Using Learning Techniques
in
Invariant Inference

Alex Aiken
Aditya Nori
Rahul Sharma
Saurabh Gupta
Bharath Hariharan

Alex Aiken, Stanford

Invariant Inference

* An old problem

+ A different approach with two ideas:

1. Separate invariant inference from the rest of the
verification problem

Alex Aiken, Stanford 2

Why?

_ Pre
e
foré?) _ T
{
.. code ...
) — Post
-

Alex Aiken, Stanford

Pre)I
TI/AEB
{ code }

I A£B)
Post

Invariant Inference

* An old problem

+ A different approach with two ideas:

1. Separate invariant inference from the rest of the
verification problem

2. Guess the invariant from executions

Alex Aiken, Stanford 4

Why?

»+ Complementary to static analysis
- underapproximations

- "see through" hard analysis problems
» functionality may be simpler than the code

- Possible o generate many, many tests

Alex Aiken, Stanford

Nothing New Under the Sun

- Sounds like DAIKON?

- Yesl!

* Hypothesize (many) invariants
- Run the program
- Discard candidate invariants that are falsified
- Attempt to verify the remaining candidates

Alex Aiken, Stanford

A Simple Program

s = 0;

y = 0;

while(*)

{
print(s,y);
S =S + 1;
y =y + 1;

}

* Instrument loop head

» Collect state of program
variables on each
Iteration

Alex Aiken, Stanford 7

A DAIKON-Like Approach

* Hypothesize

s = 0;
- 8§ =

while(*)

1 + Data
print(s,y); . »
S =S + 1; 0 0
y =y + 1;

}

Alex Aiken, Stanford

A DAIKON-Like Approach

s = 0- * Hypothesize
. sy

Y = O’ - egma2

while(*)

i * Data
print(s,y); . »
S :=5S + 1; 0 0
y =Yy + 1; : 1

¥

Alex Aiken, Stanford

A DAIKON-Like Approach

while(*)

{
print(s,y);
S =S + 1;
y =y + 1;

}

* Hypothesize

- S:y
~ emiadiyn
+ Data

s Y
0 0
1 1
2 2
3 3

Alex Aiken, Stanford

10

Another Approach

w N = O X

s =0: * Data
y = 0; :
while(*) X
{ 2
print(s,y); 3
S :=s + 1;
y =y + 1;

¥

Alex Aiken, Stanford

11

Arbitrary Linear Invariant

as + by = 0 * Data

w NN = O |n

w N = O X

Alex Aiken, Stanford

12

Observation

as + by =0
s y W
0 0] a
1 1 b
2 2
3 3

Alex Aiken, Stanford

o O

13

Observation

as + by =0
{w|Mw=0}
s y W
0 0] a
1 1 b
2 2
3 3

Alex Aiken, Stanford

o O

14

Observation

as + by =0
NullSpace(M)
s y W
0 0 a
1 1 b
2 2
3 3

Alex Aiken, Stanford

o)
0

15

Linear Invariants

- Construct matrix M of observations of all
program variables

» Compute NullSpace(M)

- All invariants are in the null space

Alex Aiken, Stanford

16

Spurious "Invariants”

» All invariants are in the null space
- But not all vectors in the null space are invariants

- Consider the matrix

O <X

* Need a check phase

- Verify the candidate is in fact an invariant

Alex Aiken, Stanford 17

An Algorithm

- Check candidate invariant
- If an invariant, done

- If not an invariant, get counterexample

- A reachable assignment of program variables falsifying
the candidate

- Add new row to matrix
- And repeat

Alex Aiken, Stanford 18

Termination

* How many times can the solve & verify loop
repeat?

» Each counterexample is linearly independent
of previous entries in the matrix

« So at most N iterations

- Where N is the number of columns
- Upper bound on steps to reach a full rank matrix

Alex Aiken, Stanford 19

Summary

+ Superset of all linear invariants can be
obtained by a standard matrix calculation

+ Counter-example driven improvements to
eliminate all but the true invariants

- Guaranteed to terminate

Alex Aiken, Stanford 20

What About Non-Linear Invariants?

s = 0;

y = 0;

while(*)

{
print(s,y);
S =S + VY;
y =y + 1;

}

Alex Aiken, Stanford

Idea

- Collect data as before

* But add more columns to the matrix
- For derived quantities
- For example, y? and s?

* How to limit the number of columns?
- All monomials up to a chosen degree d

[Nguyen, Kapur, Weimer, Forrest 2012]

Alex Aiken, Stanford

22

What About Non-Linear Invariants?

s = 0;

y = 0;

while(*)

{
print(s,y);
S =S +YVY,;

y =y + 1;

1 s y s y2 sy
1 0 0O O o0 O
1 1 1 1 1 1
1 3 2 9 4 6
1 6 3 36 9 18
1 10 4 100 16 40

Alex Aiken, Stanford

23

Solve for the Null Space

a + bs + cy+ ds? + ey?2 + fsy =0

1 s y s y2 sy n
1 0 0 0O 0 O a 0
1 1 1 1 1 1 b 0
mE 0
1 3 2 9 4 6 ¢ mm 5
1 6 3 36 9 18 d -
1 10 4 100 16 40 €
‘ 0

Candidate invariant: -2s + y + y2 = 0

Alex Aiken, Stanford

24

Comments

- Same issues as before

- Must check candidate is implied by precondition, is
inductive, and implies the postcondition on
termination

- Termination of invariant inference guaranteed if
the verifier can generate counterexamples

+ Experience: Solvers do well as checkers!

Alex Aiken, Stanford 25

Experiments

Name #vars | deg | Data | #and | Guess time (sec) | Check time (sec) | Total time (sec)
Mul2 4 2 75 I 0.0007 0.010 0.0107
LCM/GCD 6 2 329 1 0.004 0.012 0.016
Div 6 2 343 3 0.454 0.134 0.588
Bezout 8 2 362 5 0.765 0.149 0914
Factor 5 3 100 1 0.002 0.010 0.012
Prod 5 2 84 1 0.0007 0.011 0.0117
Petter 2 6 10 1 0.0003 0.012 0.0123
Dijkstra 6 2 362 1 0.003 0.015 0.018
Cubes 4 3 31 10 0.014 0.062 0.076
geoReihel 3 2 25 I 0.0003 0.010 0.0103
geoReihe?2 3 2 25 1 0.0004 0.017 0.0174
geoReihe3 4 3 125 1 0.001 0.010 0.011
potSumm1 2 1 5 I 0.0002 0.011 0.0112
potSumm?2 2 2 5 I 0.0002 0.009 0.0092
potSumm3 2 3 5 I 0.0002 0.012 0.0122
potSumm4 2 4 10 I 0.0002 0.010 0.0102

Alex Aiken, Stanford 26

Summary to This Point

» Sound and complete algorithm for algebraic
invariants

- Up to a given degree

+ Guess and Check

- Hard part is inference done by matrix solve
- Check part done by standard SMT solver
- Much simpler and faster than previous approaches

Alex Aiken, Stanford 27

What About Disjunctive Invariants?

+ Disjunctions are expensive

+ Existing techniques severely restrict
disjunctions
- E.g., to a template

Alex Aiken, Stanford

28

Good States

Alex Aiken, Stanford

29

Separating Good States and Bad States

Alex Aiken, Stanford

30

Separating Good States and Bad States

Alex Aiken, Stanford

31

More Precisely . . .

* A stateis a valuation of program variables

» Correct programs have good and bad states

- All reachable states are good
- Because we assume the program is correct

- Assertions define the bad states
- States that would result in the assertion being violated

* An invariant is a separator
- Of the good states from the bad states

Alex Aiken, Stanford 32

From Verification to Machine Learning

* From data we want to learn a separator of the
good and bad states

» This is a machine learning problem

Alex Aiken, Stanford 33

Goals

 Produce boolean combination of linear
inequalities
- Without templates

* Predictive
- Generalizes well from small test suite

- Efficient
- Hard, but more on this later

Alex Aiken, Stanford

34

PAC Learning

» Given some positive and negative examples
- Learn separator

+ Separator is Probably Approximately Correct

- With confidence 1 - x the accuracyis1-e
- The number of examples is m = poly(1/x,1/e,d)

Alex Aiken, Stanford 35

Example for Good and Bad States

- Good states:

X :=y;
- (xy)=(L1), 2.2),..

while(x !'=0) do

X:=x-1; - Bad states:

y:=y-1 - SAT(x=0Ap=0)
asserty =0 - SAT(x=1Ap#1)

Alex Aiken, Stanford 36

Invariants

* Arbitrary boolean combination of
- Equalities and
- Inequalities
- Over program quantities

* Note "program quantities” includes variables
and induced quantities (like x?)

Alex Aiken, Stanford 37

First Part

* Run tests to get good states
* Run previous algorithm to infer equalities E

- Sample bad states
- Consider while Bdo S; assert Q
- Sample from :B £ :Q £ E
- Sample from :B /£ WP(assume(B);S,:Q) A E

Alex Aiken, Stanford 38

Idea

* Good and bad states are points in d-
dimensional space

* Inequalities are planes in this space

* Must pick a set of planes that separate every
good from every bad state

Alex Aiken, Stanford 39

Picture

* How many planes
are required?
- At most m¢
- m is # points
- d is dimensionality

* Puts every point in
its own cell

Alex Aiken, Stanford

40

Theorem

- md planes (inequalities) would be awful

* PAC learning can find a subset of the planes
that separate the positive and negative points
- With O(s log m) planes
- Where s is the size of the minimal separator
- And m is roughly ds log ds ..(other factors) ...
- In time md+?

Alex Aiken, Stanford 41

Simple Example

Alex Aiken, Stanford

42

Disjunction Example

+

Alex Aiken, Stanford

43

Algorithm

» Consider a bipartite graph
- Connects every good and bad state

* Repeat

- Pick a plane cutting the maximum number of
remaining edges

Alex Aiken, Stanford

44

Analysis Ingredients

- md possible planes
* S = m?are a separator

- The greedy strategy in time md2 finds s log m
planes

Alex Aiken, Stanford 45

Comments

+ The fact that there is only a log factor

increase in number of planes over the minimum
IS important
- Avoids overfitting

* In practice, the number of planes is small

Alex Aiken, Stanford 46

Efficiency

+ The general algorithm is too inefficient

- Impose some assumptions common to
verification techniques
- Reduce set of candidate planes to polynomial

Alex Aiken, Stanford

47

Predicate Abstraction

» The invariant is an (arbitrary boolean
combination) of predicates in T

» Can find a PAC separator in time O(m?|T|)

- Even though the complexity of finding an invariant
is NPN? complete

Alex Aiken, Stanford 48

Abstract Interpretation

+ Efficient algorithms for restricted abstract
domains

- Boxes O(m3d)
- Octagons O(m3d?)

Alex Aiken, Stanford 49

Boxes

| |

—-—— el - - - - - -
|
|

50

Alex Aiken, Stanford

Boxes

Alex Aiken, Stanford

51

Check Phase

- Use Boogie

* For counter-examples
- Satisfies precondition, add as positive example
- Violates assertion, add as negative example

- If can't label, add as a constraint
* Increases the guess size

Alex Aiken, Stanford

52

Experiments

hsort
msort
nested
seq-lenl
seq-len
svd
esc-abs
get-tag
maill-qp
spam
split
div

47
73
21
4
-t
50
71
120
92
57
20
28

—_—— N = o NN WY

n =

D W o O D

N W

Alex Aiken, Stanford

0.19
0.093
0.24
4.39
0.32
4.92
1.09
0.092
0.11
1.01
FAIL
2.03

1.05
1.12
0.99
1.04
1.04
0.99
1.06
1.04
1.05
1.05
NA

TO

OK
OK
OK
PRE
OK
OK
OK
OK
OK
OK
FAIL
OK

53

Application: Equality Checking

* Have extended these techniques to checking
equality of arbitrary loops
- Guess and verify a simulation relation
- Mine equalities between the two loops as a guide

» Able to prove code generated by gcc -0O2
equivalent to CompCert

Alex Aiken, Stanford 54

Discussion

+ Sound invariant inference based on PAC
learning

* Machine learning/data mining techniques to
- Handle disjunctions
- Non-linearities

» Connects complexity of learning and
complexity of verification

Alex Aiken, Stanford 55

Discussion

- Like predecessors, focus on numerical
Invariants

- Many other interesting aspects of programs not
covered

- Data structures, arrays, concurrency, higher-order
functions ...

- This is where we are headed ...

Alex Aiken, Stanford 56

Thanks!

Questions?

Alex Aiken, Stanford

57

