
Regular Model Checking Using Solver

Technologies and Automata Learning

Daniel Neider Nils Jansen

RWTH Aachen University, Germany

May 14th, 2013

NASA Formal Methods Symposium

NASA Ames Research Center, Mo�ett Field, CA, USA



Token Ring Example

1

2

3

4

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 1/16



Token Ring Example

1

2

3

4

Modeling Programs

Con�gurations:

Transitions:

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 1/16



Token Ring Example

1

2

3

4

Modeling Programs

Con�gurations: 1000

, 0100, 0010, 0001, 0000, 1100, . . .

Transitions:

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 1/16



Token Ring Example

1

2

3

4

Modeling Programs

Con�gurations: 1000, 0100

, 0010, 0001, 0000, 1100, . . .

Transitions:

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 1/16



Token Ring Example

1

2

3

4

Modeling Programs

Con�gurations: 1000, 0100, 0010, 0001, 0000, 1100, . . .

Transitions:

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 1/16



Token Ring Example

1

2

3

4

Modeling Programs

Con�gurations: 1000, 0100, 0010, 0001, 0000, 1100, . . .

Transitions:

[
1
0

][
0
1

][
0
0

][
0
0

]

,

[
0
0

][
1
0

][
0
1

][
0
0

]
,. . . ,

[
0
1

][
0
0

][
0
0

][
1
0

]

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 1/16



Token Ring Example

1

2

3

4

Modeling Programs

Con�gurations: 1000, 0100, 0010, 0001, 0000, 1100, . . .

Transitions:

[
1
0

][
0
1

][
0
0

][
0
0

]
,

[
0
0

][
1
0

][
0
1

][
0
0

]

,. . . ,

[
0
1

][
0
0

][
0
0

][
1
0

]

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 1/16



Token Ring Example

1

2

3

4

Modeling Programs

Con�gurations: 1000, 0100, 0010, 0001, 0000, 1100, . . .

Transitions:

[
1
0

][
0
1

][
0
0

][
0
0

]
,

[
0
0

][
1
0

][
0
1

][
0
0

]
,. . . ,

[
0
1

][
0
0

][
0
0

][
1
0

]

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 1/16



Token Ring Example

1

2 3

4

56

Modeling Programs

Con�gurations: 100000, 010000, 001000, 000000, . . .

Transitions:

[
1
0

][
0
1

][
0
0

][
0
0

][
0
0

][
0
0

]
, . . . ,

[
1
0

][
0
0

][
0
0

][
0
0

][
0
0

][
0
1

]

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 1/16



Token Ring Example

1

2

3

4

5

6

7

8

Modeling Programs

Con�gurations: (0 + 1)∗

Transitions:

[
0
0

]∗[
1
0

][
0
1

][
0
0

]∗
+

[
0
1

][
0
0

]∗[
1
0

]

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 1/16



Token Ring Example

1

2

3

4

5

6

7

8

The question we want to address

Initial con�gurations I = 10∗

Transitions T = . . .

Bad con�gurations B = 0∗ + 0∗10∗1(0 + 1)∗

Is there a path from some c ∈ I to some c′ ∈ B along T?

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 1/16



Regular Model Checking

Input

A regular set of initial con�gurations I,

a regular set of bad con�gurations B, and

a transducer T de�ning the transitions.

an NFA T = (Q,Σ× Σ, q0,∆, F )Question

Does ReachT (I) ∩B = ∅ hold?

Remark
The Regular Model Checking Problem is undecidable.

Thus, all algorithms are necessarily semi-algorithms.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 2/16



Regular Model Checking

Input

A regular set of initial con�gurations I,

a regular set of bad con�gurations B, and

a transducer T de�ning the transitions.

an NFA T = (Q,Σ× Σ, q0,∆, F )

Question

Does ReachT (I) ∩B = ∅ hold?

Remark
The Regular Model Checking Problem is undecidable.

Thus, all algorithms are necessarily semi-algorithms.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 2/16



Regular Model Checking

Input

A regular set of initial con�gurations I,

a regular set of bad con�gurations B, and

a transducer T de�ning the transitions.

an NFA T = (Q,Σ× Σ, q0,∆, F )

Question

Does ReachT (I) ∩B = ∅ hold?

Remark
The Regular Model Checking Problem is undecidable.

Thus, all algorithms are necessarily semi-algorithms.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 2/16



Regular Model Checking

Input

A regular set of initial con�gurations I,

a regular set of bad con�gurations B, and

a transducer T de�ning the transitions.

an NFA T = (Q,Σ× Σ, q0,∆, F )

Question

Does ReachT (I) ∩B = ∅ hold?

Remark
The Regular Model Checking Problem is undecidable.

Thus, all algorithms are necessarily semi-algorithms.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 2/16



Motivation

I
B

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 3/16



Motivation

P

I
B

Proof
A (regular) proof is a (regular) set P with

I ⊆ P ,
B ∩ P = ∅, and
P is inductive, i.e., u ∈ P and (u, u′) ∈ L(T ) implies u′ ∈ P .

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 3/16



Motivation

P

I
B

Tools for Regular Model Checking

Faster and

T(O)RMC

Problem: The performance is poor for large representations of I!

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 3/16



Motivation

P

I
B

What we do

We approximate I and B with �nite sets.

We use sampling strategies known from automata learning.

We compute smallest proofs using logic solvers.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 3/16



Outline

1. Automata Learning

2. Regular Model Checking via Automata Learning

3. Experiments

4. Conclusion

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 4/16



Outline

1. Automata Learning

2. Regular Model Checking via Automata Learning

3. Experiments

4. Conclusion



Angluin's Learning Framework

Is ab ∈ L??
a, b

Yes!No, counterexample aa!

a
b

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 5/16



Angluin's Learning Framework

Is ab ∈ L?

?

a, b
Yes!No, counterexample aa!

a
b

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 5/16



Angluin's Learning Framework

Is ab ∈ L??
a, b

Yes!

No, counterexample aa!

a
b

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 5/16



Angluin's Learning Framework

Is ab ∈ L?

?

a, b

Yes!No, counterexample aa!

a
b

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 5/16



Angluin's Learning Framework

Is ab ∈ L??
a, b

Yes!

No, counterexample aa!

a
b

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 5/16



Our Learning Framework

Is ab ∈ L??
a, b

Yes!No, counterexample aa!

a
b

�yes�
�no�

?

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 5/16



Our Learning Framework

Is ab ∈ L??
a, b

Yes!No, counterexample aa!

a
b

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 5/16



Outline

1. Automata Learning

2. Regular Model Checking via Automata Learning

3. Experiments

4. Conclusion



CEGAR-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

S A

�no�

Add counterexample to S

�yes�

L(A) is
a proof

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 6/16



CEGAR-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

S A

�no�

Add counterexample to S

�yes�

L(A) is
a proof

1. Sample S = (S+, S−) where S+, S− ⊆ Σ∗ are �nite.

2. Compute a smallest inductive DFA A consistent with S, i.e.,

S+ ⊆ L(A) and S− ∩ L(A) = ∅.

3. Equivalence query: if A is inductive, it is enough to check

I ⊆ L(A) and B ∩ L(A) = ∅.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 6/16



CEGAR-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

S A

�no�

Add counterexample to S

�yes�

L(A) is
a proof

1. Sample S = (S+, S−) where S+, S− ⊆ Σ∗ are �nite.

2. Compute a smallest inductive DFA A consistent with S, i.e.,

S+ ⊆ L(A) and S− ∩ L(A) = ∅.

3. Equivalence query: if A is inductive, it is enough to check

I ⊆ L(A) and B ∩ L(A) = ∅.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 6/16



CEGAR-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

S A

�no�

Add counterexample to S

�yes�

L(A) is
a proof

1. Sample S = (S+, S−) where S+, S− ⊆ Σ∗ are �nite.

2. Compute a smallest inductive DFA A consistent with S, i.e.,

S+ ⊆ L(A) and S− ∩ L(A) = ∅.

3. Equivalence query: if A is inductive, it is enough to check

I ⊆ L(A) and B ∩ L(A) = ∅.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 6/16



CEGAR-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

S A

�no�

Add counterexample to S

�yes�

L(A) is
a proof

Correctness

The algorithm terminates once L(A) is a proof.

Successive DFAs are di�erent and the size of successive DFAs

increases monotonically.

Computing minimal DFAs guarantees termination if a proof

exists.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 6/16



Angluin-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

Membership query

S A

�no�

Add counterexample

�yes�

L(A) is
a proof

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 7/16



Angluin-style Regular Model Checking

Maintain a
sample S

Compute a smallest
inductive DFA A
consistent with S

Equivalence
query

Membership query

S A

�no�

Add counterexample

�yes�

L(A) is
a proof

u �yes� / �no� / �?�

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 7/16



Realizing the Black Box

Given a sample S and a transducer T .

Main Idea
Construct a formula ϕS,Tn such that

ϕS,Tn is satis�able

⇔
there exists a DFA A with n states such that A is consistent with

S and inductive with respect to T .

Theorem
By increasing the value of n, we will �nd a smallest DFA consistent

with S and inductive with respect to T if one exists.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 8/16



Realizing the Black Box

Given a sample S and a transducer T .

Main Idea
Construct a formula ϕS,Tn such that

ϕS,Tn is satis�able

⇔
there exists a DFA A with n states such that A is consistent with

S and inductive with respect to T .

Theorem
By increasing the value of n, we will �nd a smallest DFA consistent

with S and inductive with respect to T if one exists.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 8/16



Encoding DFAs

A =
(
Q,Σ, q0, δ, F

)
If Q, Σ, and q0 are �xed, then every DFA is completely de�ned by δ
and F .

Use Boolean variables dp,a,q with the meaning:

if dp,a,q ≡ true, then δ(p, a) = q.

Use Boolean variables fq with the meaning:

if fq ≡ true, then q ∈ F .
Use constraints

¬dp,a,q ∨ ¬dp,a,q′∨
q∈Q

dp,a,q

Let ϕDFAn be the conjunction of these constraints.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 9/16



Encoding DFAs

A =
(
Q,Σ, q0, δ, F

)
If Q, Σ, and q0 are �xed, then every DFA is completely de�ned by δ
and F .

Use Boolean variables dp,a,q with the meaning:

if dp,a,q ≡ true, then δ(p, a) = q.

Use Boolean variables fq with the meaning:

if fq ≡ true, then q ∈ F .

Use constraints

¬dp,a,q ∨ ¬dp,a,q′∨
q∈Q

dp,a,q

Let ϕDFAn be the conjunction of these constraints.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 9/16



Encoding DFAs

A =
(
Q,Σ, q0, δ, F

)
If Q, Σ, and q0 are �xed, then every DFA is completely de�ned by δ
and F .

Use Boolean variables dp,a,q with the meaning:

if dp,a,q ≡ true, then δ(p, a) = q.

Use Boolean variables fq with the meaning:

if fq ≡ true, then q ∈ F .
Use constraints

¬dp,a,q ∨ ¬dp,a,q′∨
q∈Q

dp,a,q

Let ϕDFAn be the conjunction of these constraints.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 9/16



Encoding DFAs

Construction of a DFA from a Model
Let M |= ϕDFAn . Then, we construct a DFA

AM = ({q0, . . . , qn−1},Σ, q0, δ, F ) as follows:

δ(p, a) = q for the unique q ∈ Q such that M(dp,a,q) = true.

q ∈ F if and only if M(fq) = true.

Impose restrictions on the behavior of AM by introducing the two

formulas

ϕSn that enforces that AM is consistent with S, and
ϕTn that enforces that AM is inductive with respect to T .

ϕS,Tn := ϕDFAn ∧ ϕSn ∧ ϕTn is the desired formula.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 10/16



Encoding DFAs

Construction of a DFA from a Model
Let M |= ϕDFAn . Then, we construct a DFA

AM = ({q0, . . . , qn−1},Σ, q0, δ, F ) as follows:

δ(p, a) = q for the unique q ∈ Q such that M(dp,a,q) = true.

q ∈ F if and only if M(fq) = true.

Impose restrictions on the behavior of AM by introducing the two

formulas

ϕSn that enforces that AM is consistent with S, and
ϕTn that enforces that AM is inductive with respect to T .

ϕS,Tn := ϕDFAn ∧ ϕSn ∧ ϕTn is the desired formula.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 10/16



Encoding DFAs

Construction of a DFA from a Model
Let M |= ϕDFAn . Then, we construct a DFA

AM = ({q0, . . . , qn−1},Σ, q0, δ, F ) as follows:

δ(p, a) = q for the unique q ∈ Q such that M(dp,a,q) = true.

q ∈ F if and only if M(fq) = true.

Impose restrictions on the behavior of AM by introducing the two

formulas

ϕSn that enforces that AM is consistent with S, and
ϕTn that enforces that AM is inductive with respect to T .

ϕS,Tn := ϕDFAn ∧ ϕSn ∧ ϕTn is the desired formula.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 10/16



Formula ϕSn

Let S = (S+, S−). Establish S+ ⊆ L(AM) and S− ∩ L(AM) = ∅!

Introduce variables xu,q for u ∈ Pref(S+ ∪ S−) with the meaning:

if AM : q0
u−→ q, then xu,q ≡ true.

Introduce constraints:

xε,q0

(xu,p ∧ dp,a,q)→ xua,q for ua ∈ Pref(S+ ∪ S−)

xu,q → fq for u ∈ S+

xu,q → ¬fq for u ∈ S−

Let ϕSn be the conjunction of these constraints. Then,

M |= ϕDFAn ∧ ϕSn implies S+ ⊆ L(AM)) and S− ∩ L(AM) = ∅.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 11/16



Formula ϕSn

Let S = (S+, S−). Establish S+ ⊆ L(AM) and S− ∩ L(AM) = ∅!

Introduce variables xu,q for u ∈ Pref(S+ ∪ S−) with the meaning:

if AM : q0
u−→ q, then xu,q ≡ true.

Introduce constraints:

xε,q0

(xu,p ∧ dp,a,q)→ xua,q for ua ∈ Pref(S+ ∪ S−)

xu,q → fq for u ∈ S+

xu,q → ¬fq for u ∈ S−

Let ϕSn be the conjunction of these constraints. Then,

M |= ϕDFAn ∧ ϕSn implies S+ ⊆ L(AM)) and S− ∩ L(AM) = ∅.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 11/16



Formula ϕSn

Let S = (S+, S−). Establish S+ ⊆ L(AM) and S− ∩ L(AM) = ∅!

Introduce variables xu,q for u ∈ Pref(S+ ∪ S−) with the meaning:

if AM : q0
u−→ q, then xu,q ≡ true.

Introduce constraints:

xε,q0

(xu,p ∧ dp,a,q)→ xua,q for ua ∈ Pref(S+ ∪ S−)

xu,q → fq for u ∈ S+

xu,q → ¬fq for u ∈ S−

Let ϕSn be the conjunction of these constraints. Then,

M |= ϕDFAn ∧ ϕSn implies S+ ⊆ L(AM)) and S− ∩ L(AM) = ∅.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 11/16



Formula ϕSn

Let S = (S+, S−). Establish S+ ⊆ L(AM) and S− ∩ L(AM) = ∅!

Introduce variables xu,q for u ∈ Pref(S+ ∪ S−) with the meaning:

if AM : q0
u−→ q, then xu,q ≡ true.

Introduce constraints:

xε,q0

(xu,p ∧ dp,a,q)→ xua,q for ua ∈ Pref(S+ ∪ S−)

xu,q → fq for u ∈ S+

xu,q → ¬fq for u ∈ S−

Let ϕSn be the conjunction of these constraints. Then,

M |= ϕDFAn ∧ ϕSn implies S+ ⊆ L(AM)) and S− ∩ L(AM) = ∅.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 11/16



Formula ϕTn

Let T = (QT ,Σ× Σ, qT0 ,∆
T , F T ). Establish

u ∈ L(AM) ∧ (u, u′) ∈ L(T ) ⇒ u′ ∈ L(AM)!

Introduce variables yq,q′,q′′ with with the meaning:

if there are u, u′ ∈ Σ∗ such that

AM : q0
u−→ q

T : qT0
(u,u′)−−−→ q′

AM : q0
u′
−→ q′′

,

then yq,q′,q′′ ≡ true.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 12/16



Formula ϕTn

Let T = (QT ,Σ× Σ, qT0 ,∆
T , F T ). Establish

u ∈ L(AM) ∧ (u, u′) ∈ L(T ) ⇒ u′ ∈ L(AM)!

Introduce variables yq,q′,q′′ with with the meaning:

if there are u, u′ ∈ Σ∗ such that

AM : q0
u−→ q

T : qT0
(u,u′)−−−→ q′

AM : q0
u′
−→ q′′

,

then yq,q′,q′′ ≡ true.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 12/16



Formula ϕTn

Introduce constraints:

yq0,qT0 ,q0(
yp,p′,p′′ ∧ dp,a,q ∧ dp′′,b,q′′

)
→ zq,q′,q′′ for (p′, (a, b), q′) ∈ ∆T(

yq,q′,q′′ ∧ fq
)
→ fq′′ for q′ ∈ F T

Let ϕTn be the conjunction of these constraints.

Then, M |= ϕDFAn ∧ ϕTn implies

u ∈ L(AM) ∧ (u, u′) ∈ L(T )⇒ u′ ∈ L(AM).

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 13/16



Outline

1. Automata Learning

2. Regular Model Checking via Automata Learning

3. Experiments

4. Conclusion



Experiments - Integer Linear Systems

Petri Berkeley Synapse Lift Mesi

0.01

0.1

1

10
R
u
n
ti
m
e
in

se
co
n
d
s

CEG (SAT) ANG (SAT) T(O)RMC FASTer

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 14/16



Experiments - Token Ring

0 100 200 300 400

0.1

1

10

100

Size of I (# states)

R
u
n
ti
m
e
in

se
co
n
d
s

CEGAR

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 15/16



Experiments - Token Ring

0 100 200 300 400

0.1

1

10

100

Size of I (# states)

R
u
n
ti
m
e
in

se
co
n
d
s

CEGAR ANGLUIN

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 15/16



Experiments - Token Ring

0 100 200 300 400

0.1

1

10

100

Size of I (# states)

R
u
n
ti
m
e
in

se
co
n
d
s

CEGAR ANGLUIN T(O)RMC

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 15/16



Outline

1. Automata Learning

2. Regular Model Checking via Automata Learning

3. Experiments

4. Conclusion



Conclusion and Further Research

Summary

We presented a new technique for Regular Model Checking

based upon automata learning and logic solver.

Large sets of initial and bad con�gurations are approximated.

Experiments show competitiveness to other available tools.

Further Research

Possible directions of future research are

suitable non-regular representations of I and B,

nondeterministic automata as proofs, and

an incremental SAT approach.

An interesting extension would be to also approximate the

transducer.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 16/16



Conclusion and Further Research

Summary

We presented a new technique for Regular Model Checking

based upon automata learning and logic solver.

Large sets of initial and bad con�gurations are approximated.

Experiments show competitiveness to other available tools.

Further Research

Possible directions of future research are

suitable non-regular representations of I and B,

nondeterministic automata as proofs, and

an incremental SAT approach.

An interesting extension would be to also approximate the

transducer.

Daniel Neider RWTH Aachen RMC Using Logic Solvers and Automata Learning 16/16


	Automata Learning
	Regular Model Checking via Automata Learning
	Experiments
	Conclusion

