
Abstract

This paper describes a formal approach to domain-ori-
ented software design environments, based on declarative
domain theories, formal specifications, and deductive pro-
gram synthesis. A declarative domain theory defines the se-
mantics of a domain-oriented specification language and
its relationship to implementation-level subroutines. For-
mal specification development and reuse is made accessi-
ble to users through an intuitive graphical interface that
guides them in creating diagrams denoting formal specifi-
cations. Deductive program synthesis ensures that specifi-
cations are correctly implemented.

This approach has been implemented inAMPHION, a ge-
neric KBSE system that targets scientific subroutine librar-
ies. AMPHION has been applied to the domain of solar
system kinematics.AMPHION enables space scientists to
develop, modify, and reuse specifications an order of mag-
nitude more rapidly than manual program development.
Program synthesis is efficient and completely automatic.

 1: Introduction

This paper describes AMPHION1: an implemented Do-
main-Oriented Design Environment (DODE). In contrast
to previous approaches to DODEs [4], AMPHION is based
on formal specifications and automated deductive synthe-
sis for program development. Nonetheless, from a user’s
viewpoint, AMPHION is similar to previously published ac-
counts of DODEs. The thesis of this paper is that the devel-
opment, modification, and reuse of problem specifications
— not programs— are the central activities around which a
domain-oriented KBSE life cycle should revolve. This is in
consonance with the original vision for the knowledge-
based software assistant [5]. For the high-assurance soft-

1. Amphion was Zeus’s son who used his magic lyre to charm
the stones around Thebes into position to form the city’s walls.

ware that characterizes NASA’s needs, basing a DODE on
formal specifications offers many advantages, and, as re-
ported in this paper, is eminently feasible.

Formal specifications provide an abstract and unambig-
uous representation of a user’s requirements. Formal meth-
ods ensure that a program is a correct implementation of a
formal specification. AMPHION addresses several difficul-
ties that have impeded formal frameworks being used in
practice [8]. Users without a background in formal mathe-
matics find that developing a formal problem specification
is usually more difficult than developing code manually. In
part, this is due to the need to formalize the domain con-
cepts necessary to state a problem. Our approach to
DODEs separates the activity of domain formalization
from the activity of individual problem formalization.

Users are also unaccustomed to the syntax and notation
of mathematical logic. AMPHION incorporates techniques
from visual programming and structured editing to guide
users in creating domain-oriented diagrams that are trans-
lated into formal specifications. AMPHION also includes a
number of effective knowledge-based mechanisms, all
driven by a declarative domain theory, that aid a user in for-
mulating a problem while ensuring that the resulting spec-
ification is valid.

Another impediment to domain-oriented formal frame-
works is that program synthesis must be totally automatic
for users without an extensive background in formal meth-
ods. The combinatorial explosion inherent in automated
reasoning for general purpose program synthesis has pre-
vented completely automatic deductive program synthesis.
AMPHION avoids this combinatorial explosion through the-
orem proving tactics suitable for the specialized task of
composing subroutines.

AMPHION is a generic architecture that is specialized to
a particular domain and subroutine library through a do-
main theory and domain-specific theorem-proving tactics.
As the first application domain for AMPHION, solar system
kinematics was chosen, as implemented in the SPICELIB

subroutine library developed by the Navigation Ancillary

A Formal Approach to Domain-Oriented Software Design Environments

Michael Lowry, Andrew Philpot, Thomas Pressburger, and Ian Underwood

 Recom Technologies
 AI Research Branch, M.S. 269-2
 NASA Ames Research Center
 Moffett Field, CA 94035

Information Facility (NAIF) at NASA’s Jet Propulsion Lab-
oratory (JPL). NAIF is charged with developing software to
support planning and data analysis for interplanetary scien-
tific missions. The objective of SPICELIB is to enable end-
users in the planetary science community to construct their
own application programs.

AMPHION is more than a research prototype: it has al-
ready undergone substantial testing with planetary scien-
tists over a period of six months and is currently
undergoing further enhancements in preparation for distri-
bution to the large NAIF user community. The specification
acquisition component is easy to learn: users are able to de-
velop their own specifications after only an hour’s tutorial.
Observations over six months indicate at least an order of
magnitude improvement for specification development
over manual program development. Programs which
would take the better part of a day to develop for someone
only casually familiar with the subroutine library can be
specified in fifteen minutes after the tutorial introduction to
AMPHION. Experienced AMPHION users can develop speci-
fications in five minutes for programs that would take the
subroutine library developers an hour to code manually.
AMPHION’s program synthesis component is robust and ef-
ficient, and appears to be the first use in practice of totally
automatic deductive program synthesis. AMPHION synthe-
sizes, from specifications, one- to two-page programs con-
sisting of one- to three-dozen calls to SPICELIB subroutines
in just a few minutes. In over a hundred programs generat-
ed by AMPHION to date for the NAIF domain, the CPU time
to synthesize a program never exceeded five minutes of
CPU time.

AMPHION was installed at JPL NAIF in December 1993.
The technical leader of NAIF, who has no background in
formal methods, has demonstrated AMPHION to other
groups at JPL, generating considerable interest in applying
AMPHION to other domains. Alpha testing of AMPHION is
scheduled at other sites starting in late summer of 1994.
AMPHION will be used in a scheduling system for the
CASSINI mission to Saturn, in order to generate the pro-
grams for computing geometric constraints for science ob-
servations and Earth communications. Other NASA
domains are under investigation, including numerical aero-
dynamic simulation and space shuttle trajectory planning.

Section 2 describes AMPHION’s architecture. Section 3
presents an example of using AMPHION in the domain of
solar system kinematics. Section 4 illustrates the structure
of a domain theory needed for an AMPHION application.
Section 5 describes the mechanisms for guiding an end-
user in specification acquisition. Section 6 discusses the
techniques for achieving efficient performance from de-
ductive program synthesis, and analyzes timing results
from thirty-eight specifications.

2: AMPHION System Overview

Figure 1 presents a flow diagram of AMPHION, where
the dotted lines enclose subsystems, the rectangles enclose
major components, and the rounded boxes enclose data.
AMPHION is applied to a new domain by defining a domain
theory and theorem-proving tactics. The domain theory is
automatically translated into tables that drive the graphical
user interface. The domain theory together with the theo-
rem proving tactics are used by the SNARK theorem prover
both to check a specification and also to generate an appli-
cative program. SNARK is a new first order logic (FOL) the-
orem prover developed at SRI International [12]. These
three sources of information — the domain theory, derived
user interface tables, and theorem proving tactics — consti-
tute the domain specific subsystem of an AMPHION appli-
cation.

The graphical user interface and the specification check-
er constitute the specification acquisition subsystem. AM-

PHION enables a user to interactively build a diagram
representing a formal problem specification. To a first ap-
proximation, a diagram is an alternate surface syntax for a
formal problem specification in FOL augmented with the
lambda calculus.Lambda is used for binding input vari-
ables, while the constructive existential quantifierfind is
used for binding output variables. Diagrams are equivalent
to specifications of the following form (more general spec-
ifications must currently be entered textually):
 lambda (inputs)
 find (outputs)
 exists (intermediates)
 conjunct1 & .. & conjunctN
where each conjunct is either a constraint,P(v1,..,vm) , or
an equality defining a variable through a function applica-
tion, vk = f(v1, .., vm).

AMPHION checks a specification by attempting to solve
an abstracted version of the problem. If AMPHION cannot
solve the abstracted problem, it employs heuristics to local-
ize the problem in the specification and give the user appro-
priate feedback. For example, if an output or intermediate
variable cannot be solved in terms of the input variables,
then that variable is under-constrained.

The program synthesis subsystem consists of a genera-
tor of an applicative program and a translator into the target
programming language (e.g., Fortran-77 for the JPL
SPICELIB subroutine library). After a valid specification is
developed, it is converted into a theorem to be proved. The
input variables of the specification are universally quanti-
fied and the output variables are existentially quantified
within the scope of the input variables. An applicative pro-
gram is synthesized through constructive theorem prov-
ing[10]. During a proof, substitutions are generated for the
existential variables through unification and equality re-

placement. The substitutions for the output variables are
constrained to be terms in the applicative target language
whose function symbols correspond to the subroutines in a
library.

The terms for the output variables are then translated
into the output programming language through program
transformations written in REFINE [11]. One set of trans-
formations turns common subexpressions into lamb-
da-bound variables in nested lambda applications. Another
set of transformations handles subroutines with multiple
outputs. Only the very last stage of the translation is pro-
gramming-language specific: variable declarations and the
sequence of subroutine calls are generated in the syntax of
the target language. Approximately two man-weeks of
work would be required to output programs in a different
target language such as C or UNIX shell scripts.

3: Specification-Based Software Engineering

The objective of AMPHION is to enable users familiar
with the basic concepts of an application domain to pro-
gram at the level of abstract domain-oriented problem
specifications, rather than at the detailed level of subrou-
tine calls. Within the scientific programming community,
subroutine libraries are a ubiquitous form of software re-

Figure 1: Flow diagram of AMPHION.

USERDomain
Theory

Theorem
Proving
Tactics

User Interface
Tables

Formal
Specification

Applicative
Program

Interface
Compiler

Fortran
Converter

Specification
Checker

GUI

SNARK

CODE

Subroutine
Library

Domain Specific Subsystem Specification Acquisition Subsystem

Program Synthesis Subsystem

use. However, scientists often do not make effective use of
libraries. Sometimes this happens because a subroutine li-
brary is developed without following good conventional
software engineering practices, resulting in inadequate
documentation, untrustworthy code, and a lack of coher-
ence in the different functions performed by the individual
subroutines.

However, even when a subroutine library is developed
following the best conventional software engineering prac-
tices, users often have neither the time nor the inclination
to fully familiarize themselves with it. The result is that
most users lack the expertise to easily identify and assem-
ble the routines appropriate to their problems. This repre-
sents an inherent knowledge barrier that lowers the utility
of even the best-engineered software libraries: the effort to
acquire the knowledge to effectively use a subroutine li-
brary is often perceived as being more than the effort to de-
velop the code from scratch. AMPHION is an effective
solution to this knowledge barrier.

 Despite NAIF’s outstanding software engineering prac-
tices and the excellent documentation for SPICELIB, few us-
ers take the time to study the documentation and become
familiar with the full extent of its capabilities. Many simply
prevail upon the NAIF group to write programs for them,
thereby slowing down the introduction of new features in

SPICELIB. Those users who write their own programs sel-
dom use more than a few of the core routines, such as those
for planetary ephemerides (the position and velocities of
planets as a function of time). In sampled user programs,
there were numerous instances where users developed their
own code for functions that already existed within
SPICELIB, such as routines for analytic geometry.

3.1: Example Problem

Consider a planetary scientist working on the Galileo
mission to Jupiter who wants a program that determines the
solar incidence angle at the sub-spacecraft point of Galileo
on the surface of Jupiter. The sub-spacecraft point is the
point on a planet’s surface closest to a spacecraft. The solar
incidence angle is the angle between the surface normal
and the apparent position of the sun. The solar incidence
angle at the sub-spacecraft point would be used to help in-
terpret images and particle/magnetic field data. Without
AMPHION this scientist would need to manually code a pro-
gram, e.g., the SOLAR program in Figure 3.

AMPHION’s specification language for the NAIF domain
is at the level of abstract geometry augmented with astro-
nomical terms. There is no mention of coordinate frames,
units, and so on, except in defining representations for in-
puts and outputs. Within the domain theory for NAIF, de-
scribed in section 4, the solar incidence angle problem can
be formalized as follows (variable names are in italics):

Let Solar-Incidence-Angle be the angle between two
rays,SurfaceNormal andRay-Subspacecraft-Sun.

Let Subspacecraft-Point be the point onJupiter-Body
nearest Galileo-Orbiter at timeTGalileo.

Let Jupiter-Body be Jupiter at timeTJupiter.
Let Sun-Body be the Sun at timeTSun.
Let Photon-Sun-Jupiter be a photon fromSun-Body

to Jupiter-Body.
Let Photon-Jupiter-Galileo be a photon from

Jupiter-Body to Galileo-Orbiter arriving at
timeTGalileo.

Let Ray-Subspacecraft-Sun be the ray from the point
Subspacecraft-Point towardsSun-Body.

LetSurfaceNormal be the ray normal toJupiter-Body at
the pointSubspacecraft-Point.

Let the representation ofSolar-Incidence-Angle, the
output, be in radians.

Let the representation ofTGalileo, the input, be a string
in the format for Galileo’s internal clock.

Except for syntax (AMPHION specifications are in a
Lisp-like notation; each of the sentences above corre-
sponds directly to an equality defining a variable) this is the
specification given to AMPHION’s program synthesis sub-
system that generates the Fortran-77 program in Figure 3 in
52 seconds of CPU time on a Sparc 2. However, instead of
writing textual specifications, users enter specifications

graphically through a menu-guided interface, overviewed
in Section 5, resulting in diagrams such as Figure 2. (The
appearance of icons and arrows can be customized to a us-
er’s preference. In general, arrows are directed toward the
object defined in terms of objects at the origin of the ar-
rows. The labels on the arrows describe the relationship.
Photons and rays are an exception to this convention.)
From a user’s viewpoint, this interface is similar to the con-
struction kit of Fischer’s DODEs. This interface automati-
cally translates completed specification diagrams to the
textual form for the program synthesis subsystem de-
scribed in Section 6.

4: NAIF Domain Theory

There are presently over two hundred axioms in the the-
ory for the NAIF domain. This section presents an overview
of its structure, highlighting those aspects likely to be im-
portant in creating other AMPHION applications.

An AMPHION domain theory consists of an abstract the-
ory that provides the background knowledge for formulat-
ing problems, a concrete theory for formalizing the
subroutines, and an implementation relation between the
abstract and concrete theory. The domain theory must in-
clude implementation details needed to correctly compose
subroutines, such as subroutine preconditions and repre-
sentational assumptions for subroutine input and output pa-
rameters. Although the domain theory does not need to
include a first-principles axiomatization of the functions
and relations in the abstract theory, it does need to include
enough semantics to derive an abstract solution consisting
of abstract operations from an abstract specification. Given
an abstract solution in terms of abstract operations, the im-
plementation relation is used to generate a concrete solu-
tion, taking into account subroutine preconditions.

4.1 Abstract Theory

At the abstract level, the NAIF domain theory includes
types for objects in Euclidean geometry augmented with
astronomical constructs such as photons, planets, and
spacecraft. The abstract types exist independent of any par-
ticular representation. Abstract functions include construc-
tors for derived types; the abstract relations include
geometric predicates, such as whether one geometric object
intersects another.

The semantics of functions and relations that correspond
to concrete subroutines are defined by the implementation
axioms. The semantics of the remaining functions and rela-
tions fall into two categories. First are those that are defini-
tions based on other abstract functions and relations. For
example, the angle between two planes is defined as the an-
gle between their normals. The second category are non-
definitional axioms that mutually constrain abstract func-

 SUBROUTINE SOLAR (GALILE, ANGLEI)

C Input Parameters
 CHARACTER*(*) GALILE
C Output Parameters
 DOUBLE PRECISION ANGLEI
C Function Declarations
 DOUBLE PRECISION VSEP
C Parameter Declarations
 INTEGER JUPITE
 PARAMETER (JUPITE = 599)
 INTEGER GALIL1
 PARAMETER (GALIL1 = -77)
 INTEGER SUN
 PARAMETER (SUN = 10)
C Variable Declarations
 DOUBLE PRECISION RADJUP (3)
 DOUBLE PRECISION E
 DOUBLE PRECISION PVGALI (6)
 DOUBLE PRECISION LTJUGA
 DOUBLE PRECISION V1 (3)
 DOUBLE PRECISION X
 DOUBLE PRECISION PVJUPI (6)
 DOUBLE PRECISION LTSUJU
 DOUBLE PRECISION MJUPIT (3, 3)
 DOUBLE PRECISION V2 (3)
 DOUBLE PRECISION X1
 DOUBLE PRECISION DV2V1 (3)
 DOUBLE PRECISION PVSUN (6)
 DOUBLE PRECISION XDV2V1 (3)
 DOUBLE PRECISION V (3)
 DOUBLE PRECISION N (3)
 DOUBLE PRECISION PN (3)
 DOUBLE PRECISION DV2N (3)
 DOUBLE PRECISION XDV2N (3)

 DOUBLE PRECISION DXDV2V (3)
 DOUBLE PRECISION XDXDV2 (3)
C Dummy Variable Declarations
 INTEGER DMY10
 DOUBLE PRECISION DMY20 (6)
 DOUBLE PRECISION DMY60 (6)
 DOUBLE PRECISION DMY130
 CALL BODVAR (JUPITE, ‘RADII’, DMY10, RADJUP)
 CALL SCS2E (GALIL1, GALILE, E)
 CALL SPKSSB (GALIL1, E, ‘J2000’, PVGALI)
 CALL SPKEZ (JUPITE, E, ‘J2000’, ‘NONE’, GALIL1,

DMY20, LTJUGA)
 CALL VEQU (PVGALI (1), V1)
 X = E - LTJUGA
 CALL SPKSSB (JUPITE, X, ‘J2000’, PVJUPI)
 CALL SPKEZ (SUN, X, ‘J2000’, ‘NONE’, JUPITE,

DMY60, LTSUJU)
 CALL BODMAT (JUPITE, X, MJUPIT)
 CALL VEQU (PVJUPI (1), V2)
 X1 = X - LTSUJU
 CALL VSUB (V1, V2, DV2V1)
 CALL SPKSSB (SUN, X1, ‘J2000’, PVSUN)
 CALL MXV (MJUPIT, DV2V1, XDV2V1)
 CALL VEQU (PVSUN (1), V)
 CALL NEARPT (XDV2V1, RADJUP (1),

RADJUP (2),RADJUP (3),N, DMY130)
 CALL SURFNM (RADJUP (1), RADJUP (2),

RADJUP (3), N, PN)
 CALL VSUB (N, V2, DV2N)
 CALL MTXV (MJUPIT, DV2N, XDV2N)
 CALL VSUB (V, XDV2N, DXDV2V)
 CALL MXV (MJUPIT, DXDV2V, XDXDV2)

 ANGLEI = VSEP (XDXDV2, PN)
 RETURN
 END

Figure 2: Diagram for solar incidence angle developed interactively with AMPHION.

Figure 3: SOLAR program generated by AMPHION from Figure 2.

File Edit Graph Spec Preferences Help

Galileo-Spacecraft-Time Galileo-String-Time
INPUT

Sun-Body

Sun TSun

Galileo-Orbiter TGalileo

Jupiter-Body

Jupiter TJupiter

Photon-Jupiter-Galileo
Galileo-Event

SubSpacecraft-Point

Ray-SubSpacecraft-Sun

Photon-Sun-Jupiter

SurfaceNormal

Solar-Incidence-Angle

Angle-in-Radians
OUTPUT

of-spacecraft

time-sys

repn

body-id at-time

body-id at-time

from
to

location-of at-time onnearest
from

towards

from

to

normal-to

at-point

between-ray1between-ray2

repn

tions and relations. For example, one set of axioms signi-
fies that the relationlightlike? between two bodies at two
different times holds if a photon leaving the center of the
first body at thesent time would arrive at the center of the
second body at thereceive time.Sent andreceive in turn are
inverse functions that take two bodies and a time as input
and return a time as output.

4.2: Concrete Theory and Implementation

The concrete theory defines types used in implementing
a program or that are parameters used in defining a repre-
sentation. The Galileo example uses the type 3Vector,
which is a vector of 3 reals that variously represent a spatial
position, direction, or the lengths of the 3 axes of an ellip-
soid. In general, there is a many to many relation between
abstract types and concrete types. However, any particular
instance of a concrete type represents only one abstract
type, defined through an abstraction map. The implementa-
tion relation is axiomatized in the style of Hoare[6] through
these abstraction maps from concrete types to abstract
types. These abstraction maps are often parameterized. To
facilitate posting constraints on abstraction maps, the ab-
straction maps are reified.Abs is used to apply an abstrac-
tion map to a concrete object, e.g.abs(coordinates-to-
point(F), c) denotes applying the abstraction mapcoordi-
nates-to-point, parameterized on the coordinate frameF, to
the pointc. (Although there are a multitude of representa-
tion dimensions axiomatized in the NAIF domain theory, to
simplify the presentation this paper only considers coordi-
nate frames.)

The implementation relation is axiomatized as a set of
equalities. For example, the following axiom describes
how the abstract function of intersecting a ray and an ellip-
soid is implemented by the subroutinesurfpt-intercept.The
surfpt-intercept subroutine takes three 3Vectors as argu-
ments: the coordinates of the origin of the ray (oc), the co-
ordinates of the direction of the ray (dc), and the lengths of
the three axes of the ellipsoid (radii). It returns the coordi-
nates of the intersection point of the ray and the ellipsoid.
A precondition for correctly using thesurfpt-intercept rou-
tine is that the ellipsoid frame, the observing frame, the di-
rection frame, and the frame of the intersection point are all
the same. This constraint is expressed through the common
frame variableF in all the parameterized abstraction func-
tions:
forall (F, radii, oc, dc)
 intersect-ray-ellipsoid (
 origin-and-direction-to-ray(

 abs(coord-to-point(F), oc),
 abs(coord-to-direction(F), dc)),
 abs(radii-to-ellipsoid(F), radii))
 = abs(coords-to-point(F), surfpt-intercept(oc,dc,radii))

This equation, like other implementation axioms, has

the structure of a commutative diagram: applying the ab-
stract function to the abstraction of the concrete inputs
yields the same result as abstracting the result of applying
the concrete function to the concrete inputs. This equation
is illustrated in Figure 4.

Only some of the subroutines directly correspond to
functions and relations in the abstract specification domain.
Other subroutines, such as subroutines that do representa-
tion conversion, are used to glue together these directly
corresponding subroutines. For example, a solution to a
problem usually involves several frames, so there must be
a way to convert from one frame to another. The concrete
functioncoord-convert is given two frames and a 3Vector
as input: it returns the result of applying the transformation
between the two frames to the 3Vector. A set of axioms de-
fine the properties ofcoord-convert as that of a group of
transformations.

5. Specification Acquisition

AMPHION’s GUI enables a specification to be developed
as a diagram of objects and constraints. A user develops a
problem specification by first defining a configuration of
abstract objects and constraints. Then, a subset of the ob-
jects in a configuration are declared to be inputs or outputs
of the desired target program.

As a result of iterative testing and refinement with users,
several domain independent mechanisms have been devel-
oped that guide users in developing specifications. Without
these mechanisms, users have considerable difficulty in de-
veloping valid specifications. With these mechanisms, new
users of AMPHION are able to develop valid specifications
by themselves after a one hour tutorial. This section pre-
sents an overview, a more detailed exposition is provided
in [9].

These mechanisms are all instantiated by compiling user

Ellipsoid

Ray

X

oc dc surfpt radii X

Z

Y

Abstract Domain

Concrete Domain

Coordinate
Frame F

Figure 4: Intersection of a ray and ellipsoid
 implemented by Surfpt subroutine.

interface tables from a domain theory. A user is guided
when adding and refining objects or constraints by cascad-
ing menus that provide the functionality of structured edi-
tors. The direct manipulation mechanisms are cognizant of
the underlying domain theory and ensure that a specifica-
tion is well-typed and well-defined. Different styles of
specification development are provided through bottom-
up, top-down, and selected-object modalities.

The abstract functions and relations used for specifica-
tion development are allowed to be overloaded. This reduc-
es clutter in a diagram, and more importantly enables a user
to think about the semantics of a problem rather than syn-
tactic issues of typing. A table of coercions is given to the
user interface compiler that define how one type can be co-
erced into another type. The interface compiler generates
an expanded domain theory for the GUI including over-
loaded functions and relations. The interface compiler also
generates the appropriate theory morphism from the ex-
panded GUI theory to the more restricted domain theory
used by the program synthesis subsystem.

After a well-defined specification is developed, AM-

PHION semantically checks the specification before gener-
ating code by attempting to solve an abstracted version of
the specification. This serves two purposes: it is a neces-
sary condition on whether a specification has a solution,
and, if not, enables AMPHION to give the user feedback on
correcting the specification. The abstracted specification is
generated by removing conjuncts defining the input and
output representation(s). The result of solving the abstract
specification is a set of substitutions (terms) for the abstract
existential variables. If all these substitutions are defined
and ground with respect to the program input variables,
then the abstract specification has a solution. Undefined
substitutions indicate overconstrained variables, while
non-ground substitutions indicate underconstrained vari-
ables.

AMPHION’S specification acquisition subsystem is espe-
cially well suited for specification modification and reuse.
It achieves the benefits anticipated in the KBSA white pa-
per [5] for specification-based software evolution. Instead
of developing a specification from scratch, users typically
modify an existing specification from a library. The ab-
stract graphical notation makes it much easier to identify
the required modifications than tracing through dependen-
cies in code. AMPHION’s editing operations facilitate mak-
ing the required modifications. Most important, in contrast
to code modification, there is no possibility of introducing
bugs in the code, since AMPHION synthesizes the code from
scratch for the modified specification.

A number of improvements are currently underway to
improve AMPHION’s specification acquisition component.
First, although users can now access and modify previous
specifications, AMPHION currently provides no help in se-

lecting appropriate previous specifications. The DEDAL

system’s [1] conceptual indexing subsystem is being adapt-
ed to the task of indexing and retrieving formal specifica-
tions. Second, to enable users to develop their own
graphical notation, a facility is being developed for users to
record their layout preferences by example, through editing
icon and link attributes. Users view other specifications
through their own layout preferences. Third, at present AM-

PHION does not provide a simulation capability, and only
generates the final program text. However, the applicative
program generated directly by the theorem prover is in a
format closely compatible to that used by a testing harness
developed by the NAIF facility, and this testing harness will
be integrated into AMPHION in the near future. Fourth, there
is presently no on-line tutorial or help functionality; mem-
bers of the NAIF group have agreed to populate a generic fa-
cility being developed.

As compared to Fischer’s architecture for a DODE, the
current specification acquisition component of AMPHION

already includes functionality comparable to that of a con-
struction kit, a catalog, and a construction analyzer. The
current improvements underway will provide most of the
remaining functionality.

 6: Program Synthesis

Program synthesis whose target output consists of sub-
routine calls has a different technical emphasis than pro-
gram synthesis whose target output consists of primitives
in a programming language. Since most of the recursive
and iterative constructs are embedded in the subroutines,
the major technical challenge is effective problem decom-
position, implementation of specification constructs in
terms of the underlying concrete domain, and gluing to-
gether subroutines. In effect, the technical issues are simi-
lar to programming in the large, but with a predefined set
of module specifications.

In AMPHION, a program is synthesized by turning the
lambda form of a specification into a theorem in FOL, and
then having SNARK construct a resolution refutation proof
with the domain theory. SNARK incorporates very efficient
equality reasoning — both paramodulation (general pur-
pose, conditional, unoriented equality replacement) and de-
modulation (unconditional, oriented equality replacement)
that compares favorably to more specialized inference sys-
tems that are restricted to equational logic. Many axioms of
the NAIF domain theory are unconditional equalities defin-
ing the implementation relation. These are usually handled
through demodulation; the confluent set of rewrite rules
used by demodulation are generated by a Knuth-Bendix
completion procedure [7].

By separating logic from control, the trade-off between
expressiveness and efficiency for a logic becomes manage-

able for the purpose of composing subroutines. Where
needed, the full expressive power of FOL is used; to gain
efficiency, theorem proving tactics define a direction from
abstract specification constructs to concrete subroutines.
The tactics are implemented through various mechanisms
provided by SNARK: recursive path orderings for orienting
equalities into rewrite rules, predefined resolution refuta-
tion strategies such as set of support, and hooks for agenda
ordering functions. The theorem proving tactics developed
for the NAIF domain could likely be adapted and expanded
for other domains, in which a domain theory had been
structured as described in section 4. Once developed, they
did not need to be tuned to individual problems. These tac-
tics are also quite effective: constructive proofs that re-
quired hours or even days without these tactics are solved
in under three minutes with these tactics. AMPHION’s theo-
rem proving tactics enable many of the efficiency advan-
tages of program transformation approaches [2] and term
rewriting systems to be embedded in the more expressive
declarative framework of first-order logic. (The combina-
tion of these theorem proving strategies and tactics leads to
loss of completeness; this is largely irrelevant in the con-
text in which AMPHION is used):

Orienting equalities: The SNARK theorem prover can be
given a set of ordering relations on function symbols that
are expanded into recursive path orderings (RPO) [3]
which orient its application of equational simplification
(demodulation) and restrict its use of paramodulation. The
equalities that axiomatize the implementation relation are
oriented in the direction from abstract specification con-
structs to concrete subroutines by specifying that the ab-
stract specification construct is greater in the RPO than the
abs function and the functions and relations in the concrete
theory used in the equality.

Agenda Ordering: Not all the equalities can be effec-
tively oriented under an RPO, which also does not cover
conditional equalities and non-equalities. A global infer-
ence direction from abstract specification constructs to
concrete subroutines was implemented as an agenda order-
ing function. This function extends the directionality de-
fined by the RPO for orientable equalities to unorientable
equations and other axioms. Conceptually, this agenda or-
dering function consists of two parts in a lexicographic or-
dering. First, there is an ordering function that penalizes
abstract specification constructs that are not themselves ab-
stract operations. For example, thelightlike? relation is not
an abstract operation, and is thus penalized. Second, ab-
stract operations are penalized as compared to concrete
subroutines. Both parts of this agenda ordering function are
implemented by counting the number of penalized function
and relation symbols in the terms of a clause placed on the
agenda.

6.1: Deductive Synthesis Performance

The timing results in Figure 5 are taken from November
1993, when AMPHION was metered during tests with poten-
tial end-users. (Preliminary testing occurred from August
through November 1993). First, as a practical matter, note
that programs were synthesized well within the time limits
suitable for an interactive system. Most programs were
synthesized within a minute, the maximum amount of time
being three minutes. The significance of these November
timings are as empirical validation of the practicality of the
deductive synthesis approach for composing subroutines.

The table in Figure 5 presents program synthesis perfor-
mance data from thirty-eight different specifications. There
is a fixed overhead of 236 steps (20 seconds of CPU time)
to load the domain theory into SNARK for each derivation.
Subtracting this number from the total number of steps in a
program derivation gives the total number of resolution and
paramodulation steps in searching for a proof. Each proof
step incorporates full demodulation, so that inferences with
orientable equalities (and only pattern matching, but not
unification) are not counted as separate steps. Thus the
number of steps in a proof search represents the premium
paid for full first-order logic over just using a set of conflu-
ent rewrite rules. The length of the proof is the number of
resolution and paramodulation steps in the derivation tree
from the goal clause to the empty clause.

Neither the number of steps in a proof search nor the
length of a proof is strongly correlated with the size of the
specification or the size of the resulting program. The ratio
of the proof length to the number of steps in the proof
search indicates the search efficiency. Surprisingly, as
shown in Figure 6, there is no correlation between the
length of the proof and this ratio. If the number of search
steps was exponential in the length of the final proof, this
ratio should be decreasing exponentially. However, as
shown in Figure 7, when the total CPU time is plotted
against the length of a proof, there is a weak exponential
growth.

One interpretation of Figures 6 and 7 is that as the length
of a proof increases, the overhead (e.g. unification and de-
modulation) for each step grows multiplicatively, due to
the increasing size of the term structures associated with
longer proofs. Qualitative observations of the program der-
ivations indicate that much of the search is due to unorient-
able equality reasoning (paramodulation), such as
reasoning about invertible representation conversions.
Many of these paramodulations will be subsumed under a
unification algorithm that incorporated limited equality
reasoning, i.e. RUE resolution, that is scheduled for a later
version of SNARK. Another alternative under investigation
is special purpose decision procedures for semantic frag-
ments such as coordinate frame conversions that are called
through the unification procedure.

 7. Conclusion

This paper has described a formal approach to develop-
ing domain-oriented specification-based programming en-
vironments for domains with mature subroutine libraries.
Raising development, modification, and reuse to the speci-
fication level eliminates an inherent knowledge barrier to
using even the best engineered subroutine libraries. This
approach has been implemented in the AMPHION system,
which includes generic specification acquisition and auto-
matic deductive program synthesis subsystems driven by a
declarative domain theory. AMPHION is applied to a do-
main by developing a domain theory partitioned into an ab-
stract specification theory, a concrete implementation
theory, and an axiomatized implementation relation be-
tween the two. Specification development, modification,
and reuse is well supported by the paradigm implemented
in AMPHION. The tactics for the program synthesis sub-
system of AMPHION enable efficient and totally automatic
program generation.

The achievements to date are the first step toward the
longer term goal of a generic shell that empowers domain
experts to develop their own AMPHION applications.

Acknowledgments

Mark Stickel developed the SNARK FOL theorem prover
and with Richard Waldinger adapted SNARK to deductive
program synthesis. Waldinger aided reformulating a ver-
sion of the NAIF domain theory adapted to a previous theo-
rem proving platform to SNARK’s notation, and
collaborated in running initial test cases through SNARK.
The following colleagues provided valuable advice for re-
vising this paper: the anonymous reviewers, Jeffrey Van
Baalen, Richard Waldinger, and Linda Wills.

References

[1] C. Baudin, J. Gevins, Z.V. Baya, A. Mabogunje: “Dedal:
Using Domain Concepts to Index Engineering Design Infor-
mation”, Proceedings of the Meeting of the Cognitive Science
Society, 1992.

[2] J. Darlington: “An Experimental Program Transformation
and Synthesis System”, Artificial Intelligence 16, 1981,
pp. 1-46.

[3] N. Dershowitz “Termination of Rewriting”, J. Symbolic
Computation (1987) 3, pp. 69—116.

[4] G. Fischer: “Domain-Oriented Design Environments”, Sev-
enth KBSE, 1992, McLean, VA. pp. 204–213.

[5] C. Green, D. Luckham, R. Balzer, T. Cheatham, and C.
Rich: “Report on a Knowledge-Based Software Assistant”, in
C. Rich, R.C. Waters (eds.): Artificial Intelligence and Soft-
ware Engineering. Los Altos: Morgan Kaufmann 1986.

[6] C.A.R. Hoare: “Proof of Correctness of Data Representa-
tions”, Acta Informatica 1 (1972), pp. 271-281.

[7] D.E. Knuth and P.B. Bendix: “Simple Word Problems in
Universal Algebras”, in J. Leach (ed.): Computational Prob-
lems in Abstract Algebra. Pergammon Press, 1970,
pp. 263-298.

[8] M. Lowry: “Methodologies for Knowledge-Based Software
Engineering”, in J. Komorowski and Z.W. Ras (eds.): Meth-
odologies for Intelligent Systems, Lecture Notes in Artificial
Intelligence 689, (1993) pp. 219-234.

[9] M. Lowry, A. Philpot, T. Pressburger, and I. Underwood:
“A MPHION: Automatic Programming for Scientific Subrou-
tine Libraries” in ISMIS’94.

[10] Z. Manna and R. Waldinger: “Fundamentals of Deductive
Program Synthesis,” IEEE Transactions on Software Engi-
neering (18) 8, August 1992, pp. 674-704.

[11] D.R. Smith: “KIDS: A Semiautomatic Program Develop-
ment System”, IEEE Transactions on Software Engineering
16,9 (1990) pp. 1024-1043.

[12] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and
I. Underwood: “Deductive Composition of Astronomical
Software from Subroutine Libraries”, 1994, in CADE-12.

