Automatically Detecting
Inconsistencies in
Program Specifications

Aditi Tagore and Bruce W. Weide

The Resolve/Reusable Software Research Group (RSRG)
Department of Computer Science and Engineering
The Ohio State University

http://www.cse.ohio-state.edu/rsrg/

Introduction

e The robustness of an automated formal
verification system depends on

" having an intended specification

" 3 theorem prover's ability to prove the
verification conditions generated from
a proposed implementation

* Inconsistencies in the specification may
be introduced due to human errors

Contributions

* Lightweight techniques that
" formulate the conditions for
admissibility of program specifications
" check the logical consistency of loop
annotations (invariants and variants)

" determine whether a programmer has
supplied the appropriate modes for the
parameters of an operation

Background

* Specifications and their implementations
are written in Resolve

* Back-end prover to detect logical
inconsistencies is the SMT solver Z3

* Main ideas apply to specifications and
formal verification / theorem-proving
technology in general

Contributions

* Lightweight techniques that

» check the logical consistency of loop
annotations (invariants and variants)

» determine whether a programmer has
supplied the appropriate modes for the
parameters of an operation

Specification Filter

Program Specification

!

[Is the post-condition false?]

NO YES

Unimplementable,
hence inadmissible

Specification Filter

Program Specification

!

Is the post-condition false?

NO YES

[Is the pre-condition false?] _
Unimplementable,

hence inadmissible

NO YES

Further checks for Trivial,
admissibility hence inadmissible

Example 1: Proposed Specification

procedure DecrementBy3
(updates i: Integer)

requires r —
: - Pre-condition
1 >= 33— ()
re
ensures P <

1 =#1 - 3 and 1 > ©

7

Post-condition

\ (post))

Formula to Check Admissibility

* Check validity of
Vx,...,x,(pre = 3 y,...,», (posi)

where:

(X, ...,X,) are the incoming values of the
variables in pre and

yy-...,),) are the outgoing values of the
variables in post

Invalid Formula

4 .)
Pre-condition

(pre)
7

V# (#Hi=>3=Ti(i=#—-3 Ni>0)

(Post-condition
____ (post)

Example 2: Proposed Specification

procedure Divide (updates i: Integer,
restores j: Integer,
replaces r: Integer)
ensures
#1 =1 * j + rand 0 < r
and r < |J]

11

Formula to Check Admissibility

V #i, #j, #r (true =
Fij,r(#i=i*j+r) AN (O<r)
A @ <l|i) A G=H#))

Invalid Formula

 The formula is automatically translated
into Z3’s SMT2 input format

— Asked to prove it
— Concludes that the formula is invalid
—Produces a counter-example in which # =0

13

Invalid Formula

V #i, #, #r (true =
Fijr(#i=i*j+r) N O<r)
A@<|i) AG=%#))

* Problem when #j =10

* Programmer sees that a value of O
cannot be allowed for the divisorj

New Proposed Pre- and Post-condition

procedure Divide (updates i: Integer,
restores j: Integer,
replaces r: Integer)
requires
j /=0
ensures
#1i =1 * j + rand 0 < r
and r < |7

15

Formula to Check Admissibility

V #i, #, #r (4 4 0) =
Fijr(#i=i*ji+r AO<r
A@<l|j) AG=#))

* Formula declared invalid by Z3

* Produces a counter-example in which
#H =1

Formula to Check Admissibility

V #i, #, #r (4 # 0) =
Fijr(#=i*ji+r) AO<r)
A <l|j) A G=H#)))

* Problem when # =1

* Programmer sees that the remainder from
the Divide operation may be equal to 0

Final Pre- and Post-condition

procedure Divide (updates i:Integer,
restores j:Integer,
replaces r:Integer)
requires
j /=0
ensures
#1i =1 * j + r and 0 <= r
and r < ||

18

Example 3

* Resolve supports user-defined
mathematical functions and predicates

definition IS ODD(i: integer): boolean is
imod 2 /= 0O

19

Proposed Specification

procedure Halve(updates i: Integer)
ensures
if IS ODD(#i) then
#i
else

1 + 1

#i =1 + 1 + 1

20

Formula to Check Admissibility

V #i (true =
Fi((IS ODD#i) =#i=i+i) A
(—IS ODD#i) = #i=i+i+1)))

Invalid Formula

V #i (true =
Fi((IS ODD#i) = #i=i+i) N
(—IS ODD#i) = #i=i+i+ 1))

e Problemwhen#i=0 Ai=20

Final Pre- and Post-condition

procedure Halve(updates i: Integer)
ensures
if IS ODD(#i) then
#1 =1+ 1 + 1
else
#1 =1 + 1

23

Other Datatypes

* Technigues mentioned are also
applicable to specifications involving other
data-structures

* Not restricted to integers

procedure Dequeue (updates g: Queue,
replaces x: Item)

ensures
#g = <xX> * ¢

Contributions

* Lightweight techniques that

" formulate the conditions for admissibility
of program specifications

sl check the logical consistency of loop
annotations (invariants and variants)

" determine whether a programmer has
supplied the appropriate modes for the
parameters of an operation

25

Consistency of Loop Annotations

* Beneficial to detect defects in loop
annotations at an early stage, even
before VCs are generated

* Checks that can be carried out by
examining only the loop annotations and
the boolean condition

* Will not examine the loop body

26

Consistency of Loop Annotations

procedure Add(updates n: Natural,
restores m:Natural)

/ Invariant (inv)]
loop

maintains n + m = #n + #m and k + m = #k + #m

and z = 0 (]
decreases m —— - Variant (var)]

while not AreEqual(m, z) do

)
end loop Boolean condition

(b)

end Add J

Loop Annotations - Check 1

e The invariant and the boolean condition
are contradiction-free

* |f two or more conjuncts in the loop
invariant contradict each other, then the
invariant evaluates to false and the
invariant is inadmissible

e Same with the boolean condition

28

Loop Annotations - Check 2

* The variant is positive every time the
loop iterates

Vxy,.oos X, (b Ainv =var> ()

29

Check 2 - Formula to Check
Consistency
* Check validity of :
V' n, #n, m, #m, k, #k, 7, #z7 (
m#z
An+m=4%#n+#m
Ak +m = #k + #m
Az=0

=m>0)

Loop Annotations - Check 3

* The loop invariant is valid before the
loop iterates for the first time

Xy, x, (inv,)

where inv, .
removed

is the invariant with # symbols

31

Check 3 - Formula to Check
Consistency

* Check validity of :

Inmk z(nt+m=n+m
NANk+m=k+m
Az=0)

Contributions

* Lightweight techniques that
" formulate the conditions for admissibility
of program specifications

" check the logical consistency of loop
annotations (invariants and variants)

s determine that a programmer has
supplied the appropriate modes for

the parameters of an operation

33

Detecting Incorrect Parameter
Modes

* The ways in which a parameter to an
operation are used in the specification
may not be consistent with the mode of
the parameter

* Syntactic checks are employed to give
suggestions to the programmer about
the appropriate mode

34

Parameter Description
Mode

restores |The incoming and the outgoing values of the
parameter are the same

updates |Theincoming and outgoing values of the
parameter are potentially different

replaces | The operation’s behavior does not depend on
the incoming value (a special case of
updates)

clears The outgoing value of the parameter is an
initial value of its type (a special case of
updates)

Benefits of Parameter Modes

Simplify specifications by reducing
redundancy — restores mode

Help programmers write, and
clients read, specifications —

replaces mode, clears mode

Parameter Modes — Check 1

* Areplaces-mode parameter should not
appear in the requires clause

procedure Divide (updates i: Integer,
replaces j: Integer,
replaces r: Integer)

requires

j /=0

37

Parameter Modes — Check 2

* Incoming value of a parameter should
occur in the post-condition if and only if
the parameter mode is one of

" updates
" clears

38

The Header of Add

procedure Add

(updates n: Natural,
restores m: Natural)

Post-conditions

ensures ensures
N = #n + #m N =Nn4++m
INCONSISTENT INCONSISTENT

ensures

N = #N + m
CONSISTENT

39

Parameter Modes — Check 3

* When the parameter mode is clears,
the outgoing parameter value should not
appear in the post-condition

* Example: Adding conjuncti = 0 to the
post-condition is unnecessary

40

Parameter Modes — Check 4

* Ifthe mode of the variable is restores,
then a conjunct i = constant should not
appear in the post-condition

 Example: A conjuncti = 5 should not be
added to the post-condition

41

Summary

* Lightweight techniques that
" formulate the conditions for
admissibility of program specifications
" check the logical consistency of loop
annotations (invariants and variants)

" determine whether a programmer has
supplied the appropriate modes for
the parameters of an operation

Questions?

Aditi Tagore and Bruce W. Weide

The Resolve/Reusable Software Research Group (RSRG)
Department of Computer Science and Engineering
The Ohio State University

http://www.cse.ohio-state.edu/rsrg

