

 1

A Robust Compositional Architecture
for Autonomous Systems

Guillaume Brat, Ewen Denney, Kimberley Farrell, Dimitra Giannakopoulou, Ari Jónsson

Research Institute for Advanced Computer Science
NASA Ames Research Center, Mailstop 269-2

Moffett Field, CA 94035
{brat, edenney, kfarrell, dimitra, jonsson}@email.arc.nasa.gov

Jeremy Frank

NASA Ames Research Center, Mailstop 269-2
Moffett Field, CA 94035
frank@email.arc.nasa.gov

Mark Boddy, Todd Carpenter

Adventium Enterprises
100 Mill Place

111 Third Avenue South
Minneapolis, MN 55401 USA

{mark.boddy, todd.carpenter}@adventiumenterprises.com

Tara Estlin, Mihail Pivtoraiko
Jet Propulsion Laboratory M/S 126-347

4800 Oak Grove Drive
Pasadena CA 9110, USA,

{tara.estlin, mihail.n.pivtoraiko}@jpl.nasa.gov

Abstract—12 Space exploration applications can benefit
greatly from autonomous systems. Great distances, limited
communications and high costs make direct operations
impossible while mandating operations reliability and
efficiency beyond what traditional commanding can
provide. Autonomous systems can improve reliability and
enhance spacecraft capability significantly. However, there
is reluctance to utilizing autonomous systems. In part, this is
due to general hesitation about new technologies, but a
more tangible concern is the reliability and predictability of
autonomous software.

In this paper, we describe ongoing work aimed at increasing
robustness and predictability of autonomous software, with
the ultimate goal of building trust in such systems. The
work combines state-of-the-art technologies and capabilities
in autonomous systems with advanced validation and
synthesis techniques. The focus of this paper is on the
autonomous system architecture that has been defined, and
on how it enables the application of validation techniques
for resulting autonomous systems.

1
1 0-7803-9546-8/06/$20.00© 2006 IEEE
2 IEEEAC paper #1499, Version 9, Updated Dec 16, 2005

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. AN ARCHITECTURE FOR AUTONOMY 2
3. VALIDATION OF AUTONOMOUS SYSTEMS............ 4
4. CONCLUDING REMARKS 5
REFERENCES... 6
BIOGRAPHY .. 7

1. INTRODUCTION

Space exploration applications offer a unique opportunity
for the development and deployment of autonomous
systems, due to limited communications, great distances,
and high cost of direct operation. At the same time, the
risk and cost of space missions leads to reluctance to taking
on new, complex and difficult-to-understand technology.
Consequently, there is a pressing need to address the issue
of designing robust architecture for autonomous systems
and demonstrate a design process that can provide the trust
and reliability that is required for manned and unmanned
space applications.

In this paper, we describe an ongoing effort to develop a
new approach to defining, implementing and maintaining
compositional autonomous systems. There are two key
elements to the approach. One is a modular compositional
autonomy architecture where adaptation to different

 2

applications is done in an incremental manner. The other is
a testing and validation methodology that allows the
certification of new adaptations to be limited to the
components and relations that are modified. Together, the
two elements will make future autonomy applications more
easily constructed and modified, while increasing reliability
and reducing cost of reconfiguration and maintenance.

The work will be grounded in a specific autonomy
architecture that integrates the EUROPA planning
framework and the functional layer of the CLARAty control
architecture. EUROPA supports incremental compositional
specification of the states, commands and associated
operations rules that define how it may control a given
system. CLARAty provides a compositional approach to
defining the functional control software that interfaces with
the underlying system.

Compositional verification techniques will be used to limit
the efforts required to validate and certify a new adaptation.
 These methods use known properties of unchanged
modules to limit validation and certification efforts to
changes made. The validation of core system and
individual component properties is done with both formal
and empirical analysis.

Our approach will enable the increased use of autonomy in
future space explorations, thus reducing operations costs
and increasing reliability. In addition, the methodology of
composable components and associated incremental testing
and verification, will reduce the cost of system
development, maintenance, and reconfiguration.

2. AN ARCHITECTURE FOR AUTONOMY

Autonomous systems vary greatly in the representation and
reasoning techniques utilized in such systems. Furthermore,
the interface between autonomous control and underlying
systems can be radically different between architectures.
Both of these aspects impact the application of validation
techniques to autonomous systems instantiations.
Consequently, we define and use a general autonomous
systems architecture that uses specific representation and
reasoning approaches, combined with a structured well-
defined interface to the underlying system. While the
architecture provides a basis for defining validation
processes and techniques, many of the general notions of
how to validate autonomous systems will be applicable to
other architectures.

Our architecture uses a constraint-based planning
framework called EUROPA (Extendible Uniform Remote
Operations Planning Architecture) for the core
representation and reasoning. This provides the ability to

make decisions about what actions to take so as to achieve
mission goals, while ensuring that flight rules and
constraints are satisfied. The actions are implemented in the
CLARAty framework (Coupled-Layer Architecture for
Rover Autonomy), which also provides structured access to
system states and sensory information. The architecture is
shown in Figure 1.

The decision-making component, implemented in
EUROPA, uses the domain model to generate safe plans
and decisions that respect flight rules and other constraints
on operations. The domain model is a declarative
specification of actions and states implemented in the
functional layer, along with rules on how these actions can

be used. The domain model is compositional, meaning that
new actions and rules can be added without changing
existing content. The executive, implemented in an
execution framework called PLEXIL, executes the plans
and actions specified by the decision layer. It also monitors
the execution, ensuring that the constraints and assumptions
in the given plan are satisfied in the system during
execution. When deviations occur, the executive can either
recover or call on the decision layer to decide how to
proceed. The functional layer is part of the CLARAty
framework. It is a set of functional components, arranged in
a hierarchy where higher-level components utilize
capabilities and services of lower-level components. The
functional layer thus provides a compositional approach to
implementing interfaces to system functions.

The verification and validation methods are applied to all
levels of the architecture. The details are further described
here below in the section on validation. The automated
synthesis techniques are then used to generate, from high-
level specifications, both CLARAty functional layer

Functional Layer
(CLARAty)

Decision Layer
(EUROPA)

Executive
(PLEXIL)

System interfaces

Domain
Model

V&V
Static analysis
Compositional

Synthesis

Interface to users/operations

Figure1: Autonomy architecture outline

 3

components and the associated specifications in the domain
model. This approach, combined with the compositional
nature of the overall architecture, enables rapid adaptation
and reconfiguration of the autonomy system.

EUROPA – constraint-based planning

The Extensible Universal Remote Operations Planning
Architecture (EUROPA) is a model-based planning and
scheduling architecture descended from the Remote Agent
Planner [14] . Users of EUROPA can specify the rules of
planning domains using a rich domain description language
that supports time, resources, disjunctive preconditions and
conditional effects. EUROPA makes extensive use of
constraint based representation and reasoning, which allows
for more concise representation of planning models, and
more efficient reasoning during planning [11] . EUROPA
provides support for “foreign function” calls implementing
complex constraints such as power consumption and
generation.

EUROPA consists of a hierarchy of highly configurable
components, supporting the building many types of planners
and plan representations. The modeling language, NDDL,
contains a small number of elementary entity types,
providing ease in modeling. These types can be extended to
provide more specialized components, leading to a rich set
of modeling primitives. The plan database contains the
current plan and information about its state. The database
provides mechanisms to efficiently query the plan state and
modify the plan. Modification leads to inference, which is
performed by a rules engine module and a constraint
reasoning engine module. The rules engine determines
which rules in the domain description apply after each
modification of the plan, and updates the state accordingly.
The constraint reasoning module is further broken down
into specialized modules that efficiently handle particular
classes of constraints, such as temporal constraints. Finally,
EUROPA provides interfaces to specialized heuristics
modules that provide search control to planners.

EUROPA can also be customized to support both long-
range deliberative planners as well as short-horizon
continuous planners that may operate on the same model.
This approach partially resolves problems due to building
multiple models in different languages for the same
autonomy system (e.g. [12]). For example, one planner may
have a time horizon limited to 5 minutes into the future, and
can delay subgoals. Another planner may only plan
activities for a hazard avoidance system, leaving other goals
to other planners. EUROPA supports customizations of this
form by limiting a planners’ “view” to a subset of the
model. EUROPA also allows multiple planners to modify
the same plan concurrently, by providing authority
mechanisms indicating what planners may modify.

Automated planning technology such as EUROPA has been
utilized as part of on-board autonomy architectures for deep
space probes [14] , robotic rovers [16] and free-flying
robots [17] .

CLARAty – layered architecture for robotics

Most robotic control systems employ a variant of the Three-
Layer Architecture pioneered by Brooks in 1987.
CLARAty is an evolution of the three-layer architecture that
provides a wide-range of robotic functionality and
simplifies the integration of new technologies on robotic
platforms. CLARAty is a joint project between the NASA
Jet Propulsion Laboratory, NASA Ames Research Center,
Carnegie Mellon University and a number of other
universities and has been designed specifically for space-
based robotic control applications. CLARAty features a
Functional Layer of robotic primitives, coupled with a
Decision Layer of planning and execution functionality;
each of these layers contains a hierarchy of components
ranging from the most elementary to the most “intelligent”.

The Functional Layer (FL) provides a set of standard,
generic robot capabilities that interface to system hardware.
These capabilities are organized as a software class
hierarchy of robotic components; for example, wheeled-
mobility is a subclass of mobility, and individual rover
wheel assemblies are child classes. As is natural in object-
oriented systems, the interface is separated from
implementation. Physical limitations of devices are
distinguished from algorithmic limitations. Finally, runtime
models of devices are incorporated in the Functional Layer.

Figure 2: CLARAty framework organization

 4

3. VALIDATION OF AUTONOMOUS SYSTEMS

In the autonomy architecture outlined here, an instantiation
of an autonomous system consists of the following
elements:

(1) The core EUROPA planning and decision-making
framework, which will largely be unchanged between
applications and thus can be validated without
reference to the specific instantiation.

(2) The CLARAty instantiation for the system in question,
which consists of a set of core CLARAty components
and the specific components used to operate the
system. The core CLARAty components can be
validated separately, while the specific components are
validated as part of the instantiation process. Some
components may be synthesized, which offers an
opportunity for easier validation of those components.

(3) The execution system that links CLARAty and
EUROPA and provides monitoring capabilities to
ensure that execution does not continue when the
assumptions supporting the plan no longer hold. The
core execution system is validated once, but online
validation and checking techniques can be used to
validate specific executable plans.

(4) The domain model describing possible actions and the
flight rules governing those actions and the related
system states. Model validation is a key element of
ensuring that the autonomy system instantiation is
robust and safe.

(5) The properties that should hold for the system and
various components. These define the criteria for
validation of the system.

The validation of an instantiation thus involves validating
core architecture systems, instantiation-specific CLARAty
components, the domain model used by the planner and
executive, and finally, the overall properties for the
instantiated system. To tackle this, we apply three kinds of
techniques. Model-based validation, using compositional
verification, can be applied to core software as well as
special-purpose components. In addition, compositional
techniques allow us to verify system-level properties from
component properties. Static analysis is a powerful
technique to directly analyze software code, without
requiring a formal modeling of the software components
and properties. Finally, automated synthesis techniques
allow us to generate instance-specific elements from high-
level specifications. In addition to simplifying the process
of implementing instantiations, synthesis offers an

additional level of validation by generating provably safe
code.

Compositional verification

Model-based verification techniques use exhaustive search
through possible execution trajectories to verify desired
system properties. While these techniques can provide the
formal validation desired for our autonomous systems, they
suffer from state-space explosion. As a consequence, they
are typically used to verify relatively small components of
an entire system, rather than the system itself. In addition,
they do not lend themselves to incremental validation, as we
desire to do for instantiations of autonomous systems.

To address these issues, we turn to compositional
verification techniques. Compositional verification
decomposes the properties of a system into properties of its
components, so that if each component satisfies its
respective property, then so does the entire system.
Components are thus model checked separately. Assume-
guarantee reasoning is a promising compositional
verification approach, the basic idea behind it being as
follows: Consider a system consisting of two components X
and Y. The desire is to prove that a property P is satisfied
by the overall system X|Y. In compositional verification,
this is done by identifying an intermediate property A,
called an assumption, and using that to split the validation
into two smaller problems. The first part is to prove that
given A, X satisfies P, and the second part is to prove that Y
satisfies (or guarantees) P.

This notion can be utilized in different ways. If the X and
Y components are already validated, it is likely that the
assumption A is already known and the compositional
verification techniques can be applied directly. This is
likely to be the case in situations such as where new
CLARAty components are being added on top of existing
ones. The properties of the core components are known and
validated, so the new components can be validated against
these proven assumptions.

A more interesting case is when the assumption A is not
known. To address that, we turn to techniques for
automatically generating such assumptions from the
components X and Y and the desired property P. Recently
developed techniques make this possible, and allow both the
automatic construction of a weakest valid assumption for a
given component [19] , and of an assumption generated in
an iterative fashion through the use of an automata learning
algorithm [20] . The assumptions generated by [20] do not
need to be the weakest. In fact, the iterative framework
converges to the weakest assumption, but may terminate
early, if it finds an assumption that is sufficient to prove that
X|Y satisfies P. The framework also guarantees that the

 5

assumptions that it generates have at most as many states as
the weakest assumption for X.

As outlined above, we rely heavily on these compositional
verification techniques in our work, both to address
computational cost issues, and to enable incremental
validation of autonomy system instantiations.

Static analysis

The goal of static program analysis is to assess properties of
a program without executing the program. Several
techniques can be used to perform static analysis. Theorem
proving, data flow analysis, constraint solving, and abstract
interpretation are among the most popular. Generally
speaking, a static program analyzer infers properties about
the execution of the program from its text (the source code)
and a formal specification of the semantics of the language
(which is typically built in the analyzer). Static program
analyzers are in general excellent for detecting runtime
errors.

Runtime errors are errors that cause exceptions at runtime.
Typically, in C, either they result in creating a core dump or
they cause data corruption that may cause crashes. The main
classes of runtime errors are accesses to un-initialized
variables, accesses to un-initialized pointers, out-of-bound
array accesses, arithmetic underflow/overflow, invalid
arithmetic operations, non-terminating loops, and non-
terminating calls.

In general, static program analyzers aim at checking all
execution paths, sometimes at the cost of incompleteness
(i.e., impossibility of determining the safety of all
operations with exact precision). In other words, the
analyzer can raise false alarms on some operations that are
actually safe. However, if the analyzer deems an operation
safe, then errors cannot occur on any execution path. The
program analyzer can also detect certain runtime errors
which occur every time the execution reaches some point in
the program.

Traditionally, there are two complementary uses of a
program analyzer:

(1) as a debugger that detects runtime errors statically
without executing the program, and

(2) as a preprocessor that reduces the number of
potentially dangerous operations that have to be
checked by a traditional validation process (code
reviewing, test writing, and so on).

The first use is akin to traditional debugging; the developer
tries to flush as many as bugs as he can from the code
before it gets to verification. The second use is called

certification; the goal is to prove the absence of errors of a
certain class, thus, alleviating the need for testing for this
class of errors. This requires that the static analyzer
achieves a good selectivity - the percentage of operations
which are proven to be safe by the program analyzer.
Indeed, if 50% of all operations in the program are marked
as potentially dangerous by the analyzer, there are no
benefits to using such techniques.

Automated synthesis

The overall aim of our work is to be able to reliably
reconfigure components in the functional layer of the
autonomy architecture. The previous sections have
described V&V techniques that are able to verify that
components are free of bugs. Another approach is to
generate the components in an inherently trustworthy
manner. We are developing the use of automated code
generation (also known as program synthesis) for this.
Control software is particularly appropriate for code
generation since it can be modeled concisely at a high-level,
while the code which implements it tends to be idiomatic.

A code generator takes as input a domain-specific high-
level description of a task (e.g., a set of differential
equations) and produces optimized and documented low-
level code (e.g., C or C++) that is based on algorithms
appropriate for the task (e.g., the extended Kalman filter).
This automation increases developer productivity and, in
principle, prevents the introduction of coding errors.

AutoFilter [18] is a domain-specific program synthesis
system that generates customized Kalman filters for state
estimation tasks specified in a high-level notation.
AutoFilter's specification language uses differential
equations for the process and measurement models and
statistical distributions to describe the noise characteristics.
It can generate code with a range of algorithmic
characteristics and for several target platforms. The tool has
been designed with reliability of the generated code in mind
and is able to automatically certify that the code it generates
is free from various error classes (most are programming
error, while some address functional concerns) using
automated theorem proving. Since documentation is an
important part of software assurance, AutoFilter can also
automatically generate various human-readable documents,
containing both design and safety related information

4. CONCLUDING REMARKS

The work described in this paper is an ongoing effort. The
architecture has been defined and an initial version has been
implemented. The process for validating new instantiations
has been defined and initial efforts are underway to apply

 6

static analysis, compositional verification and automated
synthesis to parts and aspects of the autonomy architecture.

The autonomy software has been adapted to operating JPL’s
FIDO rover in simulation. As expected, the integration of
EUROPA and CLARAty has been straightforward, assisted
by the use of the PLEXIL execution framework. At this
point, the planner domain model is constructed manually
from the specification of the CLARAty interface for FIDO
control. Future efforts in the use of synthesis will focus on
automatically generating domain model information from
functional layer specifications, but the expectation is that
engineering experts will still refine the domain model to
specify the desired constraints and flight rules.

Static analysis is being applied to modules of the EUROPA
framework, providing initial analysis for the current
implementation. In the near future, this work will be
extended to other modules of EUROPA and to components
of the CLARAty framework.

Compositional verification techniques are being tested on
models of autonomous rendezvous and docking systems.
The results of this work are very promising, having
demonstrated the ability to generate small assumptions that
in turn enable very fast validation of system properties.
These results are in stark contrast to the large amount of
time and computing resources needed to apply traditional
model checking methods to the full model without the
benefit of decomposition.

Automated synthesis techniques for generating Kalman
filters from formal specifications have been adapted to
generate Kalman filter components for CLARAty. Since
such filters play a key role in interpreting sensor
information to determine state information like rover
location, this is a significant step forward.

To summarize, the effort outlined here has only recently
been started, but even at this early point in time, the results
are promising. The goal of this work is to provide a robust
verified core autonomy architecture, along with the process
and tools needed to adapt it to spacecraft operations
applications, such that the instantiated autonomous control
system is validated and robust.

REFERENCES

[1] I.A. Nesnas, A. Wright, M. Bajracharya, R.
Simmons, T. Estlin, Won Soo Kim, "CLARAty:
An Architecture for Reusable Robotic Software,"
SPIE Aerosense Conference, April 2003.

[2] B. Fischer, J. Schumann, “AutoBayes: A System

for Generating Data Analysis Programs from
Statistical Models. Journal of Functional
Programming, Vol. 13, No. 3, May 2003, pp.
483-508.

[3] J. Whittle, J. Schumann, “Automating the
Implementation of Kalman Filter Algorithms,”
Accepted for publication in ACM Transactions
on Mathematical Software (TOMS).

[4] P. Gluck, G. Holzmann, “Using Spin Model
Checking for Flight Software Verification,”
Procedding of 2002 Aerospace Conference,
March 2002.

[5] D. Giannakopoulou, C. Paraseanu, H. Barringer,
“Component Verification with Automatically
Generated Assumption,” Journal of Automated
Software Engineering, Vol. 11, Kluwer, 2004.

[6] B. Blanchet et al. “Design and implementation of
a special-purpose static program analyzer for
safety-critical real-time embedded software.”
LNCS 2566, pp. 85-108, 2003.

[7] Venet “Non-uniform Alias Analysis of Recursive
Data Structures and Arrays.” In SAS'02, LNCS
2477, pp. 36-51, 2002.

[8] Venet, G. Brat, “Precise and Efficient Static
Array Bound Checking for Large Embedded C
Programs,” Proceedings of PLDI 2004,
Washington, D.C., June 2004.

[9] Venet, “A Scalable Nonuniform Pointer Analysis
for Embedded Programs,” Proceedings of the
International Static Analysis Symposium, SAS
04, Verona, Italy. LNCS 3148, Pp. 149-164,
Springer 2004.

[10] J. R. Buch, E.M. Clarke, K.L.McMillan, D.L.
Dill, J. Hwang, “Symbolic Model Checking:
10E20 states and beyond,” In LICS, 1990.

[11] J. Frank and A. Jonsson, “Constraint-Based
Attribute and Interval Planning.” In the Journal
of Constraints, vol. 8, no. 4, 2003.

[12] N. Muscettola and P. Nayak and B. Pell and B.
Williams, “Remote Agent: To Boldly Go Where
No AI System Has Gone Before.” Artificial
Intelligence,103(1-2), 1998.

[13] J. Frank, “Bounding the Resource Availability of
Partially Ordered Events with Constant Resource
Impact”, In Proceedings of the 10th International
Conference on Principles and Practices of
Constraint Programming, 2004.

[14] A. Jonsson and P. Morris and N. Muscettola and
K. Rajan and B. Smith, “Planning in
Interplanetary Space: Theory and Practice.”
Outstanding Application Award winner.

 7

Proceedings of the International Conference on
Artificial Intelligence Planning and Scheduling,
2000.

[15] V. Verma and T. Estlin and A. Jonsson and C.
Pasareanu and R. Simmons. Plan Execution and
Interchange Language (PLEXIL) for Executable
Plans and Command Sequences. Proceedings of
the 9th International Symposium on Artificial
Intelligence, Robotics and Automation in Space,
2005

[16] M. Bernardine Dias and S. Lemai and N.
Muscettola. A Real-Time Rover Executive
Based on Model-Based Reactive Planning.
Proceedings of the 7th International Symposium
on Artificial Intelligence, Robotics and
Automation in Space, 2003

[17] N. Muscettola and G. Dorais and C. Fry and R.
Levinson and C. Plaunt. IDEA: Planning at the
Core of Autonomous Reactive Agents.
Proceedings of the 3d International NASA
Workshop on Planning and Scheduling for Space,
2002

[18] E. Denney, B. Fischer, J. Schumann, and J.
Richardson. "Automatic certification of Kalman
filters for reliable code generation." In Proceedings
of the IEEE Aerospace Conference, Big Sky,
Montana, 2005. IEEE.

[19] D. Giannakopoulou, C. S. Pasareanu, H.
Barringer, Component Verification with
Automatically Generated Assumptions, J. of
Automated Software Engineering, 2005

[20] J. M. Cobleigh, D. Giannakopoulou, C. S.
Pasareanu, Learning Assumptions for
Compositional Verification, in Proc. 9th
International Conf. on Tools and Algorithms for
the Construction and Analysis of Systems, 2003.

BIOGRAPHIES

Dr. Guillaume Brat received his M.Sc. and Ph.D. in
Electrical & Computer Engineering in 1998 (The University
of Texas at Austin, USA). His thesis defined a (max,+)
algebra to model and evaluate non-stationary, periodic
timed discrete event systems. Since then, he has specialized
on the application of static analysis to software verification.
From 1997 to June 1999, he worked at MCC where he led a
project that developed static analysis tools for software
verification. In June 1999, he joined the Automated
Software Engineering group at the NASA Ames Research
Center and focused on the application of static analysis to

the verification of large software systems. For example, he
co-developed and applied static analysis tools based on
abstract interpretation to the verification of software for the
Mars PathFinder, Deep Space One, and Mars Exploration
Rover missions at JPL, various International Space Station
controllers at MSFC, and the International Space Station
Biological Research Project at the NASA Ames Research
Center.

Dr. Ewen Denney received his PhD from the Laboratory
for the Foundations of Computer Science in Edinburgh,
Scotland in 1999 and has subsequently worked in formal
methods groups in France and Hong Kong. He has
published over 30 papers in the areas of automated code
generation, software modeling, software certification, and
the foundations of computer science. He has been with the
Robust Software Engineering group at NASA Ames since
2002, working on the AutoBayes and AutoFilter program
synthesis projects. He is a contractor with the Research
Institute for Advanced Computer Science (RIACS)..

Dr. Dimitra Giannakopoulou has been a RIACS research
scientist at the NASA Ames Research Center since August
2000. Her research focuses on scalable specification and
verification techniques for NASA systems. In particular, she
is interested in incremental and compositional model
checking based on software components and architectures.
She holds a Ph.D. in Distributed Computing from Imperial
College, University of London. She has authored over 25
peer-reviewed technical publications. She acts as a regular
reviewer for scientific journals and has been a program
committee member for several international conferences.

Kim Farrell is a software project manager with over ten
years of experience leading scientific and commercial R&D
teams. She has contributed to successful NASA projects in
the areas of autonomous systems, spoken dialogue systems,
and computational fluid dynamics. Her interests include
strategies for developing inherently testable systems and
methods to reduce the cost of software maintenance.

Dr. Ari Jónsson received his Ph.D. in Computer Science
from Stanford University in 1997. He is currently a senior
research scientist with the Research Institute for Advanced
Computer Science, and a member of the Planning and
Scheduling Group at NASA Ames Research Center. His
research and development efforts include work on
constraint reasoning, planning and scheduling, robust plan
execution, mixed-initiative planning, autonomous
operations, and validation of autonomous systems.
Currently, Dr. Jónsson is the principal investigator on two
technology research and development projects. He has
received a number of recognitions and awards for his work
at Ames Research Center, including ones that recognize his
contributions to the Remote Agent experiment, which took

 8

place on board Deep Space One in May 1999, as well as
recognitions for his work on the infusion of automated
reasoning and planning technology into the Mars Rover
Exploration mission in 2004.

Dr. Jeremy Frank received his Ph.D. in Computer Science
from the University of California, Davis in 1997. He leads
the Planning and Scheduling Group at NASA Ames
Research Center. He has worked at NASA Ames Research
Center since 1997. He is a former member of the EUROPA
team, and has worked on NASA scheduling projects for
satellite constellations, airborne telescopes, and Deep
Space Network communications. He has served as a
reviewer for Artificial Intelligence Journal, the Journal of
Artificial Intelligence Research, and the Journal of
Scheduling, and has served on the program committee for
numerous international conferences and workshops. His
research interests are automated planning, constraint
satisfaction and optimization.

Dr. Mark Boddy is an internationally recognized expert in
several areas of computer science research, including
planning and scheduling, automated reasoning, and
constraint satisfaction. During the past seventeen years he
has published more that 30 peer-reviewed articles in
journals and conference proceedings, presented tutorials on
temporal reasoning and constraint-based reasoning at
international conferences, and given numerous invited
talks. Dr. Boddy continues to play an active role in the
research community, serving on program committees and
reviewing for national and international conferences, as
well as serving as a journal reviewer for Artificial
Intelligence Journal, Computational Intelligence, IEEE
Transactions on Pattern Recognition and Machine
Intelligence, and the Journal of Artificial Intelligence
Research. He has helped to organize numerous workshops
and conferences in related research areas, and served as a
program reviewer for NASA, the National Science
Foundation, and the Air Force Office of Scientific Research.

Mr. Todd Carpenter has over 19 years of systems
development and engineering experience for high-value,
real-time, fault-tolerant, and secure systems in domains
including medical, military and commercial avionics, space,
and petrochemicals. His focus has covered detailed
hardware and software design, architecture development,
systems design and specification, and tools, standards, and
processes for enhancing the design flow. He is a certified
Six Sigma Green Belt in both design and growth processes.
He formerly served as a research and development advisor
at Guidant Corporation, where he provided systems
engineering for new product developments in emerging,
FDA-regulated, markets. As a Honeywell research scientist
and business development lead until 2003, Mr.\ Carpenter
led a Critical Infrastructure Protection thrust, including

developing business plans, market studies, and threat
analysis based on military, insurance, and industry surveys,
which ultimately led to development of a comprehensive
macroscopic vulnerability analysis process to identify,
evaluate, and rank broad area system vulnerabilities.

Dr. Tara Estlin is a senior member of the Artificial
Intelligence Group at the Jet Propulsion Laboratory where
she performs research and development of planning and
execution systems for rover automation and multi-rover
coordination. Dr. Estlin currently leads several efforts that
area developing capabilities for onboard rover-command
generation, resource planning and scheduling, execution,
and data analysis for single and multiple rovers. She is also
currently a rover planner for the Mars Exploration Rover
mission. Dr. Estlin received a B.S. in computer science in
1992 from Tulane University, an M.S. in computer science
in 1994 and a Ph.D. in computer science in 1997, both from
the University of Texas at Austin

Mihail Pivtoraiko is with the Advanced Robotic Controls
group at JPL. He is one of the engineers of the multi-
institutional robotic software architecture (CLARAty), as
well as a collaborator on several robotics research tasks.
Mihail completed his M.S. degree at the Robotics Institute,
Carnegie Mellon University in 2005, where he participated
in several large mobile robotics projects, in particular
PerceptOR (Perception for Off-Road robots) and LAGR
(Learning Applied to Ground Robots). His roles included
system engineering for the navigation system, research and
development of constrained motion planning components,
and culminated in leading the development of the
navigation system for LAGR robots. Mihail also
collaborated directly with the principal investigator in
motion planning research as part of a Mars Technology
Program task. Mihail's areas of research interest primarily
include motion planning, modeling and system
identification, and state estimation.

 9

