by the
system; for example, entering a target altitude. By treating such
values as symbolic, and solving the constraints introduced by
the different choice points of the model, symbolic execution
(when applicable) is able to generate test cases that will drive
the program through all its possible paths.

We use a component from an Autopilot system modeled
in ADEPT as the running example through this paper. We
use the example to present our preliminarily results and use
the results to discuss the challenges and benefits of test case
generation in the HAI domain. The remainder of the paper
is organized as follows. Section II provides background on
ADEPT models and symbolic execution. Section III describes
our proposed approach that consists of translating ADEPT
models to Java programs for test case generation, and applying
symbolic execution to those programs. Section IV reviews
related work, and finally Section V closes the paper with
conclusions and plans for future work.

1825U.S. Government work not protected by U.S. copyright

II. BACKGROUND

This section provides background on ADEPT models, sym-
bolic execution, and Symbolic Pathfinder (SPF).

A. ADEPT model

The Automation Design and Evaluation Prototyping Toolset
(ADEPT) enables the rapid development of an executable
specification for automation behavior and user interaction.
The term executable specification refers to the concept of a
testable prototype whose purpose is to support development of
a more accurate and complete requirements specification. The
specification of the lateral system component of an autopilot
requirement prototype is shown in Table I.

Variables in the ADEPT requirement prototype are explic-
itly defined. Some variables are internal to the system, whereas
other variables can be observed or modified by the user through
the user interface. The operations of the executable specifica-
tion in an ADEPT model are defined by the designer in an
unambiguous format. Each operation consists of three parts:
(a) pre-conditions, (b) user actions and (c) update rules. A pre-
condition is a set of constraints where the the corresponding
operation is executed only if the constraints are satisfied by
the current values of the ADEPT model variables. User actions
reflect button presses or other actions through which the user
can directly influence the execution of the system. Update rules
represent changes in the ADEPT model variables that result
from the execution of the corresponding operation.

The lateral system ADEPT table from the autopilot proto-
type model is shown in Table I. There are two main types of
entries in the lateral system table: Inputs and Outputs.
Inputs consist of pre-conditions and user actions. The
Outputs section specifies the changes in the system state
that result from the execution of operations.

The columns numbered (0 through 9) represent the different
operations (one operation per column). For example, in a given
state if the pre-conditions in a column are met and the user
performs the action specified in the column, then the update
rules in the Outputs part of the same column are applied to
the state. Each gray row in the Inputs section corresponds
to a variable or user action. The pre-conditions are essentially
a conjunction of disjunctions. In a pre-condition (variable or
action shown in a gray row), at least one of the bullet-ed
conditions (•) in the white rows below it must hold. Note that
continuous variables are not supported and must therefore be
discretized during the modeling phase.

Several variables are shown in the lateral system ta-
ble example in Table I. Consider the variables in the
Inputs section. The variable simulationStatus has
two possible values paused or running. Another vari-
able selected lateral target error has ranges de-
fined for it. The range of the variable can be either >
179, <= 179 && >= −179, or < −179. In cer-
tain cases more than one value of a variable are marked
with • in a column such as column 5. As mentioned in
the previous paragraph, the semantics is that lateral

TABLE I
LATERAL SYSTEM COMPONENT

0 1 2 3 4 5 6 7 8 9
lateralSystemTable
Inputs
simulationStatus
paused •
running • • •
lateral Interface Action OutputState
noAction • • • •
user presses Lateral Target knob • • • •
user presses Lateral Hold button •
user presses Lateral flight plan button •
lateral system table output state
capture and maintain selected lateral target • •
hold selected lateral target • • • •
capture and maintain lateral flight plan • • • •
selected lateral target error
> 179 •
<= 179&& >= −179 •
< −179 •
Outputs
lateral system table output state
capture and maintain selected lateral target • • • •
hold selected lateral target •
capture and maintain lateral flight plan •
selected lateral target error
− = 360 •
+ = 360 •
0 •
preselected lateral target
lateral direction •
selected lateral Target
preselected lateral target • • • •
lateral direction •
lateral target
selected lateral target • • • • •
lateral direction • •
lateral flight plan target • •
lateral target error
selected lateral target error • • •
lateral flight plan target error •
0 •

system table output state can be equal to ei-
ther hold selected target lateral target or
capture and maintain lateral flight plan. If
no value is specified for a variable for a particular operation
(meaning that there is no corresponding bullet), the value
of the variable is irrelevant (unconstrained) for the opera-
tion. In the Outputs consider the variable preselected
lateral target, it is assigned the value of the lateral
direction when operation in column 8 is executed. There
are no update rules for the lateral direction variable
in Table I because this table is only a very small part of a bigger
autopilot example. There are other tables in the autopilot model
that specify updates to certain variables shown in Table I.

B. Symbolic Execution

Symbolic execution is a program analysis technique for
systematically exploring a large number of program execution
paths [7], [13]. It uses symbolic values in place of concrete
(actual) values as program inputs. The resulting output val-
ues are computed as expressions defined over constants and

1826

symbolic input values, using a specified set of operators.
A symbolic execution tree characterizes all execution paths

explored during symbolic execution. Each node in the tree
represents a symbolic program state, and each edge represents
a transition between two states. A symbolic program state
contains a unique program location identifier (Loc), symbolic
expressions for the symbolic input variables, and a path
condition (PC). During symbolic execution, the path condition
is used to collect constraints on the program expressions, and
describes the current path through the symbolic execution tree.
Path conditions are checked for satisfiability during symbolic
execution; when a path condition is infeasible, symbolic execu-
tion stops exploration of that path and backtracks. In programs
with loops and recursion, infinitely long execution paths may
be generated. In order to guarantee termination of the execution
in such cases, a user-specified depth bound is provided as input
to symbolic execution.

We illustrate symbolic execution with the following exam-
ple that is codified from the specification in Table I:

if(selectedLateralTargetError>179)
selectedLateralTargetError-= 360

else if(selectedLateralTargetError<-179)
selectedLateralTargetError+= 360

The path condition is set to true at the start of execution.
When the line selectedLateralTargetError > 179
is executed and evaluates to TRUE, the value of
selectedLateralTargetError is set to the expression
selectedLateralTargetError− 360. During the exe-
cution of line selectedLateralTargetError < −179,
the expression selectedLateralTargetError +
360 is computed and stored as the value of
selectedLateralTargetError. A symbolic summary
for the piece of code above consists of the two path conditions
that represent feasible execution paths for the code. The two
path conditions generated are as follows:

• selectedLateralTargetError > 179
• selectedLateralTargetError < −179

The path conditions are solved to generate a set of concrete
values (test inputs) which when can be used concrete test cases.

In this work we use Symbolic PathFinder (SPF) [17], [15],
a symbolic execution extension to the Java PathFinder model
checker–a Java bytecode analysis framework [23]. SPF is an
open source execution engine that symbolically executes Java
bytecode. SPF supports a variety of constraint solvers/decision
procedures for solving path conditions; in this work we use the
Choco constraint solver [6]. In general, state matching is un-
decidable when states represent path conditions on unbounded
input data. Hence, SPF does not perform any state matching
and explores the symbolic execution tree using a stateless
search. Furthermore, if the solver is unable to determine the
satisfiability of the path condition within a certain time bound,
SPF treats the path condition as unsatisfiable. While this
situation does not occur for any of the artifacts in our study,
this limitation of constraint solvers could in general affect this
approach, causing it to miss generating affected path conditions

in the modified program. Loops and recursion can be bounded
by placing a limit on the search depth in SPF or by limiting
the number of constraints encoded for any given path; SPF
indicates when one of these bounds has been reached during
symbolic execution. There are no loops or recursive calls in the
artifacts used in our empirical study, hence, we do not specify
a depth bound.

III. APPROACH

In this section we first describe the translation of ADEPT
models into Java programs. The Java programs are then sym-
bolically executed by SPF. The translation process is designed
with test-case generation in mind. Specifically, we encode the
user input to the interface as symbolic variables. During the
symbolic execution process, solving the constraints allows us
to generate test cases that drive the model through all possible
configuration sequences.

A. Translation into a Java program

We generate a Java program, as an intermediate repre-
sentation, from an ADEPT model in order to automatically
generate test cases. Translating the model into a Java program
allows us to use the Java Pathfinder toolkit to automatically
analyze the model and generate test cases. A portion of the
Java program generated for the component shown in Table I
is shown in Fig. 1. This translation is currently performed in
a manual but systematic way. The plan is to automate this
step in the future; this is feasible because the ADEPT models
have well-defined unambiguous syntax and semantics. Two
operations shown in columns labeled 6 and 7 in Table I are
shown in Fig. 1.

A class is created for the lateral system in Table I. The
fields of the class are variables in the ADEPT model. Those
variables that are used in preconditions and determine the
execution of update rules are declared as symbolic using
the @Symbolic annotation (lines 3 to 7 in Fig. 1). This
annotation is used by SPF to treat the fields in a class as
symbolic. The outputState variable represents the lateral
system table output state in Table I. In order to
facilitate the symbolic execution process, it is defined as an
integer that can have three values: zero, one, and two. The
variables that are not used as preconditions in Table I are
declared concretely with the initial values that are specified
in the ADEPT model. The variables with concrete values are
shown on lines 9 to 11 in Fig. 1.

The execute method in Fig. 1 represents the main method
that is invoked from a driver. This method is invoked n times,
where n is specified by the user. An example driver is shown
below:

for(int i = 0; i < n; i++)
execute(new symVar(), new symVar(),

new symVar())

Invoking the execute method allows us to generate test
sequences that are n long. Each time the execute method
is invoked fresh symbolic variables (new symVar()) are

1827

1: public class lateralSystemTable{
2:
3: @Symbolic(“true”)
4: boolean isNominal ;
5:
6: @Symbolic(“true”)
7: int outputState;
8:
9: int preSelectedLateralTarget = 180;

10: int lateralDirection = 180;
11: int selectedLateralTarget = 180;
12: . . .
13:
14: public void execute(
15: boolean userPressesLateralTargetKnob
16: boolean userPressesLateralHoldButton
17: boolean userPressesLateralFlightPlanButton){
18: . . .
19: if(isNominal == false &&
20: ((outputState == 1) || (outputState == 2)) &&
21: selectedLateralTargetError > 179 &&
22: (userPressesLateralTargetButton == true &&
23: userPressesLateralHoldButton == false &&
24: userPressesLateralFlightPlanbutton == false)){
25: applyRule06()
26: }
27: if(isNominal == false &&
28: ((outputState == 1) || (outputState == 2)) &&
29: selectedLateralTargetError < −179 &&
30: (userPressesLateralTargetButton == true &&
31: userPressesLateralHoldButton == false &&
32: userPressesLateralFlightPlanbutton == false)){
33: applyRule07()
34: } . . .
35: }
36:
37: public void applyRule06(){
38: outputState = 0;
39: selectedLateralTargetError− = 360;
40: selectedLateralTarget = preSelectedLateralTarget ;
41: lateralTarget = selectedLateralTarget ;
42: lateralTargetError = selectedLateralTargetError ;
43: }
44:
45: public void applyRule07(){
46: outputState = 0;
47: selectedLateralTargetError+ = 360;
48: selectedLateralTarget = preSelectedLateralTarget ;
49: lateralTarget = selectedLateralTarget ;
50: lateralTargetError = selectedLateralTargetError ;
51: }

Fig. 1. Part of the lateral system table translated into a Java program as an
intermediate representation that enables test case generation.

generated. The reason for this is described in Section. III-B.
For each of the operations in Table I, there is an if conditional
branch statement. This checks whether the variables satisfy
the conditions that enable the execution of the corresponding
update rule. Each update rule is added as a separate method.
The methods applyRule06 and applyRule07 on lines 37
and 45 respectively represent the update rules for columns 6
and 7 in Table I.

Semantics of user actions One of the technical challenges
of this work was to encode the semantics of a particular user
action in a Java program. Consider these two options (a) a user

true
(1)

isNominal == false
outputState == CONST 2 ∧ outputState �= CONST 1 ∧

selectedLateralTargetError > CONST 179 ∧
userPressesLateralTargetButton(s1) == true ∧
userPressesLateralHoldButton(s2) == false ∧

userPressesLateralFlightPlanbutton(s3) == false
(2)

outputState == CONST 2 ∧ outputState �= CONST 1 ∧
selectedLateralTargetError − 360 > CONST 179 ∧

userPressesLateralTargetButton(s4) == true ∧
userPressesLateralHoldButton(s5) == false ∧

userPressesLateralFlightPlanbutton(s6) == false ∧
(3)

Fig. 2. A path condition that represent a path through the symbolic execution
tree for the lateral system program in Fig. 1

presses a momentary switch (button) that is only active while
the user is pushing it and then returns to an unpressed state
or (b) the user could push a toggle switch that continues to
stay in its on or off state. The modeling of pressing switches
or buttons can get fairly complex when the cognitive aspects
of the human are added to the semantics of the button press.
In this work, however, we restrict the semantics of the button
push to a momentary switch. In future work we plan to add
more sophisticated semantics of user actions in our model.

The lateral Interface action OutputState
variable represents different user actions. The user can
perform one of four actions: noAction, user presses
lateral target knob, user presses lateral
Hold button, and user presses lateral flight
plan button. The last three actions are encoded as boolean
variables in the execute method in Fig. 1. Each time the
execute method is invoked the variables are re-initialized
as symbolic variables. Note that we do not explicitly represent
noAction. When all the other user actions are false it
implies noAction is taken. This is simply an optimization.

B. Test Case Generation

The execute method is symbolically executed n number
of times to generate sequences of user actions and variable
inputs. Each time the execute is invoked it generates fresh
symbolic values for the user actions encoded as boolean vari-
ables. This allows us to model the semantics of a momentary
switch as described previously. Recall that path conditions are
generated during the symbolic execution of a program. An
example of a path condition along a certain program path
during symbolic execution is shown in Fig. 2.

When symbolic execution begins, the path condition at the
start is set to true represented in Eq. (1). When the symbolic

1828

execution encounters the if condition at lines 19−24 in Fig. 1,
it adds the constraint (Eq. (2)) to the path condition shown
in Fig. 2. There is a fairly straightforward mapping between
the conditions in the if statement starting at line 19 in Fig. 1
to constraints in the path condition in Eq. (2) within Fig. 2.
The conjunction of Eq. (1) and Eq. (2) in the path condition
is satisfiable. There exists a set of assignments that can be
made to Eq. (2) that will make the path condition feasible.
An example of a satisfying assignment for the variables is the
following:

• isNominal = false
• outputState = 1
• selectedLateralTargeterror = 180
• userPressesLateralTargetButton = true
• userPressesLateralHoldButton = false
• userPressesLateralFlightPlanButton =

false
A constraint solver can generate satisfying assignments for
constraints such as the one shown above. The concrete values
generated by the constraint solver can be assigned to the vari-
ables in the system in order to execute the operation encoded
in applyRule06 shown in Fig. 1 The values of certain
variables are updated during the execution of applyRule06.
The updated variables are shown below:

• outputState = 1
• selectedLateralTargetError =
selectedLateralTargetError - 360

Note that selectedLateralTargetError is updated
symbolically so 360 is subtracted from its symbolic value
during symbolic execution.

When the execute method is invoked where i = 2
in the driver, the constraint shown in Eq. (3) of Fig. 2 is
added again at lines 19 to 24. Now, however, the value
of the outputState variable is one assigned during the
execution of applyRule06. The constraint outputState �=
CONST 1 ∧ outputState == CONST 2 is not satisfiable,
hence, the path condition is also not satisfiable. There exists
no assignment to the symbolic variables that can satisfy the
path condition. Note that the boolean variables that represent
the user actions in Eq. (3) have a different signature (s4, s5,
and s6) compared to the user action variables in Eq. (2) (s1,
s2, and s3).

The example in Fig. 2 shows that after the execution of
applyRule06, it cannot be executed again. Similarly, the
conditions to execute applyRule07 cannot be satisfied after
applyRule06. The only two sequences that can be generated
from the program in Fig. 1 are: (a) execute rule 6 and (b)
execute rule 7. The output of the symbolic execution also
provides the details of the values of the initial system, and
the user actions required to perform the update as described
earlier.

C. Coverage Results
The entire Java program for the lateral system in Table I is

executed symbolically using SPF. We present results for when
n is set to one. The goal is to generate test cases that allow us

to obtain full coverage of the model, such that each rule gets
executed at least once. SPF generates 2313 states in 4 seconds
to symbolically execute all the rules (total 10) in the lateral
system Java program. In this it achieves a 100% statement,
branch, method, and basic block coverage. Coverage results
for the lateral system table:

Metric Number Coverage
Bytecode 432 100%
Line 99 100%
basic-block 123 100%
branch 58 100%
method 14 100%

It generates 16 test cases that have values which when
executed concretely along with specified user actions all rules
in the Java program are executed. These values and user actions
can be used to test the system represented by the ADEPT
model.

IV. RELATED WORK

Human automation interaction (HAI) is an interdisciplinary
domain that has been studied for several years by researchers
and spans cognitive science, systems engineering, computer
science, and human factors. The complexity of designing
and verifying such systems has also driven researchers to
investigate the use of formal specification and verification
methods in their development. Early results focused on specific
applications [18], [5] but later on using theories like graph
theory, model-checking or theorem proving [20], [4], [8] were
also investigated.

Formal methods rely on a formal model for the HAI system
under study (recently formal methods can also directly handle
programming languages such as Java or C). Several approaches
have been proposed. For example Campos et al. [4], [5]
developed a framework where the system is modeled in terms
of interactors, and desired properties in the MAL logic. Some
generic usability properties are defined [5] and model checking
is used for verification. Thimbleby et al. [20], [19] use graphs
to represent models and define usability properties through
graph structural properties. Curzon et al. [8] define systems
and properties with modal logic and check them with theorem
proving. Finally, Bolton et al. [3], [2] use model checking
to analyze application-specific HAI properties; their work is
based on translation of user task models expressed in the
EOFM environment into the input language of the SAL model
checker.

The ADEPT toolset supports tabular specifications of an
HAI system and can automatically check generic properties
such as determinism and completeness [9]. The focus so far
has been on easy specification and fast prototyping. In this
work, we investigate the possibility of generating test cases
based on ADEPT models.

Model-based test-case generation has been studied exten-
sively in the literature. In a black-box setting where the source
code of a program under test is not available, model checking
and symbolic execution, for example, can be used to extract
large numbers of test cases from high level descriptions of

1829

inputs to the system, or from tests described in a parameterized
fashion [12], [21]. In a white-box setting, symbolic execution
has been studied extensively for generating inputs that will
drive the program towards achieving a desired degree of
coverage [16], [14]. Test-case generation for GUI applica-
tions has also been studied using runtime rather than formal
techniques [24]. Finally, previous work has investigated the
possibility of model checking the Java autopilot prototype gen-
erated by ADEPT using JPF [22]. In the context of aerospace
applications, several test case generation techniques based on
formal methods have been investigated [11].

V. CONCLUSION AND FUTURE WORK

This paper describes our early work with generating test
cases for HAI systems based on models created in the ADEPT
tool set. Our work consists of automatically translating ADEPT
models into Java programs that can be analyzed by the
symbolic engine of Java Pathfinder, SPF, to generate user
inputs. The generated tests can be targeted to achieve desired
coverage, and can significantly facilitate the testing process for
HAI systems though automation of both the test generation
and the test execution process. The generated tests could be
executed on the prototype generated by ADEPT in order to
obtain test oracles for the actual system implementation.

Our approach was demonstrated on a component of an
Autopilot specification. Our initial results indicate that the
approach is promising. However, our framework is still prelim-
inary. Some features of ADEPT are not yet supported, and we
need to experiment with alternative approaches to the problem
in order to decide what would be more efficient. For example,
not only would we like to experiment with different ways of
translating the ADEPT models, but also with different test case
generation engines.

Symbolic execution itself is an expensive approach that may
not scale to the size of the systems targeted, and has limitations
in the presence of loops and non-linear constraints. Even in our
small example, the number of combinations that are feasible
by enabling all the possible rules to be applied to the system
creates a very large number of potential sequences. However,
the capability that it provides to generate automatically high
quality test suites justifies its use for safety critical components
of our targeted applications.

As part of our future work, we will investigate ways
of increasing the scalability of symbolic execution through
compositional techniques [1]. Moreover, we wish to investigate
meaningful coverage criteria for the rule-based specifications
of ADEPT in order to potentially reduce the number of
possible cases generated without losing quality of the resulting
test suites. Finally, we will work on customizing symbolic
execution techniques for HAI applications - where the focus is
on generating sequences of human inputs that take into account
the semantics of user interaction mechanisms.

REFERENCES

[1] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional
symbolic execution. In TACAS, pages 367–381, 2008.

[2] M. L. Bolton and E. J. Bass. Formally verifying human-automation
interaction as part of a system model: limitations and tradeoffs. ISSE,
6(3):219–231, 2010.

[3] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu. Using formal methods
to predict human error and system failures. In Proceedings of the
2nd Applied Human Factors and Ergonomics International Conference,
pages 14–17, July 2008.

[4] J. C. Campos and M. D. Harrison. Model checking interactor specifica-
tions. Automated Software Engineering, 8(3–4):275–310, 2001.

[5] J. C. Campos and M. D. Harrison. Systematic analysis of control panel
interfaces using formal tools. In Proceedings of the 15th International
Workshop on the Design, Verification and Specification of Interactive
Systems, number 5136 in Lecture Notes in Computer Science, pages
72–85. Springer-Verlag, July 2008.

[6] Choco. Main–page Choco. http://www.emn.fr/z-info/choco-solver/,
2010.

[7] L. A. Clarke. A program testing system. In Proceedings of the 1976
annual conference, ACM ’76, pages 488–491, 1976.

[8] P. Curzon, R. Rukšėnas, and A. Blandford. An approach to formal ver-
ification of human-computer interaction. Formal Aspects of Computing,
19(4):513–550, Nov. 2007.

[9] M. S. Feary. A toolset for supporting iterative human – automation
interaction in design. Technical Report 20100012861, NASA Ames
Research Center, Mar. 2010.

[10] M. S. Feary. A toolset for supporting iterative human automation
interaction in design. Technical Report 20100012861, NASA Ames
Research Center, 2010.

[11] D. Giannakopoulou, D. Bushnell, J. Schumann, H. Erzberger, and
K. Heere. Formal testing for separation assurance. Annals of Math-
ematics and Artificial Intelligence, pages 1–26, 2011. 10.1007/s10472-
011-9224-3.

[12] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and
D. Marinov. Test generation through programming in udita. In ICSE,
pages 225–234, 2010.

[13] J. C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, 1976.

[14] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux. Guided test generation
for coverage criteria. In ICSM, pages 1–10, 2010.

[15] C. Păsăreanu and N. Rungta. Symbolic PathFinder: symbolic execution
of Java bytecode. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, pages 179–180. ACM,
2010.

[16] C. S. Pasareanu and W. Visser. A survey of new trends in symbolic
execution for software testing and analysis. STTT, 11(4):339–353, 2009.

[17] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level symbolic exe-
cution and system-level concrete execution for testing NASA software.
In ISSTA, pages 15–25, 2008.

[18] J. Rushby. Using model checking to help discover mode confusions and
other automation surprises. Reliability Engineering and System Safety,
75(2):167–177, Feb. 2002.

[19] H. Thimbleby. Press On: Principles of Interaction Programming. The
MIT Press, Nov. 2007.

[20] H. Thimbleby and J. Gow. Applying graph theory to interaction design.
In J. Gulliksen, editor, Engineering Interactive Systems 2007/DSVIS
2007, number 4940 in Lecture Notes in Computer Science, pages 501–
518. Springer-Verlag, 2008.

[21] S. Thummalapenta, M. R. Marri, T. Xie, N. Tillmann, and J. de Halleux.
Retrofitting unit tests for parameterized unit testing. In FASE, pages 294–
309, 2011.

[22] O. Tkachuk, G. Brat, and W. Visser. Using code level model checking to
discover automation surprises. In Digital Avionics Systems Conference
(DASC), 2002.

[23] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model
checking programs. Automated Software Engineering, 10(2):203–232,
2003.

[24] X. Yuan and A. M. Memon. Generating event sequence-based test cases
using gui runtime state feedback. IEEE Trans. Software Eng., 36(1):81–
95, 2010.

1830

