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Abstract. Automatic proof and automatic programming have always enjoyed a
close relationship. We present a unification of proof planning (a knowledge-based
approach to automated proof) and schema-guided synthesis (a knowledge-based
approach to automatic programming). This unification enhances schema-guided
synthesis with features of proof planning, such as the use of heuristics and the
separation between object-level and meta-level reasoning. It enhances proof plan-
ning with features of schema-guided synthesis, such as reuse. It allows program
schemas and heuristics to be implemented as proof planning methods. We aim
particularly at implementation within the AClam proof planner, whose higher-
order features are particularly appropriate for synthesis. Program synthesis and
satisfaction of its proof obligations, such as verification conditions, matchings, or
simplifications, are thus neatly integrated.

1 Introduction

In this paper we present a unification of proof planning and schema-based program
synthesis, based on previous work [26, 14]. The purpose of this is threefold:

1. To incorporate heuristics into schema-based synthesis, so that program schemas
may be (semi-)automatically selected. Proof planning methods do incorporate heuris-
tics, but up to now heuristics have been largely ignored in schema-based synthesis.

2. To link schema-based synthesis into a theorem proving framework, so that a theo-
rem prover can naturally be used to tackle the (typically many) proof obligations
— such as verification conditions, matchings, or simplifications — that arise during
synthesis. We implement our ideas in the higher-order proof planner A\Clam [27].

3. To generalise both proof planning and schema-based synthesis, so that each may
benefit from useful features of the other.

We present proof planning [5, 25] and schema-based program synthesis (whether through
specification decomposition [29, 12] or through precomputation [30, 31,4, 15]) sepa-
rately in a clear (and novel) way in Sections 2 and 3, such that the close correspondence
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between the two is easily drawn out, in Section 4. We discuss our prototype implemen-
tation in Section 5, further work in Section 6, and related work in Section 7, before
concluding in Section 8.

We target the synthesis of logic programs, but the same ideas could be adapted to
synthesise functional or imperative programs.

2 Proof Planning

Proof planning [5,25] is a knowledge-based technique for constructing mathematical
proofs. It has so far been implemented in three systems, namely Clam [7], AClam [27],
and {2mega [2]. High-level proof steps are specified as plan operators, called methods.
Methods operate on formulae in a meta-level logic. Al planning techniques compose
these plan operators into a proof plan, which is then translated into a fully formal proof
via a mapping from methods to tactics [16]. We call the logic within which the fully
formal proof is constructed the object-level logic.

The distinction between the object-level logic (which must be formal) and the meta-
level logic (which need not be formal) allows flexible, possibly non-logical, heuristic
reasoning to take place at the planning level without compromising the security pro-
vided by the fully formal object-level. For our purposes, the main differences between
the meta-level logic and object-level logic are that the formulae of the former may be
annotated to help guide subsequent proof (e.g., the wave fronts in rippling [8]), con-
tain meta-variables (i.e., existentially quantified variables of the language in which the
planner is written), and may omit some details such as types or trivial subgoals.

Definition 21 A method is a tuple with 6 slots:

— Name(Parameters): the name and formal parameters of the method.

— Input pattern: the meta-level sequent to which the method applies. Meta-level se-
quents which contain meta-variables may be considered as patterns.

— Preconditions: the conditions that must hold for the method to apply.

— Postconditions: the conditions that must hold after the method has been applied.

— Outputs: the list of output patterns.

— Tactic(Parameters): the name and parameters (if any) of the tactic that constructs
the piece of the object-level proof corresponding to this method.

Definition 22 A method {(Name, Input, Pre, Post, Outputs, Tactic) is applicable
to a meta-level sequent G if and only if there exist variable assignments (substitu-
tions 6y, 82, 83) on the method’s schematic variables such that G6; = Input#, and
F Pre10, and F Post 616203. The result of the method application is a list of output
sequents, namely Outputs 616-03.

Definition 23 Proof planning incrementally develops a partial proof plan, PP, which
is initially set to the single root node (@, open), where @ is the conjecture to be proved.
Proof planning then continues in the following 6 steps:!

" In the interests of clarity, we are being more specific here than we need to about the algorithm
used to construct the plan. Different Al planning algorithms can be used.
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. Choose a leaf node L = (G, open) from PP.

2. Choose a proof method M = (Name, Input, Pre, Post, Outputs, Tactic).

3. Unify G with Input to find an assignment of schematic and meta-level variables
(i.e., a substitution #) such that G ¢, = Inputd;.

4. Check the heuristic conditions and set up the subgoals by finding assignments of
schematic and meta-level variables (i.e., substitutions # and #3) such that = Pre 8,62
and - Post 6,0205.

5. Replace L in PP with a node that has label (G 616203, M 6,0203), and one child
for each element of the (possibly empty) list of open subgoals Qutputs 616205,

6. Recurse on the new partial proof plan.

If any of these steps fail, then the planner backtracks to its last choice point (for exam-
ple, choosing a different open leaf node from PP, choosing a different method to apply,
or finding alternative substitutions that satisfy the precondition and postconditions). If
there are no remaining open leaf nodes, the planning process terminates. A compound
tactic for constructing the object level proof is formed by replacing each method in the
tree by its associated tactic with associated parameters, and combining them using the
then tactical.

Proof planning has the following advantages, amongst others:

— proofs tend to be short because they are composed of large building blocks, so there
is a reduction in the size of the proof search space, which in traditional approaches
to automated theorem proving is both wide, because the choice of which inference
rule to apply next in a proof is quite unrestricted, and deep, because the inference
rules are quite low-level. For example, Clam automatically found a proof plan con-
taining 17 method applications which was translated upon tactic execution to an
object-level proof that contained 665 applications of inference rules [7].

— the resulting proofs are more comprehensible than typical machine-generated proofs.
Users can easily understand and intervene in the proof plan construction process us-
ing a graphical interface — XBarnacle [23] for Clam and AClam, and L2UI [28]
for 2mega.

3 Schema-Guided Program Synthesis

We now study schema-guided program synthesis, so that its analogy with proof plan-
ning can be shown. We first discuss some (syntactic) notions around formal specifica-
tions and programs (in Section 3.1). We then define the (semantic) notion of program
schema (in Section 3.2). Finally, it is shown how to use program schemas to guide au-
tomatable program synthesis (from formal specifications), hence reducing the search
space of synthesis (in Section 3.3).

3.1 Formal Specifications and Programs

Although specifications are necessarily informal [22], we here have to focus on the
so-called “formal specifications.” We allow open (or: parametric) specifications and



programs, together with the corresponding notion of open (or: parametric) correctness,
sometimes called steadfastness [21].

A relation symbol r in a theory T in a language L is oper in T if it is neither defined
in T nor a primitive symbol in £. A non-open symbol in T is a closed symbol in T'. A
theory with at least one open symbol is an open theory; otherwise it is a closed theory.
The same terminology applies to individual formulae, to formal specifications, and to
(standard or constraint) logic programs, which are all particular cases of theories.

Example 31 Among the many forms of specifications, there are the conditional spec-
ifications, expressing that, under some input condition ¢, on input(s) X, a program for
relation » must succeed if and only if some output condition o, on X and output(s) ¥’
holds. Formally, this gives rise to the following open specification (in logic) of r:

VX :T.VY : T (X)) = (r(X,Y) & 0,(X,Y)) (cond)
The only open relations are 4,- and o,.. Now, the (closed) specification

VS i seq(T). VM : T .
true = (member(S, M) + 3P,Q : seq(T) . append(P,[M|Q], S))

where append is the usual primitive, is an instance of cond under the substitution

1-(S) < true
0,(S, M) <> 3P, Q : seq(T) . append(P,[M|Q], S)

It specifies a program for deciding if a term A/ is a member of a term sequence S.

Example 32 Among the many possible forms of logic programs, there are the divide-
and-conquer programs with one recursive call. Formally, their problem-independent
data-flow and control-flow can be captured in the following open program of r [12]:

r(X,Y) « minimal(X), r(X,Y) + -minimal(X), (de)
solve(X,Y) decompose(X, H,T),
r(T,V),

compose(H,V,Y)

The only open relations are minimal, solve, decompose, and compose. Now, a closed
program for reverse, where reverse(L, R) holds iff sequence R is the reverse of se-
quence L, is an instance of dc under the “substitution”

minimal(L) « L =]
solve(L,R) «+ R =]
decompose(L, H,T) « L = [Hd|T], H = [Hd)
compose(H, T, R) < append(T, H, R)

This substitution captures the problem-dependent computations of a reverse program.

B



3.2 Program Schemas

Programs by themselves are rather syntactic entities, hence some programs are “unde-
sired” instances of given open programs.

Example 33 Consider the following (open) extension of dc, which defines a class of
global search constraint logic programs:

meinimal(X) < true rgs(X,D,Y) « extract(X,D,Y)
solve(X,Y) < init(X, D), rgs(X,D,Y) « split(D, X, D', §),
rgs(X,D,Y), constr(6, D, X),
gen(Y, X) rgs(X,D",Y)
decompose(X, H,T) < true compose(H,V,Y) + true

Since all the work is done by solve, and minimal, decompose and compose are trivial,
this clearly does not define a divide-and-conquer algorithm. The knowledge captured
by an open program is thus not completely formalised, and the domain knowledge and
underlying language are even only left implicit. In order for open programs to be really
useful for guiding synthesis, such undesired instances need to be prevented and some
semantic considerations need to be explicitly added. The resulting notion is called a
program schema.

In [13], a program schema is defined to consist of a syntactic part, called the tem-
plate, and a semantic part. The template is an open program in the context of the prob-
lem domain, which is characterised as a first-order axiomatisation, called a (specifica-
tion) framework [20], which is the semantic part. The latter endows the program schema
with a formal semantics, and enables us to define and reason about its correctness. In
particular, there is a special kind of correctness for open programs such as templates,
namely steadfastmess [21]. A steadfast open program is always correct (wrt its speci-
fication) as long as its open symbols are correctly computed (wrt their specifications).
Space is too limited here for a detailed definition of specification frameworks. Suffice
it to say that they are a generalisation of ADT frameworks, expressed in (first-order)
logic rather than algebra, and that they essentially are 5-tuples (IV, P, S, A, C), with N
being a name, P a set of (sort and relation) formal parameters, S a signature made of
relation and function declarations as well as the names of imported frameworks, A a set
of axioms that define the declared symbols, and C' a set of constraints that restrict the
actual parameters.

A program schema (N, P,S, A,C,T, D, O} is thus defined in [13] to be a specifi-
cation framework with two additional slots, namely a steadfast open program 7 (called
the template), and specifications of relations in the template. For practical reasons, this
last slot is here broken into two slots, namely D for the specification of the defined
relation of the template, and O for the specifications of its open relations. All formulae
(axioms, constraints, specifications, and programs) are in the language of the underlying
framework.



Example 34 A program schema enforcing how divide-and-conquer programs work is
<DC, PDC, SDC, ADC, CDC, dC, cond, ODC> [12], where:

Ppec = {X7y7i7‘707’7id6670d667'<} ADC = {}

CDC = {Clv 027 03} ODC = {Sml'rh Ssolve7 Sdem Scomp}

Spc = {imidec : (X); Or © (va)§ Odec * (va>X)§ at (X>X)}

and the involved new formulae are as follows:

tgec(X) = AH 1 Y. 3T : X . 04 (X, H, T) (C?)
tdee(X) A Ogee (X, H,T) = i (TYANT < X (C%)
well_founded_order(=<) (Cs)
(X)) = (minimal(X) ¢ —ige.(X)) (Smin)

i (X) A 7igec(X) = (s0lve(X,Y) & 0,.(X,Y)) (Ssotve)
idec(X) = (decompose(X, H,T) < ogec(X, H, T)) (Saee)
0dec(X, H,TY A 0,.(T, V) = (compose(H,V,Y) < 0,(X,Y)) (Scomp)

Parameters X and Y are sorts; they are used in the signatures of the other parameiers,
which are relations. There are no axioms, because the signature declares no other sym-
bols than the parameters. The template is open program dc, which defines relation r
and has minimal, solve, decompose, and compose as open relations. Relation r is
specified by cond, and the open relations have Op as specifications, which are all in-
stances of cond. Specification cond exhibits ¢, and o, as the input and output conditions
of r, while specification Sgy.. exhibits 74.. and o4.. as the input and output conditions
of decompose. Note that the input and output conditions of the remaining open rela-
tions are only expressed in terms of the parameters i, igec, O, and oge.. Program dc
is steadfast wrt specification cond (subject to the specifications in Op¢), within the
axiomatisation of the framework.

Example 35 Finally, the following schema captures the reuse of existing programs and
should thus always be tried first in synthesis. It is formalised as
<R£US57 PReusea SReusea AReuse> CReuse7 {T — q}7 Cond7 OReuse> where:

Preuse ={X,Y,ir, 00} Sreuse = {ir 1 (X); 07 (X, D)}
AReuse = {} CReuse = {}
OReuse = {Zr — (q Ans 07’)}

The template is open program {r < g}, which defines relation r and has only ¢ as open
relation. Relation r is specified by cond, and relation ¢ has the same input and output
conditions as r. There are no constraints on the parameters, due to the generality of all
the other slots. This schema provides for the reuse of a program for ¢ when starting
from a specification for r.

3.3 Towards Automatable Schema-Guided Synthesis

Schema-guided synthesis starting from a specification S is a tree construction process
consisting of 6 steps, the initial tree having just one node, namely Sy (cf. proof planning,
in Definition 23):
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. Choose a specification S; that has not been handled yet.

2. Choose a program schema (N, P, S| A, C, T, D, O). All proof obligations will be
within the theory of the underlying framework (N, P, 5, A, C}).

3. Find a substitution #, under which S; is an instance of specification D. This instan-
tiates some (if not all) of the parameters P of the framework.

4, Find a substitution #5 that instantiates the remaining (if any) parameters among P,
such that the constraints C' hold (i.e., such that 8; U 85 - C) and such that one
can reuse known programs Pgr for some (if not all) of the now fully instantiated
specifications O U 8; U By of the open relations in template T'. (This effectively
amounts to specialising the template T into 7' U Pg, and even to specialising the
entire program schema, subject to the constraints.) Simplify the remaining (if any)
specifications in O U #; U 5, yielding S¢.

5. Add to the node with specification S; a program T U Pp (called the reused pro-
gram), and add S to the unhandled specifications, each of which becomes a child
of this current node.

6. Recurse on the new set of unhandled specifications.

If any of these steps fail, schema-guided synthesis backtracks to its last choice point.
When there are no remaining unhandled specifications, the synthesis ends; the overall
result program Fy is then assembled by conjoining, at each node, the reused programs.

Schema-guided program synthesis is thus a recursive specification (problem) de-
composition process followed by a recursive program (solution) composition process,
as depicted in tree-form in Figure 1. We distinguish three kinds of node: synthesis nodes,
which are labeled with specification-program pairs, reuse nodes, which are labeled by
the reused program, and proof nodes, which are labeled with proof obligations (but not
with associated programs, since these are purely for verification of proof obligations
and themselves perform no synthesis). When a complete tree has been found, the pro-
gram variables attached to nodes are (recursively) calculated by taking the union of the
program variables of their children. In an implementation, it is envisaged that the reuse
nodes will not appear explicitly; instead, their réle is absorbed into the synthesis nodes.

This synthesis process is automatable, and its search space is much smaller than in
non-schema-guided synthesis (such as transformational synthesis or constructive syn-
thesis), for two reasons. First, schema-guided synthesis by definition bottoms out in
reuse, both of the template itself and of existing components, rather than in the primi-
tives of the underlying programming language. Second, Steps 3 and 4 may still require
a significant amount of theorem proving, but their proof obligations are much more
lightweight than those of constructive synthesis.

4 A Unified View of Proof Planning and Schema-Guided Program
Synthesis

Both proof planning and schema-guided synthesis feature a recursive problem decom-
position process followed by a recursive solution composition process. Hence it is not
surprising that there is a unified view encompassing both of them, and that program
schemas can actually be encoded as AClam proof methods, as shown by the following
slot-by-siot analysis for a program schema (N, P, S, A,C, T, D, O):



PO=PIl +P2+P7 Proof node
PI=P3+P5 Reuse node
l;% : gg o=, Synthesis node (schemal applied)

Fig. 1. Specification decomposition and program composition.

— The name of the method is set to the name NV of the program schema.

— The input pattern is set to the open specification D.

— The precondition is set to code that checks the applicability conditions (see Sec-
tion 6) and finds a substitution that instantiates the still free parameters among P,
such that the constraints C' hold and that one can reuse programs for some of the
now fully instantiated specifications O of the open relations in template 7.

- The postcondition is set to code that actually reuses known programs Pg, for some
(if not all) of the now fully instantiated specifications O and simplifies the remain-
ing (if any) specifications of O, yielding specifications S¢.

— The output patterns are set to the specifications S obtained by the postcondition,
plus any proof obligations that need to be verified.

— The tactic is set to code that assembles the result program by concatenating the
reused program, namely T' U Pg, and the (recursively) synthesised programs for
specifications S¢, and generates the object-level proofs of any proof obligations.

For example, here follows an outline of a method/schema that performs a kind of
trivial reuse, translating its input specification into a Horn-clause program when possi-
ble (possibly under some condition, which is set up as a subgoal to prove):

schema, simpli fypre

input Vi:T,z:T, (Pl) - (Rlz) < (Plx)

preconditions (rewrite (($1) = true) Pos (Plz) (P'lz) Cond,
horn (P'lx)

open_symbols (P'lx) [])
postconditions (reuse P)

program P=V1:T,z:T, . (Rlz) « P'lx)
outputs [Cond]
tactic (simpli fypre Pos Cond)



V1 list(nat), x :natden (1) >0 —
min(l,x) e xelA(Vy: nat.yel— y>x)

| fen (1) > 0 — (minimal(l) & —(len(l) > 1)) |

Simplifypre  schema

min(x, y) « minimal(x), solve(x, y)
min(x, y) «— —minimal(x), decompose( x,h,1),

min(t, v),compose(l, v, y)

decompose( x,h1) «— x=het

len{l) > 0 A={len(l) > 1) = (solve (I.x) & oy(l.x))|

Simplifypre  schema

o (t,v) > I =het— (compose (h,v,x) < o (I, x))

- -

compose (h,v,x)«— h<v,x=h

compose (h,v,x) < h>v,x=v

Fig. 2. The synthesis of a program satisfying specification [3]. Rectangular boxes represent spec-
ifications, drums represent synthesised program fragments. The formula o, is Al, z.min(l, z) <>
z€lIANNy:natyel —>y>x)

Figure 2 shows the synthesis of a program satisfying the following specification:

Vi : list(nat),n : nat. len(l) > 0 > (min(l,n) & n € lANy:nat.y €l = y > n))
(3)
The rippling method/schema employs rippling to rewrite the input specification into an
explicit definition of compose.
We note the following features of this new common formulation of proof planning
methods and schemas:

— We take advantage of the ability of proof planning to exploit heuristics cleanly and

thus build proofs (program syntheses) in a relatively informal way while retaining
the formality of formal proofs (program syntheses). This represents a new departure
for schema-guided synthesis.
Our approach reveals an opportunity for identifying and integrating useful heuris-
tics of when and how to apply what program schema, which dimension had hitherto
been much neglected for program schemas, but obviously not for proof methods.
See Section 6 for an initial study of such applicability heuristics.

— The use of the tactic slot to both assemble programs and the necessary proof obli-
gations allows a very natural integration of the two processes, such that verification



conditions, matchings, or formula simplifications that arise during schema-guided
program synthesis can also be handled within the proof planner.

- All proof obligations are tackled within a theory that is the union of the theories
contained in the ancestors of the current proof/synthesis node, providing an effec-
tive way of limiting the theory that is considered when constructing a proof to only
what is necessary. This use of frameworks to select appropriate domain theories is
new.

— This encoding enables us to use AClam as an implementation platform for develop-
ing the first schema-guided synthesiser of (standard or constraint) logic programs.

5 Implementation

We are developing a prototype implementation of our ideas, based on AClam. The
higher-order features of AClam make it particularly appropriate for reasoning about
programs. Following previous approaches to using proof planning for program synthe-
sis [18, 19], we represent open symbols as meta-variables. They can be instantiated as a
side-effect of schema/method application, in what is called middle-out reasoning [17].

As in [19], we use a higher-order matching algorithm based on the one in AProlog,
which produces higher-order substitutions and transparently takes care of variable bind-
ing. For example, matching [3] with [cond] gives the substitution

[1/z,list(nat) /T X, n/y,nat/TY, Az.len(z) > 0/i,, Az, y.min(z,y)/r, (4
Mz elAMy:natyel—y>x)/o]

Both program schemas and proof planning methods are represented by clauses of
the AProlog predicate 1ibrary/11, which has the following type declaration:

type library componentT —> % header
signatureT -> % signature
axiomsT —> % axioms
axiomsT —> % constraints
componentT —> % program
axiomsT —> % assumptions
componentT —> % specification
subspecificationsT -> % subspecs
heuristicsT —> % heuristics
subgoalsT —> % subgoals
tacticsT —> % tactics

O.

The header provides a name and formal parameters for the schema/method. The
signature contains type declarations for the formal parameters and other objects
in the schema/method. axioms declares axioms of the schema/method, i.e., proper-
ties that can be assumed without further proof. constraints states properties that
must be satisfied by any legal application of the schema/method (and that will gen-
erally appear as subgoals of the schema/method application). program contains the
program fragment arising from any application of this schema/method. Parameters of

10



the program must be explicitly mentioned here. The assumptions slot is used to
pass previously established theory into the schema/method. specification con-
tains a pattern that is matched against the conjecture or program specification we are
trying to satisfy, and subspecs specifies subgoals of the schema/method application.
heuristics states applicability heuristics as meta-level constraints restricting the
applicability of the schema/method such that the schema/method is only applicable if
the heuristics succeed. subgoals states synthesis and verification subgoals. Some of
these subgoals may be created or deleted by the heuristics. tactics names the tactic
that will be used to assemble program code and prove correctness conditions.

This separation is a generalisation of both proof planning methods and program
schemas (as specification frameworks) [13]. It is more fine-grained than either of these,
however; we believe that by carefully choosing which slots should contain which ele-
ments of the schema/method, we can help to better organise the program synthesis or
proof and thereby ease the overall burden of synthesis or proof.

The following slots are used as in program schemas: header (same usage as the
name N and parameters P of a framework), signature (signature S), axioms (ax-
ioms 4), constraints (constraints C), program (template T'), specification
(specification D of the defined relation of T'), and subspecifications (specifica-
tions O of the open relations of 7). Most notably, the heuristics slot is not present
in program schemas. Neither are assumptions and tactics.

The header, specification, subgoals, heuristics (which merges the
precondition and postcondition slots of a proof planning method), and tactics slots
are all present with very similar usage in proof planning methods. The other slots are
not present at all, notably axioms, whose addition makes proofs and syntheses more
modular by allowing method/schemas to introduce required axioms at the point where
they are needed to effect a proof or synthesis step, and signature, which provides
type information currently missing from proof planning methods.

So far, we have implemented heuristics to control reuse in the DC schema, and to
employ AClam for satisfaction of proof obligations.

6 Further Work

We mention here three of the many avenues for further work:

— Encode more program schemas as proof planning methods, and use them for pro-
gram synthesis examples.

— Investigate applicability heuristics, which fall into two broad categories: transfer
of existing proof planning heuristics to the schema-guided program synthesis do-
main, and discovery and encoding of new heuristics for schema-guided program
synthesis.

— Investigate the transfer to proof planning of other ideas from schema-based pro-
gramming, in particular the possibility of reuse (of proof fragments, as opposed to
program fragments).

We now present some ideas for suitable applicability heuristics in more detail.
Step 2 of schema-guided programming (see Section 3.3) states that some program

11



schema has to be chosen, but it does not say how this choice can be made best. For-
tunately, the encoding of a program schema as a Clam proof method reveals the op-
portunity of adding applicability conditions to the pre-condition slot. Here follows a
loose collection of first considerations that can be applied when devising such heuris-
tics, which are needed at two levels:

— When to apply what program schema? One may prefer some schema due to a
complexity analysis of the given specification and of the schemas. Preliminary ideas
towards this can be found in [29, 10, 9]. An implicit heuristic can be achieved by
ordering the schemas (as methods), such that the schemas with the “most instan-
tiated” templates are considered first. The earlier schemas thus become the ones
with the least amount of proof obligations (because they feature fewer constraints),
whereas the later schemas basically become fallbacks, with more proof obligations.

— How to apply a chosen program schema? Given a schema, there may be several
ways to apply it. For instance, for DC, one has to give roles in the dc template to
the formal parameters in the specification cond. Indeed, one of them has to be the
induction parameter, and the other the result parameter (see Example 32). This can
be done based on the sort information in cond — only a parameter of an inductively
defined sort can be the induction parameter. This choice can be further refined us-
ing an existing technique from inductive proof planning, namely ripple analysis [8],
which in inductive proof chooses appropriate induction schemes, and by analogy
here chooses which decompose operator to reuse. One can also augment specifi-
cations with mode and determinism information [10], because a known heuristic
[10] says that parameters declared to be ground at call-time are particularly good
candidates for the induction parameter role.

7 Related Work

The importance of permitting high-level design decisions by automating as much as
possible of the program synthesis process was already noted in [11], where planning
techniques and heuristics were used to formalise the goals, strategies, and transforma-
tions used by expert human programmers.

Program synthesis via theorem proving (for example in a constructive logic) is well-
established (e.g., [24]), but development steps are typically quite low-level, and even
intuitively obvious program development steps (such as may easily be encoded in a pro-
gram schema) can be prohibitively difficult. High-level constructive program synthesis
can be done, for instance [3] describes work on implementing high-level synthesis in
NuPRL, and proof planning has also been applied with some success to program syn-
thesis [32, 18,27], but we are the first to extend proof planning in order better to meet
the challenge of program synthesis.

As shown in [1], program schemas can also be seen as derived inference rules that
are specialised for synthesising programs of a particular form. This allows viewing
schema application as logical inference, making the distinction between schema-guided
and constructive synthesis vanish.

Schema-guided synthesis and transformation are best incarnated in Smith’s com-
mercially viable CYPRESS [29], KIDS [30], DESIGNWARE [31], and PLANWARE [4]
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systems at Kestrel Institute. Whereas KIDS was implemented in an ad hoc way, its
successor DESIGNWARE was developed on top of SPECWARE, which is an abstract
machine for a category-theoretical recasting of the main operations of synthesis and
transformation. KIiD$ and DESIGNWARE have functional program schemas for divide-
and-conquer, global search, local search, etc, but ours are different as they are for (stan-
dard or constraint) logic (i.e., relational) programs, and as they allow further automation
and more lightweight proof obligations. Our embedding of program schemas within
AClam essentially is a computational-logic-based variant of the category-theoretical
SPECWARE. Fully automated domain-specific synthesisers, such as PLANWARE for
schedulers, are developed on top of DESIGNWARE.

8 Conclusion

We have developed a unified view of proof planning and schema-guided program syn-
thesis. This allowed us to encode program schemas as AClam proof methods, so as to
be able to use AClam as an implementation platform for developing the first schema-
guided developer of (standard or constraint) logic programs. This approach has the
pleasant side-effect that any proof obligations, such as condition verifications, match-
ings, or simplifications, arising during schema-guided synthesis can also be handled
within AClam. At the same time, this approach revealed an opportunity for identify-
ing and integrating useful heuristics of when and how to apply what program schema,
which dimension had hitherto been much neglected for program schemas, but not for
proof methods. Existing proof planning heuristics, for example rippling and ripple anal-
ysis, are also useful for schema selection and application.

Our approach explicitly aims at, and makes, a lot of program reuse, and thus fits
well into the contemporary focus on component-based software development.

Our unification also proposes the addition of several useful features to proof plan-
ning, notably the extension of methods with signatures and axioms, and the possibility
of reuse.

We are developing a prototype implementation based on AClam.

The main differences between this paper and its (shorter) predecessor [14] are that
we benefited from our new formalisation of program schemas [13] and from the feed-
back of implementing a prototype synthesiser. We have clearly identified extensions to
both schema-guided synthesis and to proof planning. We do not here address program
transformation, thereby gaining much in rigour and simplicity. The main advances over
[13] are that we here show how (its) schemas can be implemented, namely as proof
methods, and that this opens the crucial possibility of (neatly) adding heuristics to them.
All these issues constitute the main contributions of this paper.
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