Surface Telerobotics from the ISS

September 25 2012

Figure 1. L2-Farside Mission Concept (image from Lockheed Martin)

Surface Telerobotics is a planned 2013 test to examine how astronauts in the International Space Station (ISS) can remotely operate a surface robot across short time delays. This test will be performed during Increment 35/36 to obtain baseline engineering data and will improve our understanding of how to: (1) deploy a crew-controlled telerobotic system for performing surface activities and (2) conduct joint human-robot exploration operations. This test will also help reduce risks for future human missions, identify technical gaps, and refine key system requirements.

The Moon’s farside is a possible early goal for missions beyond Low Earth Orbit (LEO) using the Orion Multi-Purpose Crew Vehicle (MPCV) to explore incrementally more distant destinations. The lunar L2 Lagrange Point is a location where the combined gravity of the Earth and Moon allows a spacecraft to be synchronized with the Moon in its orbit around the Earth, so that the spacecraft is relatively stationary over the farside of the Moon.  Such a mission would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations.

Figure 2. Low frequency radio telescope

From the Lagrange Point, an astronaut would teleoperate a rover on the lunar farside that would deploy a low radio frequency telescope to acquire observations of the Universe’s first stars/galaxies.  This is a key science objective of the 2010 Astronomy & Astrophysics Decadal Survey. During Surface Telerobotics operations, we will simulate a telescope/antenna deployment.

Figure 3. K10 Rover

The ISS crew will control a NASA K10 planetary rover operating at a NASA outdoor robotics testbed.  The rover will carry a variety of sensors and instruments, including a high resolution panoramic imager, a 3D scanning lidar, and an antenna deployment mechanism.

The crew will control the robot in “command sequencing with interactive monitoring” mode.  The crew will command the rover to execute pre-generated sequences of tasks including drives and instrument measurements.  The robot will execute the sequence autonomously while the crew monitors live telemetry and instrument data.  If an issue arises, the crew can interrupt the current sequence and use basic manual tele-op commands to maneuver the robot out of trouble or command additional data acquisitions.

As a first step to the 2013 test, on September 22nd, at the 2012 International Observe the Moon Night event at NASA Ames Research Center, we demonstrated deployment of a polymide film antenna substrate.  The video below shows the K10 rover playing out a polymide (kapton) film on the Ames Marscape.

This entry was posted on Tuesday, September 25th, 2012 at 11:26 pm and is filed under HET. You can follow any responses to this entry through the RSS 2.0 feed. Post a comment or leave a trackback: Trackback URI.

Post a Comment

Your email is never published nor shared. Required fields are marked *



  • Measuring Lake Tahoe from Space

    This fall, the crisis mapping team extended their work on flood mapping to measure the water level of Lake Tahoe over time ... more

  • Flood Mapping with Adaboost

    The Crisis Mapping team recently wrapped up our research on flood mapping. Previously, we evaluated existing MODIS flood mapping algorithms across a diverse range ... more

  • Crisis Mapping Toolkit Released

    We are excited to announce the open source release of the Crisis Mapping Toolkit under the Apache 2.0 license! The ... more