Incremental Invariant Generation using
Logic-based Automatic Abstract
Transformers

Pierre Loic Garoche Temesghen Kasai Cesare Tinelli

ONERA
CMU/NASA

The University of lowa

NFM 2013

BACKGROUND

Motivation:

» prove safety properties of finite- and infinite-state
transition systems

» interested in numerical invariants

Basic Technologies

» SMT-based k-induction engine with auxiliary
invariants

» numerical abstract domains

Application
» Analysis of Lustre models for avionics components

CONTRIBUTION

A general SAT/SMT-based method for

» computing abstract transformers
for collecting semantics automatically

» turning abstract interpreters
into incremental invariant generators

NUMERICAL INVARIANTS

Intervals

v

v

Polyhedra

v

Linear Integer Arithmetic constraints

Conditional LIA constraints

v

cond = linear constraint

USES OF NUMERICAL INVARIANTS

» |dentify over-approximations of reachable state set

» prove target properties expressed as such invariants
» enrich the system description with explicit invariants
» facilitate verification of more complex properties

USES OF NUMERICAL INVARIANTS

» |dentify over-approximations of reachable state set

» prove target properties expressed as such invariants
» enrich the system description with explicit invariants
» facilitate verification of more complex properties

» Constrain search space for logic-based model
checking methods

ABSTRACT INTERPRETATION

Successful approach to compute numerical invariants,
but ...

ABSTRACT INTERPRETATION

Successful approach to compute numerical invariants,
but ...

» results and time to get them depend on

1. the chosen abstraction
2. the speed-up parameters (widening, narrowing)

ABSTRACT INTERPRETATION

Successful approach to compute numerical invariants,
but ...

» results and time to get them depend on

1. the chosen abstraction
2. the speed-up parameters (widening, narrowing)

» abstract interpreters may be laborious to define and
build

BASIC INGREDIENTS IN AI-BASED SAFETY ANALYSIS

» A transition system T := (3,1, ~~7)

BASIC INGREDIENTS IN AI-BASED SAFETY ANALYSIS
» A transition system T := (3,1, ~7)
» The concrete domain (C,C¢) := (2*,C)
» A concrete transformer
gc:C—C = MX.XU{x' |xe X, x~rx}

» Concrete collecting semantics lfp, gc

BASIC INGREDIENTS IN AI-BASED SAFETY ANALYSIS

» A transition system T := (3,1, ~7)

» The concrete domain (C,C¢) := (2*,C)

» A concrete transformer

gc:C—C = MX.XU{x' |xeX,x~rx'}
» Concrete collecting semantics lfp, gc
» An abstract domain (A, C,)

» A sound abstract transformer g, : A — A

» Abstract semantics lfPaa) A

BASIC INGREDIENTS IN AI-BASED SAFETY ANALYSIS

» A transition system T := (X, [, ~>7)

» The concrete domain (C,C¢) := (2*,C)
» A concrete transformer
gc:C—C = MX.XU{x' |xeX,x~rx'}

» Concrete collecting semantics lfp, gc

v

An abstract domain (A, C,)

v

A sound abstract transformer ga : A — A

v

Abstract semantics Ifp,, ;) ga

v

A Galois connection witha: C — Aandv: A — C

ABSTRACT INTERPRETATION — THE USUAL PICTURE

(C,Ec)

ABSTRACT INTERPRETATION — THE USUAL PICTURE

ABSTRACT INTERPRETATION — THE USUAL PICTURE

ABSTRACT INTERPRETATION — THE USUAL PICTURE

ABSTRACT INTERPRETATION — THE USUAL PICTURE

<C7 EC> @ <A7 EA)

ABSTRACT INTERPRETATION — THE USUAL PICTURE

ABSTRACT INTERPRETATION — THE USUAL PICTURE

ABSTRACT INTERPRETATION — THE USUAL PICTURE

<C7 EC> @ <A7 EA)

ABSTRACT INTERPRETATION — THE USUAL PICTURE

ABSTRACT INTERPRETATION — THE USUAL PICTURE

COMMON NUMERICAL ABSTRACT DOMAINS

intervals congruences
Y Y
/4/\ x / | x

polyhedra octagons

ABSTRACT TRANSFORMERS

Usually the transition relation ~~7: ¥ — ¥ is defined using
smaller operators

» control flow operations

» data flow operations

» data expressions

» Memory access

> ..

ABSTRACT TRANSFORMERS

Usually the transition relation ~~7: ¥ — 3] is defined using
smaller operators

» control flow operations

» data flow operations

» data expressions

» Memory access

> ...

Defining an abstract transformer based on ~~r is a
manual, often time-consuming, process

AUTOMATIC ABSTRACT TRANSFORMERS

Our Goal:

Generate automatically an abstract transformer for
3c:C—=C

Specifically, generate a sound approximation
A A=A

of gc (conceptually) based on the concretization function

v:A—C

OUR REQUIREMENTS

» An encoding of (X, I, ~~7) in some decidable logic L :
1] T[x, X']

(e.g., prop. logic, SMT logic)

OUR REQUIREMENTS

» An encoding of (X, I, ~~7) in some decidable logic L :
1] T[x, X']
(e.g., prop. logic, SMT logic)

» Some numerical abstract domain (A, C4)
(such as those provided by APRON)

OUR REQUIREMENTS

» An encoding of (X, I, ~~7) in some decidable logic L :
I[x] T[x, X']
(e.g., prop. logic, SMT logic)

» Some numerical abstract domain (A, C4)
(such as those provided by APRON)

» A concretization function v, from A to formulas in £ over x
~c(a) is satisfied exactly by the states abstracted by a

OUR REQUIREMENTS

» An encoding of (X, I, ~~7) in some decidable logic L :
I[x] T[x, X']
(e.g., prop. logic, SMT logic)

» Some numerical abstract domain (A, C4)
(such as those provided by APRON)

» A concretization function v, from A to formulas in £ over x
~c(a) is satisfied exactly by the states abstracted by a

» An abstraction function ayx : ¥ — A for individual states
ax (s) abstracts exactly {s}

OUR ABSTRACT TRANSFORMER ga

ga maps an element a abstracting (reachable) states
to a bigger element abstracting more (reachable) states

OUR ABSTRACT TRANSFORMER ga

ga maps an element a abstracting (reachable) states
to a bigger element abstracting more (reachable) states

It is defined by the following procedure

Input: a € A
Flx,X] := y£(a)[x] A T[x, X'] A =y (a)[x]
if [is unsatisfiable then

return a

else
let s, s’ two states satisfying F[x, x']

al T[x,x']
/T
return als ax(s’) l /

INITIAL STATE ABSTRACTION

To compute a (post)-fix point of ga we first compute an
abstraction of the initial states

a:= 1

while (I[x] A —yg(a)[x] is satisfiable) do
let s be a state satisfying I A =g (a)
a:=allp ax(s)

return a

INITIAL STATE ABSTRACTION

To compute a (post)-fix point of ga we first compute an
abstraction of the initial states

a:= 1

while (I[x] A —yg(a)[x] is satisfiable) do
let s be a state satisfying I A =g (a)
a:=allp ax(s)

return a

In practice, here and in ga, widening is used to ensure
convergence
a:=allp ag(s)

a:=allp Oéz(S)

a:=aVa (ala ax(s))

EARLY INVARIANTS

Typically a concretization can be expressed as a conjunction

ve(@) =P1A... APy,

EARLY INVARIANTS

Typically a concretization can be expressed as a conjunction
ve(@) =P1A... APy,
At each iteration of the fixpoint computation, using a

multi-property technique for induction, we can identify
sub-formulas that are invariant and return them.

EARLY INVARIANTS

Typically a concretization can be expressed as a conjunction
ve(@) =P1A... APy,
At each iteration of the fixpoint computation, using a

multi-property technique for induction, we can identify
sub-formulas that are invariant and return them.

Example: [1,5] is concretized to
1<x ANx<5h

If 1 < xis shown to be invariant, it can be output before the
fixpoint is reached

AN IMPLEMENTATION: KIND-AI

The tool takes a Lustre model and generates numerical
invariants

>

>

>

uses all domains of APRON
uses Kind front-end to parse Lustre and encode it in SMT

is parametric wrt the iteration strategies and widening
thresholds

is integrated in Kind to generate invariants but can be run
independently

open-source, written in OCaml

EXAMPLE

1 node parallel_counters (a,b,c:bool)

2 returns (x,y:int; p:bool);

3 var m, np:int;

4 let

5 n1 = 10000;

6 n, = 5000;

7 x=0— if (b or ¢) then O

8 else if a and (pre x) < m then (pre x) + 1
9 else pre x;

10 y =0 — if c then 0

11 else if a2 and (pre y) < n, then (pre y) + 1
12 else pre y;

13

14 p=(x =m) implies (y = m);

EXAMPLE CONT’D

EXAMPLE CONT’D

< -
™

> N7
— - e
O o s

EXAMPLE CONT’D

A
.
> N7
© o b

EXAMPLE CONT'D

EXAMPLE CONT'D

EXAMPLE CONT’D

EXAMPLE CONT’D

EXAMPLE CONT’D

EXAMPLE CONT’D

EXAMPLE CONT'D

EXAMPLE CONT'D

EXAMPLE CONT'D

EXAMPLE CONT'D

Widening

de“‘\“g

EXAMPLE CONT’D

ooa®-

5000

500
|

T T I
10 100 1000 10000
X

INCREMENTAL INVARIANT GENERATION

At the 4th iteration, these properties are proven:

x>0 y=>0 y<n = x<y

EXAMPLE

1 node parallel_counters (a,b,c:bool)

2 returns (x,y:int; p:bool);

3 var m, np:int;

4 let

5 n1 = 10000;

6 n, = 5000;

7 x=0— if (b or ¢) then O

8 else if a and (pre x) < m then (pre x) + 1
9 else pre x;

10 y =0 — if c then 0

11 else if a2 and (pre y) < n, then (pre y) + 1
12 else pre y;

13

14 p=(x =m) implies (y = m);

EXPERIMENTAL RESULTS

Benchmarks ASPIC SMT-AI | Kind-AI SMT-AI

Ch79 Ch79V2 Lookahead Native runtime runtime
apachet = = = = + 005 005
car7 I - I - I 12,120 083
dummy1 = = — — + 005 003
dummy4 + = = = + 014 005
dummy6 + + + - + 028 timeout
gb + + = 1 + 7,830 026
goubaultib + = = = + 026 025
goubault2b + + + + + 102 018
hal79a I - - - + 1,430 024
hal79b + + — - + 1,020 021
simplecar + — = — + 066 006
sp Il — Il [l + 12,300 timeout
subway I I I I 19,130 5,330
swap Il — — - + 022 006
14x0 + + + + + 067 027
train1 I - I I I 19,040 5,330
weet1 Il Il Il — Il 5,530 027
wcet2 Il [l Il [l Il 38,870 2,270

+ : Kind-Al's invariant is stronger; — : weaker; = : equivalent; || : incomparable

EXPERIMENTAL RESULTS

Benchmarks ASPIC SMT-AI | Kind-AI SMT-AI

Ch79 Ch79V2 Lookahead Native runtime runtime
apachet = 004 = 004 = 004 = 004 | + 004 005 005
car7 | — Il — Il 12,120 083
dummy1 = 003 = 003 — - + 003 005 003
dummy4 + 014 = 014 = 014 = 014 | + 006 014 005
dummy6 + 004 + 028 + 028 — + 002 028 timeout
gb + 783 + 783 = 783 Il + 009 7,830 026
goubaulttb |+ 011 = 011 = 011 = 011 | + 011 026 025
goubault2b |+ 057 + 072 + 072 + 072 | + 057 102 018
hal79a I — - — + 047 1,430 024
hal79b + 101+ 101 — — + 101 1,020 021
simplecar + 066 — = 066 - + 005 066 006
sp Il - [l [l + 035 12,300 timeout
subway I - [l Il [19,130 5,330
swap Il - - - + 022 022 006
t4x0 + 014 4+ 014 + 014 + 014 | + 014 067 027
train [l — Il [l Il 19,040 5,330
wcetl] Il Il — Il 5,530 027
wcet2 I Il Il [l Il 38,870 2,270

+ : Kind-Al's invariant is stronger; — : weaker; = : equivalent; || : incomparable

CONCLUSION

» A generic approach for synthesizing abstract interpreters

v

The approach has fairly mild requirements:
» an encoding of the transition system in a decidable logic
» abstract domains that can be concretized to this logic
» computable abstractions of individual states

v

Generates a flow of (proven) invariants before reaching the
fixpoint

v

Instantiation on analysis of Lustre models

» APRON domains
» SMT logic and solver

v

Encouraging initial experimental results

PACKING AND PARTITIONING

Kind-Al can be parametrized by

» packing primitives: (oct : x1 -+ - xy) (poly : y1-- - yn)
» partitioning primitives: {expr;...;expry : packs}

Counterexamples will be injected in all the partitions they satisfy

S = —expry A expra

= counterex. s is injected in partitions —expr; and expr;

Can also handle partitions over (small) finite ranges

