
Can formal methods
cure cancer?

Matt Might
University of Utah
matt.might.net

Yes.

MATLAB

System

Control code

Hybrid automaton

Model checker

System

Control code

Hybrid automaton

Model checker

Control code Hybrid automaton

1.1 Example

Take the simple thermostat for example. We start with code for controlling the
temperature, written in MATLAB, and extract a hybrid automaton (Figure 1).
(We utilize MATLAB as the input language because in our interactions with
practicing engineers, we have found substantial amounts of control code—some
production, some prototype—written in MATLAB.)

The code maintains the temperature at 30 degrees with access to two cy-
berphysical primitives—readTemp() and heat(). The former reads the current
temperature, and the latter toggle operation of the heater.

while t rue
t = readTemp () ;
i f t < 30

heat (t rue) ;
else

heat (f a l s e) ;
end

end

Fig. 1. MATLAB control code for a thermostat.

Our goal is to extract the hybrid automaton in Figure 2 from this code.

2II 2Q

W�����
৪� �í�

W�����

W� ���
W�����
৪� ��W�����

Fig. 2. Hybrid automaton for a thermostat.

1.2 Contributions

We report preliminary work on a method to extract a hybrid automaton from
control code. This approach better suits industrial practice by synthesizing the
formal model from code, rather than code from a formal model.

2 Language: �M, a core calculus for MATLAB

We compile control code in MATLAB to an A-Normalized core calculus. Running
on the core calculus simplifies the analyzer.

while true
 t = readTemp();
 if t < 30
 heat(true);
 else
 heat(false);
 end
end

Hybrid automaton

1.1 Example

Take the simple thermostat for example. We start with code for controlling the
temperature, written in MATLAB, and extract a hybrid automaton (Figure 1).
(We utilize MATLAB as the input language because in our interactions with
practicing engineers, we have found substantial amounts of control code—some
production, some prototype—written in MATLAB.)

The code maintains the temperature at 30 degrees with access to two cy-
berphysical primitives—readTemp() and heat(). The former reads the current
temperature, and the latter toggle operation of the heater.

while t rue
t = readTemp () ;
i f t < 30

heat (t rue) ;
else

heat (f a l s e) ;
end

end

Fig. 1. MATLAB control code for a thermostat.

Our goal is to extract the hybrid automaton in Figure 2 from this code.

2II 2Q

W�����
৪� �í�

W�����

W� ���
W�����
৪� ��W�����

Fig. 2. Hybrid automaton for a thermostat.

1.2 Contributions

We report preliminary work on a method to extract a hybrid automaton from
control code. This approach better suits industrial practice by synthesizing the
formal model from code, rather than code from a formal model.

2 Language: �M, a core calculus for MATLAB

We compile control code in MATLAB to an A-Normalized core calculus. Running
on the core calculus simplifies the analyzer.

λM

The grammar for the target language is an unsurprising subset of Scheme,
except for perhaps the inclusion of call/ec, which we use to model exceptions.
(Call/ec is behaviorally identical to call-with-current-continuation, ex-
cept that the continuation it creates must not be invoked beyond the dynamic
extent of the call to call/ec; this is exactly the kind of weak continuation needed
to handle exceptions.)

pr 2 Prog = Exp [programs]

v 2 Var is a set of identifiers [variables]

c 2 Const = String + Z [literals]

lam 2 Lam ::= (� (v1 . . . vn) e) [lambda terms]

f,æ 2 AExp ::= lam | v | c [atomic expressions]

| (op æ1 . . .æn) [primitive operations]

op 2 Op ◆ {+, -, *} [primitives]

e 2 Exp ::= (let ((v ce)) e) [expressions]

| æ [return]

| ce [tail]

ce 2 CExp ::= (f æ1 . . .æn) [complex expressions]

| (if æ e1 e2) [branching]

| (set! v æ) [variable mutation]

| (call/ec æ) [first-class control]

| cp [convex predicate]

Fig. 3. Syntax for �M—a core calculus for MATLAB

To model programs, we inject them into CESK-machines, whose state-space
has five components—the current expression, the current environment, the cur-
rent store, the current continuation and the current time. We can structurally
abstract this machine by bounding the set of times available. Figure 4 describes
the concrete and abstract state-spaces for the analyzer. Bounding time forces
the set of states ⌃̂ to be finite. To save space, we omit the transition relations
()) ✓ ⌃⇥⌃ and (;) ✓ ⌃̂⇥⌃̂ and we also omit the abstraction map ↵ : ⌃ ! ⌃̂

that connects them. Computing the control-flow analysis consists of constructing
the “abstract state transition graph” of reachable states under (;).

3 Extracting a hybrid automaton

Control-flow analysis leaves us with an abstract state transition graph. We now
describe how to compile this graph into a hybrid automaton.

Hybrid automaton

1.1 Example

Take the simple thermostat for example. We start with code for controlling the
temperature, written in MATLAB, and extract a hybrid automaton (Figure 1).
(We utilize MATLAB as the input language because in our interactions with
practicing engineers, we have found substantial amounts of control code—some
production, some prototype—written in MATLAB.)

The code maintains the temperature at 30 degrees with access to two cy-
berphysical primitives—readTemp() and heat(). The former reads the current
temperature, and the latter toggle operation of the heater.

while t rue
t = readTemp () ;
i f t < 30

heat (t rue) ;
else

heat (f a l s e) ;
end

end

Fig. 1. MATLAB control code for a thermostat.

Our goal is to extract the hybrid automaton in Figure 2 from this code.

2II 2Q

W�����
৪� �í�

W�����

W� ���
W�����
৪� ��W�����

Fig. 2. Hybrid automaton for a thermostat.

1.2 Contributions

We report preliminary work on a method to extract a hybrid automaton from
control code. This approach better suits industrial practice by synthesizing the
formal model from code, rather than code from a formal model.

2 Language: �M, a core calculus for MATLAB

We compile control code in MATLAB to an A-Normalized core calculus. Running
on the core calculus simplifies the analyzer.

State

& 2 ⌃ = Exp⇥ Env ⇥ Store ⇥Kont ⇥ Time

⇢ 2 Env = Var * Addr

� 2 Store = Addr * D

d 2 D = Clo +Kont ++String + Z
clo 2 Clo = Lam⇥ Env

 2 Kont ::= letk(v, e, ⇢,)

| halt

a 2 Addr ::= bindaddr(v, t)

t 2 Time is an infinite, ordered set of times

&̂ 2 ⌃̂ = Exp⇥ dEnv ⇥\Store ⇥ [Kont ⇥ \Time

⇢̂ 2 dEnv = Var * [Addr

�̂ 2 \Store = [Addr ! D̂

d̂ 2 D̂ = P
⇣
dClo + [Kont + \String + Ẑ

⌘

cclo 2 dClo = Lam⇥ dEnv

̂ 2 [Kont ::= letk(v, e, ⇢̂, ̂)

| halt

â 2 Addr ::= bindaddr(v, t̂)

t̂ 2 \Time is an finite set of abstract times

Fig. 4. The concrete (left) and abstract (right) state-spaces.

First, we want to annotate the states with same the kind of physical state-
change equations, e.g., ẋ = �3, found in hybrid automata. We will later discuss
how to infer invariants, e.g. t < 10, for each state.

In order to successfully derive the hybrid automaton, we require “physical”
annotations in the source code. The annotations identify which procedures read
physical quantities and which procedure calls initiate physical changes in the
system.

The extraction algorithm has three phases:

1. Partition the abstract states into an approximation of the control modes.
2. Merge control modes whose physical invariants and transitions are identical.
3. Duplicate any control modes with unguarded edges and repeat step 2.

3.1 Partitioning

The first step is to approximately partition the abstract states. Ultimately, each
final partition will eventually be a control mode in the resulting hybrid automa-
ton. (An acceptable, if ine�cient, initial partition would place every abstract
state in its own partition.) If a state has a single successor then both states
belong to the same partition.

Each partition is initially assigned physical invariants. Initially, these come
from tracking flow information on annotations on procedures that yield physi-
cal values. We perform the same kind af initial assignment from partitions to
physical state change equations based an the annotations. Partitions will merge
and duplicate repeatedly until every mode has an invariant and at most one
state-change equation for each variable.

For example, know that readTemp() reads the physical variable t means
that a conditional state evaluating (< Ttarget (readTemp)) will assert this
condition on states in its true branch and its negation in states on its false
branch.

Hybrid automaton

1.1 Example

Take the simple thermostat for example. We start with code for controlling the
temperature, written in MATLAB, and extract a hybrid automaton (Figure 1).
(We utilize MATLAB as the input language because in our interactions with
practicing engineers, we have found substantial amounts of control code—some
production, some prototype—written in MATLAB.)

The code maintains the temperature at 30 degrees with access to two cy-
berphysical primitives—readTemp() and heat(). The former reads the current
temperature, and the latter toggle operation of the heater.

while t rue
t = readTemp () ;
i f t < 30

heat (t rue) ;
else

heat (f a l s e) ;
end

end

Fig. 1. MATLAB control code for a thermostat.

Our goal is to extract the hybrid automaton in Figure 2 from this code.

2II 2Q

W�����
৪� �í�

W�����

W� ���
W�����
৪� ��W�����

Fig. 2. Hybrid automaton for a thermostat.

1.2 Contributions

We report preliminary work on a method to extract a hybrid automaton from
control code. This approach better suits industrial practice by synthesizing the
formal model from code, rather than code from a formal model.

2 Language: �M, a core calculus for MATLAB

We compile control code in MATLAB to an A-Normalized core calculus. Running
on the core calculus simplifies the analyzer.

Abstract State

& 2 ⌃ = Exp⇥ Env ⇥ Store ⇥Kont ⇥ Time

⇢ 2 Env = Var * Addr

� 2 Store = Addr * D

d 2 D = Clo +Kont ++String + Z
clo 2 Clo = Lam⇥ Env

 2 Kont ::= letk(v, e, ⇢,)

| halt

a 2 Addr ::= bindaddr(v, t)

t 2 Time is an infinite, ordered set of times

&̂ 2 ⌃̂ = Exp⇥ dEnv ⇥\Store ⇥ [Kont ⇥ \Time

⇢̂ 2 dEnv = Var * [Addr

�̂ 2 \Store = [Addr ! D̂

d̂ 2 D̂ = P
⇣
dClo + [Kont + \String + Ẑ

⌘

cclo 2 dClo = Lam⇥ dEnv

̂ 2 [Kont ::= letk(v, e, ⇢̂, ̂)

| halt

â 2 Addr ::= bindaddr(v, t̂)

t̂ 2 \Time is an finite set of abstract times

Fig. 4. The concrete (left) and abstract (right) state-spaces.

First, we want to annotate the states with same the kind of physical state-
change equations, e.g., ẋ = �3, found in hybrid automata. We will later discuss
how to infer invariants, e.g. t < 10, for each state.

In order to successfully derive the hybrid automaton, we require “physical”
annotations in the source code. The annotations identify which procedures read
physical quantities and which procedure calls initiate physical changes in the
system.

The extraction algorithm has three phases:

1. Partition the abstract states into an approximation of the control modes.
2. Merge control modes whose physical invariants and transitions are identical.
3. Duplicate any control modes with unguarded edges and repeat step 2.

3.1 Partitioning

The first step is to approximately partition the abstract states. Ultimately, each
final partition will eventually be a control mode in the resulting hybrid automa-
ton. (An acceptable, if ine�cient, initial partition would place every abstract
state in its own partition.) If a state has a single successor then both states
belong to the same partition.

Each partition is initially assigned physical invariants. Initially, these come
from tracking flow information on annotations on procedures that yield physi-
cal values. We perform the same kind af initial assignment from partitions to
physical state change equations based an the annotations. Partitions will merge
and duplicate repeatedly until every mode has an invariant and at most one
state-change equation for each variable.

For example, know that readTemp() reads the physical variable t means
that a conditional state evaluating (< Ttarget (readTemp)) will assert this
condition on states in its true branch and its negation in states on its false
branch.

State graph Hybrid automaton

1.1 Example

Take the simple thermostat for example. We start with code for controlling the
temperature, written in MATLAB, and extract a hybrid automaton (Figure 1).
(We utilize MATLAB as the input language because in our interactions with
practicing engineers, we have found substantial amounts of control code—some
production, some prototype—written in MATLAB.)

The code maintains the temperature at 30 degrees with access to two cy-
berphysical primitives—readTemp() and heat(). The former reads the current
temperature, and the latter toggle operation of the heater.

while t rue
t = readTemp () ;
i f t < 30

heat (t rue) ;
else

heat (f a l s e) ;
end

end

Fig. 1. MATLAB control code for a thermostat.

Our goal is to extract the hybrid automaton in Figure 2 from this code.

2II 2Q

W�����
৪� �í�

W�����

W� ���
W�����
৪� ��W�����

Fig. 2. Hybrid automaton for a thermostat.

1.2 Contributions

We report preliminary work on a method to extract a hybrid automaton from
control code. This approach better suits industrial practice by synthesizing the
formal model from code, rather than code from a formal model.

2 Language: �M, a core calculus for MATLAB

We compile control code in MATLAB to an A-Normalized core calculus. Running
on the core calculus simplifies the analyzer.

Partitioning

Merging

Duplicating

Come chat!
matt.might.net
@mattmight

