i ersit); of I-(ainsas

Verifying the Trusted
Platform Module

Brigid Halling, Perry Alexander
Information and Telecommunication Technology Center
Electrical Engineering and Computer Science
The University of Kansas
{bhalling,palexand}@ku.edu

Remote Attestation

e Appraiser requests a quote
- specifies information is needed
- includes a nonce for freshness

 Remote system gathers evidence

- hashes of executing software
- hashes of hardware

e Remote system generates a quote
- evidence describing system
- the original nonce
- cryptographic signature
o Appraiser assesses quote
- correct boot process

- correct parts
- evidence integrity

Remote
System

4)
’ attestation
request
Appraiser
>
quote
- Y,

KU

The Univ'ersit).' of ka}nsas

The TPM’s Role

e Provides and Protects Roots of Trust
- Storage Root Key (SRK) - root of trust for storage
- Endorsement Key (EK) - root of trust for reporting

e Quote generation
- high integrity quotes - ({|RS|}a", SML, {|n,PCRo-m|}ak™)
- high integrity evidence - (<E,n>, {|#E,PCR,n|}ak")

e Sealing data to state

- {D,PCR}k will not decrypt unless PCRs = current PCRs
- data is safe even in the presence of malicious machine

e Binding data to TPMs and machines
- ({K"¥srk,K) - {DIk cannot be decrypted unless SRK is installed

- ({J",J) - {D}j cannot be decrypted unless K and SRK are
installed

& s KU

The University of Kansas

Process Configuration Registers

PCRs contain measurements
- SHA-1 hashes of images and data

- uniquely identifies the state of a system new hash measurement
 Stored in volatile RAM / \
- minimum of 12, 120-bit registers PCR|M = SHA-1(PCR"M)

- monotonic access control \ /’

PCRs are extended rather than set original PCR hash value

- SHA-1 of the PCR concatenated with a new
measurement hash value

- captures the original value, new value, and
order
Records the state of a system and PCR[M = M|PCR
trajectory of states
- used in attestation to evaluate system state
- used to seal secrets to system state

order matters!

The University of Kansas

Keys and Data

Storage Root Key Pair (SRK)

- generated by TPM when “owned” ~ oM ~
- private key stored in TPM non-
volatile RAM SRK 5 p

- public key wraps storage keys on disk Storage Root Key
« Storage Keys — / <\ .

- wrapped key - ({SK}srk,SK) Disk /

- exclusively used to encrypt keys SKo SKi ... SKn Storage Keys
. Binding Keys \\

- wrapped key - ({BK "}, BK) BKoo BKoi ... Bon Binding Keys

- encrypts keys and small data 1
« Wrapped key is sealed

data y

- TPM PCRs saved when encrypted -

- will not decrypt if TPM PCRs are in a
bad state

T;1e_ Uni;l-ersi-t;'ﬂof Kahsas

Generating Quotes

Fresh (AIK,AIK ") generated by TPM_Makeldentity

attRequest(n,pcrMasko-m)

4) 4 \) 4)

A 4
] PCRo = Reference PCRo
CAq4,AIK 1 :
il d, AlK] Jaik AIKT | PCR: = Reference PCR;
. PCR2, = Reference PCR2
Privacy Remote .
Verifier
CA System PCRk = Reference PCRk
{{IAIK] Jca ex 1 PCRm = Reference PCRm
_ J A _ J _ J

({1{1AIK]3ca™13akT,{ | n,PCRo-m | Jaic")

/ N

Certificate binds AIK to Remote System ~ Uote generated by TPM_Quote
Decrypted by TPM_Activateldentity

[) The University of Kansas

The TPM Specification

e Developed by the Trusted Computing Group
e 1.2 fielded in most enterprise PCs
e 2.0 awaiting formal approval
e coupled with a Trusted Software Stack (TSS) definition
e virtualization and mobile specifications under development

e Structured English specification

e 700 pages over three volumes
o tables and text much like a CPU description

TPM Specification

16.1 TPM_Extend
Outgoing Operands and Sizes

PARAM HMAC o

Type Name Description

= SZ | # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1S 4 | TPM_RESULT returnCode The return code of the operation.

2S 4 | TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Extend.
4 20 | 3S | 20 | TPM_PCRVALUE outDigest The PCR value after execution of the command.
16.1 TPM_Extend
Actions

-l

. Validate that pcrNum represents a legal PCR number. On error, return TPM_BADINDEX.
Map L1 to TPM_STANY_FLAGS -> localityModifier

Map P1 to TPM_PERMANENT_DATA -> pcrAttrib [pcrNum)]|. pcrExtendLocal

If, for the value of L1, the corresponding bit is not set in the bit map P1, return
TPM_BAD_LOCALITY

Create cl by concatenating (TPM_STCLEAR_DATA -> PCR[pcrNum] || inDigest). This
takes the current PCR value and concatenates the inDigest parameter.

Create h1 by performing a SHA-1 digest of c1.

Store h1 to TPM_STCLEAR_DATA -> PCR[pcrNum)]

If TPM_PERMANENT FLAGS -> disable is TRUE or TPM_STCLEAR_FLAGS -> deactivated
is TRUE

a. Set outDigest to 20 bytes of 0x00
. Else

a. Set outDigest to hl

Verifying the TPM?

e Define and verify abstract specification of TPM behavior
e typed, abstract data representation
« abstract state state transformation
e preconditions, postconditions, and invariants
« command sequencing using state monad

e Validate using abstract models for common protocols
e certificate authority based attestation
e direct anonymous attestation
e data and key migration

e Develop a concrete specification of TPM behavior
 bit-level description of state and state transformation

« verify commands and protocols
 verify weak bisimulation between abstract and concrete models

Command Specification

« Commands generate output and modify state

e Defined by cases over
- tpmAbsInput - abstract command type

- tpmAbsState - abstract state type
- tpmAbsOutput - abstract output type

« Command sequencing using a restricted state monad

TPM ActivateIdentity(a: (wrapKey?),k:(symKey?)): State =
modifyOutput (
(LAMBDA (s:tpmAbsState)
outputCom(s,ABS ActivateIdentity(a,k)))
(LAMBDA (s:tpmAbsState)
executeCom(s,ABS ActivatelIdentity(a,k))));

o 10 KU:

niversity of Kansas

Modeling State

tpmAbsState : TYPE =

[#
restore : restoreStateData,
memory : mem,

ek : (asymKey?),

srk : (asymKey?), e srk - Storage Root Key

keyGenCnt : K, . ek - Endorsement Key

keys : KEYSET, . . .
pcrs : PCRS, e pcrs - Platform Configuration Registers

permData : PermData,
permFlags : PermFlags,
stanyData : StanyData,
stanyFlags : StanyFlags,
stclearData : StclearData,

stclearFlags : StclearFlags
#1;

The University of Kansas

Modeling State Transformation

executeCom(s:tpmAbsState,c:tpmAbsInput) : tpmAbsState =
CASES c¢ OF

ABS LoadKey2(k): loadKey2State(s,k),

ABS Extend(p,d) : extendState(s,p,d),

ELSE ENDCASES;

extendState(s:tpmAbsState,p:PCRINDEX,d:HV) : tpmAbsState =
IF 0 <= p <= 23
THEN s WITH [pcrs := pcrsExtend(s pcrs,p,d)]
ELSE s
ENDIF

.2 2 KU

The Univ'ersit).' of ka}nsas

Modeling Output

outputCom(s:tpmAbsState,c:tpmAbsInput) : tpmAbsOutput =
CASES c¢ OF
ABS Seal(k,data) : sealOut(s,k,data),

ABS Extend(p,d) : extendOut(s,p,d),

ENDCASES;

extendOut (s:tpmAbsState,p:PCRINDEX,d:HV) : tpmAbsOutput =
LET Hl=pcrsExtend(s pcrs,p,d) IN
IF p > 23 OR p < 0
THEN OUT Error (TPM BADINDEX)
ELSIF s permFlags disable OR s stclearFlags deactivated

THEN OUT Extend(reset,TPM SUCCESS)
ELSE OUT Extend(extend(s pcrs(p),d),TPM SUCCESS)
ENDIF;

é“-‘ w & ‘ | l | |
B 2o The University of Kansas

Modeling Command Sequencing

aik usage: THEOREM
FORALL (aik: (tpmKey?),
b: (tpmNonce?),
pm:PCR SELECTION,
state:tpmAbsState):

LET (a,s) = runState(
TPM Init
sequence >> TPM Startup(TPM ST CLEAR)

>> CPU_ senter
>> CPU_sinit

bind >>= TPM Quote(aik,b,pm)
(state)
IN NOT checkKeyRoot(aik,srk(s)) =>

a=0UT Error (TPM INVALID KEYUSAGE);

Q&?: 14 I<LJ

fhe University of Kansas

Verification and Validation

e Define and verify state invariants over state change
« establishes safety properties with respect to all commands
 uses PVS type system extensively

 Verify individual command execution
« establishes individual command execution correctness
« define and verify command pre- and postconditions
e verify state invariants over state change

e Define and verify common protocols
e establishes validity of command and sequencing model

» define and verify protocol pre- and postconditions
e verify invariants over protocol execution

& s KU

The University of Kansas

Command Postconditions

extend post : THEOREM
FORALL (state:(afterStartup?),p:PCRINDEX,d:HV)

LET (a,s) = runState(
TPM Extend(p,d)) execute command
(state) IN

LET Hl=pcrsExtend(state pcrs,p,d) IN
IF 0 <= p <= 23
THEN s=state WITH [pcrs:=H1] AND verify state is correct
IF state permFlags disable OR
state stclearFlags deactivated
THEN a=0UT Extend(reset,TPM SUCCESS)
ELSE a=0UT Extend(extend(state pcrs(p),d),TPM SUCCESS)
ENDIF verify output is correct
ELSE a=0UT Error(TPM BADINDEX) AND s=state
ENDIF;

Q&?s 16 I<LJ

fhe University of Kansas

Command Invariants

srk unchanged: THEOREM

(FORALL (s:tpmAbsState, c:tpmAbsInput):

NOT (ABS Init?(c)

OR ABS Startup?(c)

OR ABS TakeOwnship?(c)) =>
srk(s) = srk(executeCom(s,c)));

pcrs unchanged: THEOREM

(FORALL (s:tpmAbsState,c:tpmAbsInput):

NOT (ABS Startup?(c)
OR ABS Init?(c)
OR ABS sinit?(c)
OR ABS senter?(c)
OR ABS Extend?(c)) =>
pcrs(s) = pcrs(executeCom(s,c)));

e Invariants include

Keys don’'t change
PCRs don't change

locality monotonically
increases

flags and permissions
don’t change

installed keys don't
change

KU

The University of Kansas

Predicate Subtypes

e Using the PVS type-checker to manage verification

wellFormed? (s:tpmAbsState) :bool =
wellFormedRestore? (restore(s)) AND ... ;

wellFormedRestore? (r:restoreStateData) : bool =
valid?(r) =>
FORALL (i:PCRINDEX)

pcrReset (pcrAttrib(permData(r)) (1)) =>
pcrs(r) (i) = resetOne;
stateTransformation : [(wellFormed?)->(wellFormed?)]

& . KU

e University of Kans:

Fresh (AIK,AIK ") generated by TPM_Makeldentity

Trusted
Third

Party

Y, A

Certificate binds AIK to Remote System
Decrypted by TPM_Activateldentity

Generating a Quote

A 4
{1 CAg,AIK]| Jaik

attRequest(n,pcrMasko-m)

C\
AIK!

pa—

{{1AIK| 3ca e

»

Remote
System

-

~N

-

J

{H{ITAIK] 3ea™ 1 3a T, {1n,PCRo-m | Jaik’")

/

>

_

Verifier

J

N

PCRo = Reference PCRo
PCR1 = Reference PCR1
PCR2 = Reference PCR2

PCRx = Reference PCR«k
PCRm = Reférence PCRm

Quote generated by TPM_Quote

w The University of Kansas

Privacy CA Attestation Protocol

ca protocol:THEOREM
FORALL (state: (afterStartup?),d: (tpmDigest?), k: (tpmKey?),
n: (tpmNonce?) ,p:PCR SELECTION, X, vy, z:nat)
LET (a,s) = runState (TPM Makeldentity (d, k)
>>= CPU saveOutput (x)
>>= CA certify(k, 1)
>>= CPU saveOutput (y)
>>= TPM Activateldentity (j,d)
>> CPU read(x)
>>= TPM Quote (k,n,p)
>>= CPU saveOutput (z)
>> CPU_BuildQuoteFromMem(z, x)) (state)

& 20 IQ_J

The University of Kansas

Privacy CA Correctness Condition

LET key=idKey (s memory(x)) IN
makelIdentity? (state, k)
AND OUT MakeIdentity? (s memory (x))
AND certify? (key,idBinding (s memory (x)))
AND OUT Certify? (s memory(y))
AND wellFormedRestore? (s restore) AND
activateldentity? (tpmRestore (s restore), key,dat (s memory(y)))
AND quote? (key)
AND OUT Quote? (s memory(z)) =>
a=0UT FullQuote (tpmQuote (
tpmCompositeHash ((#select:=p,pcrValue:=s pcrs#)),
n,signed (private (key) ,clear)),
tpmIdContents (d, key, signed (private (key),clear)),
CPU SUCCESS) AND
s=state WITH [keyGenCnt:=state keyGenCnt+2, memory:=s memory]

output is correct

state iIs correct

fhe University of Kansas

Other Correctness Theorems

e Ordering lemmas
- PCR extension is antisymmetric
- skipping senter, sinit, or reset is detectable
- quote returns the correct PCRs

e Boot integrity
- wrong MLE element boot detectable via quote
- wrong boot order detectable via quote

e Key installation
- wrapped keys are not installed if wrapping key is not installed
- key chaining has integrity
- unsealing secrets has integrity
e Protocols
- CA attestation protocol

20t DrOtOCOl
& 2 KU

Current Status

e 40 of approximately 90 instructions modeled
- focusing thus far critical functionality

- startup, key management, quote, privacy CA attestation,
migration modeled

- session management, DAA, and flag configuration not modeled

e Effort thus far

- 3712 LoPVS
- 120 proofs, most run in a few seconds
- 1 full time + 1 part time developer for just under a year

e PVS sources are available
- long term - website coming soon
- short term - contact palexand@ku.edu

& 23 w

Moving Forward

e Develop better threat model
e currently assuming simple Yolev-Dao

e Additional TPM features

e session and authdata management
 locality enforcement
e Direct Anonymous Attestation (DAA) support commands
 auditing and logging
e Additional protocols

e data migration protocols
e DAA protocols
e more complex attestation protocols

e Model and theorem synthesis
 translation of TPM code sequences to PVS model
o automated proof synthesis for basic proofs

e VIPM extensions

& 24 IQ_J

The University of Kansas

