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Abstract—12 Space exploration applications can benefit 
greatly from autonomous systems.  Great distances, limited 
communications and high costs make direct operations 
impossible while mandating operations reliability and 
efficiency beyond what traditional commanding can 
provide. Autonomous systems can improve reliability and 
enhance spacecraft capability significantly. However, there 
is reluctance to utilizing autonomous systems. In part, this is 
due to general hesitation about new technologies, but a 
more tangible concern is the reliability and predictability of 
autonomous software.  

In this paper, we describe ongoing work aimed at increasing 
robustness and predictability of autonomous software, with 
the ultimate goal of building trust in such systems. The 
work combines state-of-the-art technologies and capabilities 
in autonomous systems with advanced validation and 
synthesis techniques.  The focus of this paper is on the 
autonomous system architecture that has been defined, and 
on how it enables the application of validation techniques 
for resulting autonomous systems. 
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1. INTRODUCTION 

Space exploration applications offer a unique opportunity 
for the development and deployment of autonomous 
systems, due to limited communications, great distances, 
and high cost of direct operation.   At the same time, the 
risk and cost of space missions leads to reluctance to taking 
on new, complex and difficult-to-understand technology.  
Consequently, there is a pressing need to address the issue 
of designing robust architecture for autonomous systems 
and demonstrate a design process that can provide the trust 
and reliability that is required for manned and unmanned 
space applications. 

In this paper, we describe an ongoing effort to develop a 
new approach to defining, implementing and maintaining 
compositional autonomous systems.  There are two key 
elements to the approach. One is a modular compositional 
autonomy architecture where adaptation to different 
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applications is done in an incremental manner.  The other is 
a testing and validation methodology that allows the 
certification of new adaptations to be limited to the 
components and relations that are modified. Together, the 
two elements will make future autonomy applications more 
easily constructed and modified, while increasing reliability 
and reducing cost of reconfiguration and maintenance. 

The work will be grounded in a specific autonomy 
architecture that integrates the EUROPA planning 
framework and the functional layer of the CLARAty control 
architecture. EUROPA supports incremental compositional 
specification of the states, commands and associated 
operations rules that define how it may control a given 
system.  CLARAty provides a compositional approach to 
defining the functional control software that interfaces with 
the underlying system.   

Compositional verification techniques will be used to limit 
the efforts required to validate and certify a new adaptation. 
 These methods use known properties of unchanged 
modules to limit validation and certification efforts to 
changes made.  The validation of core system and 
individual component properties is done with both formal 
and empirical analysis. 

Our approach will enable the increased use of autonomy in 
future space explorations, thus reducing operations costs 
and increasing reliability.  In addition, the methodology of 
composable components and associated incremental testing 
and verification, will reduce the cost of system 
development, maintenance, and reconfiguration. 

2. AN ARCHITECTURE FOR AUTONOMY 

Autonomous systems vary greatly in the representation and 
reasoning techniques utilized in such systems. Furthermore, 
the interface between autonomous control and underlying 
systems can be radically different between architectures. 
Both of these aspects impact the application of validation 
techniques to autonomous systems instantiations.  
Consequently, we define and use a general autonomous 
systems architecture that uses specific representation and 
reasoning approaches, combined with a structured well-
defined interface to the underlying system. While the 
architecture provides a basis for defining validation 
processes and techniques, many of the general notions of 
how to validate autonomous systems will be applicable to 
other architectures. 

Our architecture uses a constraint-based planning 
framework called EUROPA (Extendible Uniform Remote 
Operations Planning Architecture) for the core 
representation and reasoning. This provides the ability to 

make decisions about what actions to take so as to achieve 
mission goals, while ensuring that flight rules and 
constraints are satisfied.  The actions are implemented in the 
CLARAty framework (Coupled-Layer Architecture for 
Rover Autonomy), which also provides structured access to 
system states and sensory information.  The architecture is 
shown in Figure 1. 

The decision-making component, implemented in 
EUROPA, uses the domain model to generate safe plans 
and decisions that respect flight rules and other constraints 
on operations. The domain model is a declarative 
specification of actions and states implemented in the 
functional layer, along with rules on how these actions can 

be used.  The domain model is compositional, meaning that 
new actions and rules can be added without changing 
existing content.  The executive, implemented in an 
execution framework called PLEXIL, executes the plans 
and actions specified by the decision layer. It also monitors 
the execution, ensuring that the constraints and assumptions 
in the given plan are satisfied in the system during 
execution. When deviations occur, the executive can either 
recover or call on the decision layer to decide how to 
proceed.  The functional layer is part of the CLARAty 
framework.  It is a set of functional components, arranged in 
a hierarchy where higher-level components utilize 
capabilities and services of lower-level components.  The 
functional layer thus provides a compositional approach to 
implementing interfaces to system functions. 

The verification and validation methods are applied to all 
levels of the architecture.  The details are further described 
here below in the section on validation.  The automated 
synthesis techniques are then used to generate, from high-
level specifications, both CLARAty functional layer 
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Figure1:  Autonomy architecture outline 
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components and the associated specifications in the domain 
model. This approach, combined with the compositional 
nature of the overall architecture, enables rapid adaptation 
and reconfiguration of the autonomy system. 

EUROPA – constraint-based planning 

The Extensible Universal Remote Operations Planning 
Architecture (EUROPA) is a model-based planning and 
scheduling architecture descended from the Remote Agent 
Planner [14] . Users of EUROPA can specify the rules of 
planning domains using a rich domain description language 
that supports time, resources, disjunctive preconditions and 
conditional effects. EUROPA makes extensive use of 
constraint based representation and reasoning, which allows 
for more concise representation of planning models, and 
more efficient reasoning during planning [11] .  EUROPA 
provides support for “foreign function” calls implementing 
complex constraints such as power consumption and 
generation.  
 
EUROPA consists of a hierarchy of highly configurable 
components, supporting the building many types of planners 
and plan representations. The modeling language, NDDL, 
contains a small number of elementary entity types, 
providing ease in modeling.  These types can be extended to 
provide more specialized components, leading to a rich set 
of modeling primitives.  The plan database contains the 
current plan and information about its state.  The database 
provides mechanisms to efficiently query the plan state and 
modify the plan.  Modification leads to inference, which is 
performed by a rules engine module and a constraint 
reasoning engine module.  The rules engine determines 
which rules in the domain description apply after each 
modification of the plan, and updates the state accordingly.  
The constraint reasoning module is further broken down 
into specialized modules that efficiently handle particular 
classes of constraints, such as temporal constraints.  Finally, 
EUROPA provides interfaces to specialized heuristics 
modules that provide search control to planners. 
 
EUROPA can also be customized to support both long-
range deliberative planners as well as short-horizon 
continuous planners that may operate on the same model.  
This approach partially resolves problems due to building 
multiple models in different languages for the same 
autonomy system (e.g. [12] ). For example, one planner may 
have a time horizon limited to 5 minutes into the future, and 
can delay subgoals.  Another planner may only plan 
activities for a hazard avoidance system, leaving other goals 
to other planners.  EUROPA supports customizations of this 
form by limiting a planners’ “view” to a subset of the 
model.  EUROPA also allows multiple planners to modify 
the same plan concurrently, by providing authority 
mechanisms indicating what planners may modify.   
 

Automated planning technology such as EUROPA has been 
utilized as part of on-board autonomy architectures for deep 
space probes [14] , robotic rovers [16]  and free-flying 
robots [17] . 
 

CLARAty – layered architecture for robotics 

Most robotic control systems employ a variant of the Three-
Layer Architecture pioneered by Brooks in 1987.  
CLARAty is an evolution of the three-layer architecture that 
provides a wide-range of robotic functionality and 
simplifies the integration of new technologies on robotic 
platforms. CLARAty is a joint project between the NASA 
Jet Propulsion Laboratory, NASA Ames Research Center, 
Carnegie Mellon University and a number of other 
universities and has been designed specifically for space-
based robotic control applications. CLARAty features a 
Functional Layer of robotic primitives, coupled with a 
Decision Layer of planning and execution functionality; 
each of these layers contains a hierarchy of components 
ranging from the most elementary to the most “intelligent”.  

The Functional Layer (FL) provides a set of standard, 
generic robot capabilities that interface to system hardware. 
These capabilities are organized as a software class 
hierarchy of robotic components; for example, wheeled-
mobility is a subclass of mobility, and individual rover 
wheel assemblies are child classes.  As is natural in object-
oriented systems, the interface is separated from 
implementation.  Physical limitations of devices are 
distinguished from algorithmic limitations.  Finally, runtime 
models of devices are incorporated in the Functional Layer. 

 
 

Figure 2:  CLARAty framework organization 



 

 4

3. VALIDATION OF AUTONOMOUS SYSTEMS 

In the autonomy architecture outlined here, an instantiation 
of an autonomous system consists of the following 
elements: 

(1) The core EUROPA planning and decision-making 
framework, which will largely be unchanged between 
applications and thus can be validated without 
reference to the specific instantiation. 

(2) The CLARAty instantiation for the system in question, 
which consists of a set of core CLARAty components 
and the specific components used to operate the 
system.  The core CLARAty components can be 
validated separately, while the specific components are 
validated as part of the instantiation process.  Some 
components may be synthesized, which offers an 
opportunity for easier validation of those components. 

(3) The execution system that links CLARAty and 
EUROPA and provides monitoring capabilities to 
ensure that execution does not continue when the 
assumptions supporting the plan no longer hold.  The 
core execution system is validated once, but online 
validation and checking techniques can be used to 
validate specific executable plans. 

(4) The domain model describing possible actions and the 
flight rules governing those actions and the related 
system states.  Model validation is a key element of 
ensuring that the autonomy system instantiation is 
robust and safe. 

(5) The properties that should hold for the system and 
various components.  These define the criteria for 
validation of the system. 

The validation of an instantiation thus involves validating 
core architecture systems, instantiation-specific CLARAty 
components, the domain model used by the planner and 
executive, and finally, the overall properties for the 
instantiated system.  To tackle this, we apply three kinds of 
techniques.  Model-based validation, using compositional 
verification, can be applied to core software as well as 
special-purpose components.  In addition, compositional 
techniques allow us to verify system-level properties from 
component properties.  Static analysis is a powerful 
technique to directly analyze software code, without 
requiring a formal modeling of the software components 
and properties.  Finally, automated synthesis techniques 
allow us to generate instance-specific elements from high-
level specifications.  In addition to simplifying the process 
of implementing instantiations, synthesis offers an 

additional level of validation by generating provably safe 
code. 

Compositional verification 

Model-based verification techniques use exhaustive search 
through possible execution trajectories to verify desired 
system properties.  While these techniques can provide the 
formal validation desired for our autonomous systems, they 
suffer from state-space explosion. As a consequence, they 
are typically used to verify relatively small components of 
an entire system, rather than the system itself. In addition, 
they do not lend themselves to incremental validation, as we 
desire to do for instantiations of autonomous systems. 

To address these issues, we turn to compositional 
verification techniques. Compositional verification 
decomposes the properties of a system into properties of its 
components, so that if each component satisfies its 
respective property, then so does the entire system. 
Components are thus model checked separately. Assume-
guarantee reasoning is a promising compositional 
verification approach, the basic idea behind it being as 
follows: Consider a system consisting of two components X 
and Y. The desire is to prove that a property P is satisfied 
by the overall system X|Y.  In compositional verification, 
this is done by identifying an intermediate property A, 
called an assumption, and using that to split the validation 
into two smaller problems.  The first part is to prove that 
given A, X satisfies P, and the second part is to prove that Y 
satisfies (or guarantees) P. 

This notion can be utilized in different ways.  If the X and 
Y components are already validated, it is likely that the 
assumption A is already known and the compositional 
verification techniques can be applied directly.  This is 
likely to be the case in situations such as where new 
CLARAty components are being added on top of existing 
ones.  The properties of the core components are known and 
validated, so the new components can be validated against 
these proven assumptions. 

A more interesting case is when the assumption A is not 
known.  To address that, we turn to techniques for 
automatically generating such assumptions from the 
components X and Y and the desired property P.  Recently 
developed techniques make this possible, and allow both the 
automatic construction of a weakest valid assumption for a 
given component [19] , and of an assumption generated in 
an iterative fashion through the use of an automata learning 
algorithm [20] . The assumptions generated by [20]  do not 
need to be the weakest. In fact, the iterative framework 
converges to the weakest assumption, but may terminate 
early, if it finds an assumption that is sufficient to prove that 
X|Y satisfies P. The framework also guarantees that the 
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assumptions that it generates have at most as many states as 
the weakest assumption for X. 

As outlined above, we rely heavily on these compositional 
verification techniques in our work, both to address 
computational cost issues, and to enable incremental 
validation of autonomy system instantiations. 

Static analysis 

The goal of static program analysis is to assess properties of 
a program without executing the program. Several 
techniques can be used to perform static analysis. Theorem 
proving, data flow analysis, constraint solving, and abstract 
interpretation are among the most popular. Generally 
speaking, a static program analyzer infers properties about 
the execution of the program from its text (the source code) 
and a formal specification of the semantics of the language 
(which is typically built in the analyzer). Static program 
analyzers are in general excellent for detecting runtime 
errors. 

Runtime errors are errors that cause exceptions at runtime. 
Typically, in C, either they result in creating a core dump or 
they cause data corruption that may cause crashes. The main 
classes of runtime errors are accesses to un-initialized 
variables, accesses to un-initialized pointers, out-of-bound 
array accesses, arithmetic underflow/overflow, invalid 
arithmetic operations, non-terminating loops, and non-
terminating calls. 

In general, static program analyzers aim at checking all 
execution paths, sometimes at the cost of incompleteness 
(i.e., impossibility of determining the safety of all 
operations with exact precision). In other words, the 
analyzer can raise false alarms on some operations that are 
actually safe. However, if the analyzer deems an operation 
safe, then errors cannot occur on any execution path. The 
program analyzer can also detect certain runtime errors 
which occur every time the execution reaches some point in 
the program. 

Traditionally, there are two complementary uses of a 
program analyzer: 

(1) as a debugger that detects runtime errors statically 
without executing the program, and 

(2) as a preprocessor that reduces the number of 
potentially dangerous operations that have to be 
checked by a traditional validation process (code 
reviewing, test writing, and so on). 

The first use is akin to traditional debugging; the developer 
tries to flush as many as bugs as he can from the code 
before it gets to verification. The second use is called 

certification; the goal is to prove the absence of errors of a 
certain class, thus, alleviating the need for testing for this 
class of errors. This requires that the static analyzer 
achieves a good selectivity - the percentage of operations 
which are proven to be safe by the program analyzer. 
Indeed, if 50% of all operations in the program are marked 
as potentially dangerous by the analyzer, there are no 
benefits to using such techniques. 

Automated synthesis 

The overall aim of our work is to be able to reliably 
reconfigure components in the functional layer of the 
autonomy architecture. The previous sections have 
described V&V techniques that are able to verify that 
components are free of bugs. Another approach is to 
generate the components in an inherently trustworthy 
manner. We are developing the use of automated code 
generation (also known as program synthesis) for this. 
Control software is particularly appropriate for code 
generation since it can be modeled concisely at a high-level, 
while the code which implements it tends to be idiomatic. 

A code generator takes as input a domain-specific high-
level description of a task (e.g., a set of differential 
equations) and produces optimized and documented low-
level code (e.g., C or C++) that is based on algorithms 
appropriate for the task (e.g., the extended Kalman filter).  
This automation increases developer productivity and, in 
principle, prevents the introduction of coding errors. 

AutoFilter [18] is a domain-specific program synthesis 
system that generates customized Kalman filters for state 
estimation tasks specified in a high-level notation. 
AutoFilter's specification language uses differential 
equations for the process and measurement models and 
statistical distributions to describe the noise characteristics.  
It can generate code with a range of algorithmic 
characteristics and for several target platforms.  The tool has 
been designed with reliability of the generated code in mind 
and is able to automatically certify that the code it generates 
is free from various error classes (most are programming 
error, while some address functional concerns) using 
automated theorem proving. Since documentation is an 
important part of software assurance, AutoFilter can also 
automatically generate various human-readable documents, 
containing both design and safety related information 

4. CONCLUDING REMARKS 

The work described in this paper is an ongoing effort. The 
architecture has been defined and an initial version has been 
implemented. The process for validating new instantiations 
has been defined and initial efforts are underway to apply 
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static analysis, compositional verification and automated 
synthesis to parts and aspects of the autonomy architecture. 

The autonomy software has been adapted to operating JPL’s 
FIDO rover in simulation. As expected, the integration of 
EUROPA and CLARAty has been straightforward, assisted 
by the use of the PLEXIL execution framework.  At this 
point, the planner domain model is constructed manually 
from the specification of the CLARAty interface for FIDO 
control.  Future efforts in the use of synthesis will focus on 
automatically generating domain model information from 
functional layer specifications, but the expectation is that 
engineering experts will still refine the domain model to 
specify the desired constraints and flight rules. 

Static analysis is being applied to modules of the EUROPA 
framework, providing initial analysis for the current 
implementation. In the near future, this work will be 
extended to other modules of EUROPA and to components 
of the CLARAty framework. 

Compositional verification techniques are being tested on 
models of autonomous rendezvous and docking systems. 
The results of this work are very promising, having 
demonstrated the ability to generate small assumptions that 
in turn enable very fast validation of system properties. 
These results are in stark contrast to the large amount of 
time and computing resources needed to apply traditional 
model checking methods to the full model without the 
benefit of decomposition. 

Automated synthesis techniques for generating Kalman 
filters from formal specifications have been adapted to 
generate Kalman filter components for CLARAty.  Since 
such filters play a key role in interpreting sensor 
information to determine state information like rover 
location, this is a significant step forward. 

To summarize, the effort outlined here has only recently 
been started, but even at this early point in time, the results 
are promising. The goal of this work is to provide a robust 
verified core autonomy architecture, along with the process 
and tools needed to adapt it to spacecraft operations 
applications, such that the instantiated autonomous control 
system is validated and robust. 
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