
Con
rete Model Che
king with Abstra
tMat
hing and Re�nementCorina S. P�as�areanu1, Radek Pel�anek?2, and Willem Visser31 Kestrel Te
hnology/QSS, NASA Ames, Mo�ett Field, CA 94035, USA2 Masaryk University Brno, Cze
h Republi
3 RIACS/USRA, NASA Ames, Mo�ett Field, CA 94035, USAAbstra
t. We propose an abstra
tion-based model 
he
king methodwhi
h relies on re�nement of an under-approximation of the feasible be-haviors of the system under analysis. The method preserves errors tosafety properties, sin
e all analyzed behaviors are feasible by de�nition.The method does not require an abstra
t transition relation to be gener-ated, but instead exe
utes the 
on
rete transitions while storing abstra
tversions of the 
on
rete states, as spe
i�ed by a set of abstra
tion pred-i
ates. For ea
h explored transition the method 
he
ks, with the help ofa theorem prover, whether there is any loss of pre
ision introdu
ed byabstra
tion. The results of these 
he
ks are used to de
ide terminationor to re�ne the abstra
tion by generating new abstra
tion predi
ates. Ifthe (possibly in�nite) 
on
rete system under analysis has a �nite bisim-ulation quotient, then the method is guaranteed to eventually explorean equivalent �nite bisimilar stru
ture. We illustrate the appli
ation ofthe approa
h for 
he
king 
on
urrent programs. We also show how alightweight variant 
an be used for eÆ
ient software testing.1 Introdu
tionOver the last few years, model 
he
king based on abstra
tion-re�nement hasbe
ome a popular te
hnique for the analysis of software. In parti
ular the ab-stra
tion te
hnique of 
hoi
e is a property preserving over-approximation 
alledpredi
ate abstra
tion [13℄ and the re�nement removes spurious behavior basedon automati
ally analyzing abstra
t 
ounter-examples. This approa
h is often re-ferred to as CEGAR (
ounter-example guided automated re�nement) and formsthe basis of some of the most popular software model 
he
kers [2, 3, 17℄. Fur-thermore, a strength of model 
he
king is its ability to automate the dete
tionof subtle errors and to produ
e tra
es that exhibit those errors. However, over-approximation based abstra
tion te
hniques are not parti
ularly well suited forthis, sin
e the dete
ted defe
ts may be spurious due to the over-approximation| hen
e the need for re�nement. We propose an alternative approa
h basedon re�nement of under-approximations, whi
h e�e
tively preserves the defe
tdete
tion ability of model 
he
king in the presen
e of aggressive abstra
tions.? Partially supported by the Grant Agen
y of Cze
h Republi
 grant No. 201/03/0509and by the A
ademy of S
ien
es of Cze
h Republi
 grant No. 1ET408050503.



The te
hnique uses a novel 
ombination of (expli
it state) model 
he
king,predi
ate abstra
tion and automated re�nement to eÆ
iently analyze in
reas-ing portions of the feasible behavior of a system. At ea
h step, either an erroris found, we are guaranteed no error exists, or the abstra
tion is re�ned. Morepre
isely, the proposed model 
he
king te
hnique traverses the 
on
rete transi-tions of the system and for ea
h explored 
on
rete state, it stores an abstra
tversion of the state. The abstra
t state, 
omputed by predi
ate abstra
tion, isused to determine whether the model 
he
ker's sear
h should 
ontinue or ba
k-tra
k (if the abstra
t state has been visited before). This e�e
tively explores anunder-approximation of the feasible behavior of the analyzed system. Hen
e all
ounter-examples to safety properties are preserved.Re�nement uses weakest pre
ondition 
al
ulations to 
he
k, with the helpof a theorem prover, whether the abstra
tion introdu
es any loss of pre
isionwith respe
t to ea
h explored transition. If there is no loss of pre
ision dueto abstra
tion (we say that the abstra
tion is exa
t) the sear
h stops and we
on
lude that the property holds. Otherwise, the results from the failed 
he
ksare used to re�ne the abstra
tion and the whole veri�
ation pro
ess is repeatedanew. In general, the iterative re�nement may not terminate. However, if a �nitebisimulation quotient [19℄ exists for the system under analysis, then the proposedapproa
h is guaranteed to eventually explore a �nite stru
ture that is bisimilarto the original system.The te
hnique 
an also be used in a lightweight manner, without a theoremprover, i.e. the re�nement guided by the exa
tness 
he
ks is repla
ed with re�ne-ment based on synta
ti
 substitutions [21℄ or heuristi
 re�nement. The proposedte
hnique 
an be used for systemati
 testing, as it examines in
reasing portionsof the system under analysis. In fa
t, our method extends existing approa
hes totesting that use abstra
tion mappings [14, 28℄, by adding support for automatedabstra
tion re�nement.To the best of our knowledge, the presented approa
h is the �rst predi
ateabstra
tion based analysis whi
h fo
uses on automated re�nement of under-approximations with the goal of eÆ
ient error dete
tion. We illustrate the ap-pli
ation of the approa
h for 
he
king safety properties in 
on
urrent programsand for testing 
ontainer implementations.Comparison with Related Work The most 
losely related work to ours isthat of Grumberg et al. [15℄ where a re�nement of an under-approximation isused to improve analysis of multi-pro
ess systems. The pro
edure in [15℄ 
he
ksmodels with an in
reasing set of allowed interleavings of the given pro
esses,starting from a single interleaving. It uses SAT-based bounded model 
he
kingfor analysis and re�nement, whereas here we fo
us on expli
it model 
he
kingand predi
ate abstra
tion, and we use weakest pre
ondition 
al
ulations for ab-stra
tion re�nement.Our approa
h 
an be 
ontrasted with the work on predi
ate abstra
tionfor modal transition systems [12, 24℄, used in the veri�
ation and refutation ofbran
hing time temporal logi
 properties. An abstra
t model for su
h logi
s dis-tinguishes between may transitions, whi
h over-approximate transitions of the2




on
rete model, and must transitions, whi
h under-approximate the 
on
retetransitions (see also [1, 6, 7℄). The method presented here explores and generatesa stru
ture whi
h is more pre
ise (
ontains more feasible behaviors) than themodel de�ned by the must transitions, for the same abstra
tion predi
ates. Thereason is that the model 
he
ker explores transitions that 
orrespond not onlyto must transitions, but also to may transitions that are feasible (see Se
tion 2).Moreover, unlike [12, 24℄ and over-approximation based abstra
tion te
h-niques [2, 3℄, the under-approximation and re�nement approa
h does not requirethe a priori 
onstru
tion of the abstra
t transition relation, whi
h involves expo-nentially many theorem prover 
alls (in the number of predi
ates), regardless ofthe size of (the rea
hable portion of) the analyzed system. In our 
ase, the model
he
ker exe
utes 
on
rete transitions and a theorem prover is only used duringre�nement, to determine whether the abstra
tion is exa
t with respe
t to ea
hexe
uted transition. Every su
h 
al
ulation makes at most two theorem prover
alls, and it involves only the rea
hable state spa
e of the system under analysis.Another di�eren
e with previous abstra
tion te
hniques is that the re�nementpro
ess is not guided by the spurious 
ounter-examples, sin
e no spurious behav-ior is explored. Instead, the re�nement is guided by the failed exa
tness 
he
ksfor the explored transitions.In previous work [22℄, we developed a te
hnique for �nding guaranteed feasi-ble 
ounter-examples in abstra
ted programs. The te
hnique essentially exploresan under-approximation de�ned by the must abstra
t transitions (although thepresentation is not formalized in these terms). The work presented here exploresan under-approximation whi
h is more pre
ise than the abstra
t system de�nedby the must transitions. Hen
e it has a better 
han
e of �nding bugs while en-abling more aggressive abstra
tion and therefore more state spa
e redu
tion.Model-driven software veri�
ation [18℄ advo
ates the use of abstra
tion map-pings during 
on
rete model 
he
king in a way similar to what we present here.The CMC model 
he
king tool [20℄ also attempts to store state information inmemory using aggressive 
ompressing te
hniques (whi
h 
an be seen as a formof abstra
tion), while the detailed state information is kept on the sta
k. Thesete
hniques allow the dete
tion of subtle bugs whi
h 
an not be dis
overed by
lassi
al model 
he
king, using e.g. breadth �rst sear
h. or by state-less model
he
king [11℄. While these te
hniques use abstra
tions in an ad-ho
 manner, ourwork 
ontributes the automated generation and re�nement of abstra
tions.Data
ow and type-based analyzes have been used to 
he
k safety prop-erties of software (e.g. [25℄). Unlike our work, these te
hniques analyze over-approximations of system behavior and may generate false positive results dueto infeasible paths.Layout The rest of the paper is organized as follows. Se
tion 2 shows an exam-ple illustrating our approa
h. Se
tion 3 gives ba
kground information. Se
tion 4des
ribes the main algorithm for performing 
on
rete model 
he
king with ab-stra
t mat
hing and re�nement. Se
tion 5 dis
usses 
orre
tness and terminationfor the algorithm. Se
tion 6 proposes extensions to the main algorithm. Se
tion 7illustrates appli
ations of the approa
h and Se
tion 8 
on
ludes the paper.3



B, p

A, p

C, p

D, p

E,!p E, p

B, p

A, p

D, p

C, p

A, 0

B, 1

D, 1

E, 2 E, 1

D, 0

C, 0

A, 0 p,q

B, 1 p,!q C, 0 p,q

D, 1 p,!q D, 0 p,q

E, 2 !p,!q E, 1 p,!q

B, 1

D, 1

!pE, 2

D, 0

C, 0

pA, 0

p

p

p

(a) (e)(b) (c) (d)Fig. 1. (a) Con
rete system (b) May abstra
tion using predi
ate p = x < 2 (
) Mustabstra
tion using p (d) Con
rete sear
h with abstra
t mat
hing using p (e) Con
retesear
h with abstra
t mat
hing using predi
ates p and q = x < 1.2 ExampleThe example in Fig. 1 illustrates some of the main 
hara
teristi
s of our ap-proa
h. Fig. 1 (a) shows the state spa
e of a 
on
rete system that has only onevariable x; states are labelled with the program 
ounter (e.g. A, B, C ...) andthe 
on
rete value of x. Fig. 1 (b) shows the abstra
t system indu
ed by themay transitions for predi
ate p = x < 2. Fig. 1 (
) shows the abstra
t systemindu
ed by the must transitions for predi
ate p.Fig. 1 (d) shows the state spa
e explored using our proposed approa
h, foran abstra
tion spe
i�ed by predi
ate p. Dotted 
ir
les denote the abstra
t stateswhi
h are stored, and used for mat
hing, during the 
on
rete exe
ution of thesystem. The approa
h explores only the feasible behavior of the 
on
rete system,following transitions that 
orrespond to both may and must transitions, but itmight miss behavior due to abstra
t mat
hing. For example, state (E; 1) is notexplored, assuming a breadth-�rst sear
h, sin
e (D; 0) was mat
hed with (D; 1) -both have the same program 
ounter and both satisfy p. Noti
e that, with respe
tto rea
hable states, the produ
ed stru
ture is a better under-approximation thanthe must abstra
tion. Fig. 1 (e) illustrates 
on
rete exe
ution with abstra
tmat
hing, after a re�nement step, whi
h introdu
ed a new predi
ate q = x < 1.The resulting stru
ture is an exa
t abstra
tion of the 
on
rete system.3 Ba
kgroundProgramModel To make the presentation simple, we use as a spe
i�
ation lan-guage a guarded 
ommands language over integer variables. Most of the resultsextend dire
tly to more sophisti
ated programming languages. Let V be a �niteset of integer variables. Expressions over V are de�ned using standard boolean(=; <;>) and binary (+;�; �; :::) operations. A model is a tuple M = (V; T ).T = ft1; : : : ; tkg is a �nite set of transitions, where ti = (gi(x) 7�! x := ei(x)).gi(x) is a guard and ei(x) are assignments to the variables represented by tuplex; throughout the paper, we write this as a sequen
e of assignments.4



Semanti
s As a semanti
s of a model we use transition systems. A transitionsystem over a �nite set of atomi
 propositions AP is a tuple (S;R; s0; L) whereS is a (possibly in�nite) set of states, R = f i�!g is a �nite set of deterministi
transition relations: i�!� S � S, s0 is an initial state, and L : S ! 2AP is alabelling fun
tion. State s is rea
hable if it is rea
hable from the initial statevia zero or more transitions, i.e. s0 !� s. The set of rea
hable labellings RL isfL(s) j 9s 2 S : s0 !� sg. The 
on
rete semanti
s of model M is the transitionsystem C(M) = (S; f i�!g; s0; L) over AP , where:{ S = 2V!Z, i.e. states are valuations of variables,{ s i�! s0 , s j= gi^s0 = ui(s); the semanti
s of guards (boolean expressions)and updates is as usual; guards are fun
tions (V ! Z) ! ftrue; falseg,written as s j= gi; updates are fun
tions ui : (V ! Z)! (V ! Z),{ s0 is the zero valuation (8v 2 V : s0(v) = 0),{ L(s) = fp 2 AP j s j= pg.Weakest pre
ondition The weakest pre
ondition of a set of states X withrespe
t to transition i is wp(X; i) = fs j s i�! s0 ) s0 2 Xg. If the set of statesX is 
hara
terized by a predi
ate �, then the weakest pre
ondition with respe
tto transition i 
an be expressed as wp(�; i) = (gi ) �[ei(x)=x℄).Predi
ate abstra
tion Predi
ate abstra
tion is a spe
ial instan
e of the frame-work of abstra
t interpretation [5℄ that maps a (potentially in�nite state) tran-sition system into a �nite state transition system via a set of predi
ates � =f�1; : : : ; �ng over the program variables. Let Bn be a set of bitve
tors of length n.We de�ne abstra
tion fun
tion �� : S ! Bn , su
h that ��(s) is a bitve
torb1b2 : : : bn su
h that bi = 1, s j= �i. Let �s be the set of all abstra
tion predi-
ates that evaluate to true for a given state s, i.e. �s = f� 2 � j s j= �g. For su
-
in
tness we sometimes write ��(s) (or just �(s)) to denote V�2�s �^V�=2�s :�.We also give here the de�nitions of may and must abstra
t transitions. Al-though not ne
essary for formalizing our algorithm, these de�nitions 
larify the
omparison with related work. For two abstra
t states (bitve
tors) a1 and a2:{ �!must: a1 i�!must a2 i� for all 
on
rete states s1 su
h that �(s1) = a1,there exists 
on
rete state s2 su
h that �(s2) = a2 and s1 i�! s2,{ �!may: a1 i�!may a2 i� there exists 
on
rete state s1 su
h that �(s1) = a1and there exists 
on
rete state s2 su
h that �(s2) = a2, su
h that s1 i�! s2.Algorithms for 
omputing abstra
tions using over-approximation based pred-i
ate abstra
tion are given in e.g. [2, 13℄ (they 
ompute may abstra
t transitionsautomati
ally, with the help of a theorem prover). In the worst 
ase, these algo-rithms make 2n�n� 2 
alls to the theorem prover for ea
h program transition.Note that our approa
h does not require the 
omputation of abstra
t transitions,sin
e it exe
utes the 
on
rete transitions dire
tly.5



Bisimulation A symmetri
 relation R � S�S is a bisimulation relation i� forall (s; s0) 2 R:{ L(s) = L(s0){ For every s0 i�! s01 there exists s i�! s1 su
h that R(s1; s01)The bisimulation is the largest bisimulation relation, denoted �. Two tran-sition systems are bisimilar if their initial states are bisimilar. As � is an equiv-alen
e relation, it indu
es a quotient transition system whose states are equiva-len
e 
lasses with respe
t to � and there is a transition between two equivalen
e
lasses A and B if 9s1 2 A and 9s2 2 B su
h that s1 i�! s2.4 Con
rete Model Che
king with Abstra
t Mat
hingAlgorithm Fig. 2 shows the rea
hability pro
edure that performs model 
he
k-ing with abstra
t mat
hing (�Sear
h). It is basi
ally 
on
rete state spa
e ex-ploration with mat
hing on abstra
t states; the main modi�
ation with respe
tto 
lassi
al state spa
e sear
h is that we store �(s) instead of s. The pro
edureuses the following data stru
tures:{ States is a set of abstra
t states visited so far,{ Transitions is a set of abstra
t transitions visited so far,{ Wait is a set of 
on
rete states to be explored.The pro
edure performs validity 
he
king, using a theorem prover, to deter-mine whether the abstra
tion is exa
t with respe
t to ea
h explored transition |see dis
ussion below. The set �new maintains the list of abstra
tion predi
ates.The pro
edure returns the 
omputed stru
ture and a set of new predi
ates thatare used for re�nement.Fig. 3 gives the iterative re�nement algorithm for 
he
king whether M 
anrea
h an error state des
ribed by '. At ea
h iteration of the loop, the algorithminvokes pro
edure �Sear
h to analyze an under-approximation of the system,whi
h either violates the property, it is proved to be 
orre
t (if the abstra
tionis found to be exa
t with respe
t to all transitions), or it needs to be re�ned.Counter-examples are generated as usual (with depth-�rst sear
h order usingthe sta
k, with breadth-�rst sear
h order using parent pointers).Che
king for Exa
t Abstra
tion and Re�nement We say that an abstra
-tion fun
tion � is exa
t with respe
t to transition s i�! s0 i� for all s1 su
h that�(s) = �(s1) there exists s01 su
h that �(s01) = �(s0) and s1 i�! s01. In otherwords, � is exa
t with respe
t to s i�! s0 i� �(s) i�!must �(s0). This de�ni-tion is also related to the notion of 
ompleteness in abstra
t interpretation (seee.g. [10℄), whi
h states that no loss of pre
ision is introdu
ed by the abstra
tion.Che
king that the abstra
tion is exa
t with respe
t to 
on
rete transitions i�! s0 is equivalent to 
he
king that ��(s) ) wp(��(s0); i) is valid. This6



pro
 �Sear
h(M;�)�new = �; add s0 to Wait; add ��(s0) to Stateswhile Wait 6= ; doget s from WaitL(��(s)) = fa 2 AP j s j= agforea
h i from 1 to n doif s j= gi then if ��(s)) gi is not validthen add gi to �new �s0 = ui(s)if ��(s)) ��(s0)[ei(x)=x℄ is not validthen add predi
ates in ��(s0)[ei(x)=x℄ to �new �if ��(s0) 62 States then add s0 to Waitadd ��(s0) to States�add (��(s); i; ��(s0)) to Transitionselse if ��(s)) :gi is not validthen add gi to �new ��ododA = (States;Transitions; ��(s0); L)return (A;�new)end Fig. 2. Sear
h pro
edure with 
he
king for exa
t abstra
tionformula is equivalent to ��(s) ) ��(s0)[ei(x)=x℄ when s j= gi. Che
king thevalidity for these formulas is in general unde
idable. As is 
ustomary, if thetheorem prover 
an not de
ide the validity of a formula, we assume that it is notvalid. This may 
ause some unne
essary re�nement, but it keeps the 
orre
tnessof the approa
h. If the abstra
tion 
an not be proved to be exa
t with respe
tto some transition, then the new predi
ates from the failed formula are added tothe set of abstra
tion predi
ates. Intuitively, these predi
ates will be useful forproving exa
tness in the next iteration.5 Corre
tness and TerminationIn this se
tion we dis
uss the properties of the re�nement algorithm. We stateonly the main theorems, te
hni
al lemmas and proofs are given in [23℄ (due tospa
e limitations). First, we show that the set RL(�Sear
h(M;�)) of rea
hablelabellings 
omputed by the algorithm RefinementSear
h is a subset of therea
hable labellings of the system under analysis. Note that sometimes we let�Sear
h(M;�) denote just the stru
ture A 
omputed by the algorithm and notthe tuple (A;�new). 7



pro
 RefinementSear
h(M;')i = 1; �i = ;while true do(Ai; �i+1) = �Sear
h(M;�i)if ' is rea
hable in Ai then return 
ounter-example �if �i+1 = �i then return unrea
hable �i = i+ 1odend Fig. 3. Iterative re�nement algorithmTheorem 1. Let AP � �. Then RL(�Sear
h(M;�)) � RL(C(M)).Moreover, it holds that RL(�Sear
h(M;�)) is a superset of the rea
hablelabellings in the must abstra
tion (see Lemma 1 in [23℄), hen
e it is (potentially)a better approximation.We now show that, if the iterative algorithm terminates then the result is
orre
t and moreover, if the error state is unrea
hable, the output stru
ture isbisimilar to the system under analysis:Theorem 2. If RefinementSear
h(M;') terminates then:{ If it returns a 
ounter-example, then it is a real error.{ If it returns 'unrea
hable', then the error state is indeed unrea
hable in Mand moreover the 
omputed stru
ture is bisimilar to C(M).In general, the proposed algorithm might not terminate (be
ause of the halt-ing problem). However, the algorithm is guaranteed to eventually �nd all therea
hable labellings of the 
on
rete program, although it might not be able todete
t that (to de
ide termination). Moreover, if the (rea
hable part of the) sys-tem under analysis has a �nite bisimulation quotient, then the algorithm willeventually produ
e a �nite bisimilar stru
ture.Theorem 3. Let the �Sear
h use breadth-�rst sear
h order and let A1, A2 ...be a sequen
e of transition systems generated during iterative re�nement per-formed by RefinementSear
h(M;'). Then{ There exits i su
h that RL(Ai) = RL(C(M)).{ If the rea
hable part of the bisimulation quotient is �nite, then there exists isu
h that Ai � C(M).The basi
 idea of the proof is that any two states that are in di�erent bisimu-lation 
lasses (s 6� s0) will eventually be distinguished by the abstra
tion fun
tion(��i(s) 6= ��i(s0)). Moreover, ea
h bisimulation 
lass will eventually be visitedby RefinementSear
h and the (�nite set) of rea
hable labellings will emerge.8



Dis
ussion The sear
h order used in �Sear
h (depth-�rst or breadth-�rst)in
uen
es the size of the generated stru
ture, the newly 
omputed predi
ates,and even the number of iterations of the main algorithm. If there are two statess1 and s2 su
h that ��(s1) = ��(s2) but s1 6� s2 then, depending on whethers1 or s2 is visited �rst, di�erent parts of the transition system will be explored.Also note that the re�nement algorithm is non-monotone, i.e. a labellingwhi
h is rea
hable in one iteration may not be rea
hable in the next iteration.A similar problem o

urs in the 
ontext of must abstra
tions: the set of musttransitions is not generally monotoni
ally in
reasing when predi
ates are addedto re�ne an abstra
t system [12, 24℄. However, we should note that the algorithmis guaranteed to 
onverge to the 
orre
t answer.We should also note that the proposed iterative algorithm is not guaranteedto terminate even for a �nite state program. This situation is illustrated by thefollowing example (the property we are 
he
king is that p
 = 2 is unrea
hable).p
 = 0 7�! x := 0; y := 0; p
 := 1p
 = 1 ^ y � 0 7�! y := y + xp
 = 1 ^ y < 0 7�! p
 := 2Although the program is �nite state (and therefore the problem 
an be easilysolved with 
lassi
al expli
it model 
he
king), it is quite diÆ
ult to solve usingabstra
tion re�nement te
hniques. The iterative algorithm will not terminate onthis example: it will keep adding predi
ates y � 0; y+x � 0; y+2x � 0; : : :. Notethat, in a

ordan
e with Theorem 3, it will eventually produ
e a bisimilar stru
-ture. However, the algorithm will not be able to dete
t termination, and it willkeep re�ning inde�nitely. The reason is that the algorithm keeps adding pred-i
ates that re�ne the unrea
hable part of the system under analysis. Also notethat the same problem will o

ur with over-approximation based abstra
tionte
hniques that use re�nement based on weakest pre
ondition 
al
ulations [3,21℄. Those te
hniques will introdu
e the same predi
ates.To solve this problem, we propose to use the following heuristi
. If there isa transition for whi
h we 
annot prove that the abstra
tion is exa
t in severalsubsequent iterations of the algorithm, then we add predi
ates des
ribing the
on
rete state; i.e. in our example we would add predi
ates x = 0; y = 0. Theabstra
tion will eventually be
ome exa
t with respe
t to ea
h transition. Andsin
e the number of rea
hable transitions is �nite, the algorithm must terminate.Corollary 1. If C(M) is �nite state then the modi�ed algorithm terminates.6 ExtensionsLightweight Approa
h As mentioned, the under-approximation and re�ne-ment approa
h 
an be used in a lightweight but systemati
 manner, withoutusing a theorem prover for validity 
he
king. Spe
i�
ally, for ea
h explored tran-sition ti re�nement adds the new predi
ates from ��(s0)[ei(x)=x℄, regardless ofthe fa
t that the abstra
tion is exa
t with respe
t to transition ti. This approa
h9



may result in unne
essary re�nement. A similar re�nement pro
edure was usedin [21℄ for automated over-approximation predi
ate abstra
tion.We are also 
onsidering several heuristi
s for generating new abstra
tionpredi
ates. For example, it is 
ustomary to add the predi
ates that appear inthe guards and in the property to be 
he
ked. One 
ould also add predi
atesgenerated dynami
ally, using tools like Daikon [9℄, or predi
ates from knowninvariants of the system (generated using stati
 analysis te
hniques).In order to extend the appli
ability of the proposed te
hnique to the analysisof full-
edged programming languages, we are investigating abstra
tions thatre
ord information about the shape of the program heap, to be used in 
onjun
-tion with the abstra
tion predi
ates. Se
tion 7 shows an example use of su
habstra
tions for the analysis of Java programs.Transition Dependent Predi
ates The predi
ates that are generated afterthe validity 
he
k for one transition are used `globally' at the next iteration. Thismay 
ause unne
essary re�nement | the new predi
ates may distinguish stateswhi
h do not need to be distinguished. To avoid this, we 
ould use `transitiondependent' predi
ates. The idea is to asso
iate the abstra
tion predi
ates withthe program 
ounter 
orresponding to the transition that generated them. Newpredi
ates are then added only to the set of the respe
tive program 
ounter.However, with this approa
h, it may take longer before predi
ates are `propa-gated' to all the lo
ations where they are needed, i.e. more iterations are neededbefore an error is dete
ted or an exa
t abstra
tion is found. We need to furtherinvestigate these issues. Similar ideas are presented in [4, 16℄, in the 
ontext ofover-approximation based predi
ate abstra
tion.7 Appli
ationsWe have implemented our approa
h for the guarded 
ommand language. Ourimplementation is done in the language O
aml and it uses the Simplify theo-rem prover [8℄. The implementation uses several optimizations for 
he
king onlyne
essary queries. When updating �new for re�nement, we add only those 
on-jun
ts of ��(s0)[ei(x)=x℄ for whi
h we 
annot prove validity. Moreover, we 
a
hequeries to ensure that the theorem prover is not 
alled twi
e for the same query.We dis
uss the appli
ation of our implementation for two 
on
urrent pro-grams: property veri�
ation for the Bakery mutual ex
lusion proto
ol and errordete
tion in RAX (Remote Agent Experiment), a 
omponent extra
ted from anembedded spa
e
raft-
ontrol appli
ation.These preliminary experiments show the merits of our approa
h. Of 
ourse,mu
h more experimentation is ne
essary to really assess the pra
ti
al bene�tsof the proposed te
hnique and a lot more engineering is required to apply it toreal programming languages. We are 
urrently doing an implementation in theJava PathFinder (JPF) model 
he
king framework [26℄ for the analysis of Javaprograms. We brie
y dis
uss at the end of this se
tion the use of our approa
hfor test-
ase generation for Java 
ontainer implementations.10



(Pro
ess 1)p
1 = 0 7�! x := y; p
1 := 1p
1 = 1 7�! x := x+ 1; p
1 := 2p
1 = 2 ^ x � y 7�! p
1 := 3p
1 = 3 7�! p
1 := 0 (Pro
ess 2)p
2 = 0 7�! y := x; p
2 := 1p
2 = 1 7�! y := y + 1; p
2 := 2p
2 = 2 ^ y < x 7�! p
2 := 3p
2 = 3 7�! p
2 := 0Fig. 4. Bakery exampleIteration Con
rete states Abstra
t states New predi
ates1 17 11 x � y2 18 12 x+ 1 � y; x � y + 1; y � 03 26 19 x+ 2 � y; y � 1; x � 14 44 32 y � 1; x � 0; y � 25 48 36 -Fig. 5. Bakery example: intermediate results of the re�nement algorithmThe Bakery Mutual Ex
lusion Proto
ol We have analyzed several versionsof the Bakery mutual ex
lusion proto
ol (for two and more pro
esses). These ver-sions are in�nite state but they have a �nite bisimulation quotient. The guarded
ommand representation for a simpli�ed version of the proto
ol is given in Fig. 4.The mutual ex
lusion property is en
oded as \p
1 = 3 ^ p
2 = 3 is unrea
h-able". We used our tool to su

essfully prove that the property holds. Fig. 5 givesthe intermediate results of the analysis. For ea
h iteration, we report the numberof generated 
on
rete states, the number of stored abstra
t states and the newlygenerated predi
ates. Note that we never abstra
t the program 
ounter. Thereported results are for the breadth-�rst sear
h order. For the depth-�rst sear
horder the algorithm requires only 4 iterations (see the dis
ussion in Se
tion 5).The algorithm pro
eeds in similar way for the full version of the proto
ol.RAX The RAX example (illustrated in Fig. 6) is derived from the software usedwithin the NASA Deep Spa
e 1 Remote Agent experiment, whi
h deadlo
kedduring 
ight [27℄. We en
oded the deadlo
k 
he
k as \p
1 = 4 ^ p
2 = 5 ^w1 = 1 ^ w2 = 1 is unrea
hable". The error is found after one iteration, forbreadth-�rst sear
h order; the reported 
ounter-example has 8 steps. For depth-�rst sear
h order, the algorithm needs one more iteration to �nd the error, usingthe predi
ates that appear in the guards 
1 = e1 and 
2 = e2.Note that the state spa
e of the program is unbounded, as the program keepsin
rementing the 
ounters e1 and e2, when p
2 = 2 and p
1 = 6, respe
tively.We also ran our algorithm to see if it 
onverges to a �nite bisimulation quotient.Interestingly, the algorithm does not terminate for the RAX example, althoughit has a �nite bisimulation quotient. The results are shown in Fig. 7 (breadth-�rst sear
h order). However, if we assume that the 
ounters in the program arenon-negative, i.e. we introdu
e two new predi
ates, e1 � 0, e2 � 0, then thealgorithm terminates after three iterations.11



(Pro
ess 1)p
1 = 1 7�! 
1 := 0; p
1 := 2p
1 = 2 ^ 
1 = e1 7�! p
1 := 3p
1 = 3 7�! w1 := 1; p
1 := 4p
1 = 4 ^ w1 = 0 7�! p
1 := 5p
1 = 2 ^ 
1 6= e1 7�! p
1 := 5p
1 = 5 7�! 
1 := e1; p
1 := 6p
1 = 6 7�! e2 := e2 + 1; w2 := 0; p
1 := 2
(Pro
ess 2)p
2 = 1 7�! 
2 := 0; p
2 := 2p
2 = 2 7�! e1 := e1 + 1; w1 := 0; p
2 := 3p
2 = 3 ^ 
2 = e2 7�! p
2 := 4p
2 = 4 7�! w2 := 1; p
2 := 5p
2 = 5 ^ w2 = 0 7�! p
2 := 6p
2 = 3 ^ 
2 6= e2 7�! p
2 := 6p
2 = 6 7�! 
2 := e2; p
2 := 2Fig. 6. RAX exampleIteration Con
rete states Abstra
t states New predi
ates1 56 35 
1 = e1; 
2 = e22 68 44 e1 = 0; e2 = 03 100 65 e1 = �1; e2 = �14 100 65 e1 = �2; e2 = �25 100 65 ...Fig. 7. RAX example: intermediate results of the re�nement algorithmThe appli
ation of over-approximation based predi
ate abstra
tion to a Javaversion of RAX is des
ribed in detail in [27℄. In that work, four di�erent pred-i
ates were used to produ
e an abstra
t model that is bisimilar to the originalprogram. In 
ontrast, the work presented here allowed more aggressive abstra
-tion to re
over feasible 
ounter-examples.In general, we believe that the te
hnique presented here is 
omplementaryto over-approximation abstra
tion methods and it 
an be used in 
onjun
tionwith su
h methods, as an eÆ
ient way of dis
overing feasible 
ounter-examples.We view the integration of the two approa
hes as an interesting topi
 for futureresear
h. Our te
hnique explores transitions that are guaranteed to be feasiblein the state spa
e bounded by the abstra
tion predi
ates. In 
ontrast, the over-approximation based methods may also explore transitions that are spuriousand therefore 
ould require additional re�nement before reporting a real 
ounter-example. Hen
e, our te
hnique 
an potentially �nish in fewer iterations and it 
anuse fewer predi
ates (whi
h enable more state spa
e redu
tion), while retainingthe model 
he
ker's 
apability of �nding real bugs.Testing We have used our preliminary implementation in the JPFmodel 
he
kerto perform test 
ase generation to a
hieve 
ode 
overage for Java 
ontainer 
lasses(tree-map, linked-list, �bona

i-heap). Test 
ases are sequen
es of API 
alls, i.e.method 
alls that add and remove elements in a 
ontainer, to obtain for example,bran
h 
overage. The model 
he
ker analyzes all sequen
es of API 
alls up to aprede�ned sequen
e size and generates paths that are witnesses to testing 
ov-erage 
riteria en
oded as rea
hability properties. Abstra
tion is used to mat
hstates between API 
alls and to avoid the generation of redundant tests.We used an abstra
tion re
ording the (
on
rete) shape of the 
ontainersaugmented with di�erent predi
ate abstra
tions on the data �elds from ea
h12




ontainer element | two states are mat
hed if they represent 
ontainers thathave the same shape and valuation for the abstra
tion predi
ates. The behavioral
overage obtained in this fashion is highly dependent on the di�erent abstra
-tions that are used. Therefore we believe that the 
apability of generating andre�ning the abstra
tions automati
ally is 
ru
ial for a
hieving good 
overage.Although the work presented here is only a �rst step towards this goal (the JPFimplementation does not yet allow automated re�nement), we obtained betterbehavioral 
overage than with exhaustive model 
he
king. In fa
t, for some ofthe examples, exhaustive analysis runs out of memory even before generatingtests that 
over all the rea
hable bran
hes in the 
ode.8 Con
lusions and Future WorkWe presented a novel model 
he
king algorithm based on re�nement of under-approximations, whi
h e�e
tively preserves the defe
t dete
tion ability of model
he
king in the presen
e of powerful abstra
tions. The under-approximation isobtained by traversing the 
on
rete transition system and performing the statemat
hing on abstra
t states 
omputed by predi
ate abstra
tion. The re�nementis done by 
he
king exa
tness of abstra
tions with the use of a theorem prover.We illustrated the appli
ation of the algorithm for 
he
king safety properties of
on
urrent programs and for testing 
ontainer implementations. In the future,we plan to extend the algorithm to 
he
king liveness properties. We also plan todo an extensive evaluation of our approa
h on real systems.Referen
es1. T. Ball. A theory of predi
ate-
omplete test 
overage and generation. Te
hni
alReport MSR-TR-2004-28, Mi
rosoft Resear
h, 2004.2. T. Ball, A. Podelski, and S. Rajamani. Boolean and 
artesian abstra
tions formodel 
he
king C programs. In Pro
. Tools and Algorithms for the Constru
tionand Analysis of Systems (TACAS'01), volume 2031 of LNCS, 2001.3. S. Chaki, E. Clarke, A. Gro
e, S. Jha, and H. Veith. Modular veri�
ation ofsoftware 
omponents in C. ACM Trans. Computer Systems, 30(6):388{402, 2004.4. S. Chaki, E. Clarke, A. Gro
e, and O. Stri
hman. Predi
ate abstra
tion withminimum predi
ates. In Pro
. 12th CHARME, volume 2860 of LNCS, 2003.5. P. Cousot and R. Cousot. Abstra
t interpretation frameworks. Journal of Logi
and Computation, 4(2):511{547, August 1992.6. D. Dams and K. S. Namjoshi. The existen
e of �nite abstra
tions for bran
hingtime model 
he
king. In Pro
. 19th Symposium on Logi
 in Computer S
ien
e(LICS'04), 2004.7. L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstra
tions of games:Un
ertainty, but with pre
ision. In Pro
. 19th Symposium on Logi
 in ComputerS
ien
e (LICS'04), 2004.8. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended stati
 
he
king.Resear
h Report 159, Compaq Systems Resear
h Center, 1998.9. M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Qui
kly dete
tingrelevant program invariants. In Pro
. 22nd International Conferen
e on SoftwareEngineering (ICSE'00), 2000. 13



10. R. Gia
obazzi and E. Quintarelli. In
ompleteness, 
ounterexamples and re�ne-ments in abstra
t model 
he
king. In Pro
. 8th Stati
 Analysis Symposium(SAS'01), volume 2126 of LNCS, 2001.11. P. Godefroid. Software Model Che
king: the Verisoft Approa
h. Formal Methodsin Systems Design (to appear).12. P. Godefroid, M. Huth, and R. Jagadeesan. Abstra
tion-based model 
he
kingusing modal transition systems. In Pro
. CONCUR 2001 - Con
urren
y Theory,volume 2154 of LNCS, 2001.13. S. Graf and H. Saidi. Constru
tion of abstra
t state graphs with PVS. In Pro
.Computer Aided Veri�
ation (CAV'97), volume 1254 of LNCS, 1997.14. W. Grieskamp, Y. Gurevi
h, W. S
hulte, and M. Veanes. Generating �nite statema
hines from abstra
t state ma
hines. In Pro
. International Symposium onSoftware Testing and Analysis (ISSTA'04), July 2002.15. O. Grumberg, F. Lerda, O. Stri
hman, and M. Theobald. Proof-guidedunderapproximation-widening for multi-pro
ess systems. In Pro
. 32nd Sympo-sium on Prin
iples of Programming Languages (POPL'05), 2005.16. T. A. Henzinger, R. Jhala, R. Majumdar, and K. M
Millan. Abstra
tionsfrom proofs. In Pro
. 31st Symposium on Prin
iples of Programming Languages(POPL'04), 2004.17. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstra
tion. In Pro
.29th Symposium on Prin
iples of Programming Languages (POPL'02), 2002.18. G. J. Holzmann and R. Joshi. Model-driven software veri�
ation. In Pro
. 11thSPIN Workshop, volume 2989 of LNCS, Bar
elona, Spain, 2004.19. D. Lee and M. Yannakakis. Online minimization of transition systems. In Pro
.24th ACM Symposium on Theory of Computing, 1992.20. M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC:A pragmati
 approa
h to model 
he
king real 
ode. In Pro
. 5th Symposium onOperating Systems Design and Implementation (OSDI'02), 2002.21. K. S. Namjoshi and R. P. Kurshan. Synta
ti
 program transformations for auto-mati
 abstra
tion. In Pro
. Computer Aided Veri�
ation (CAV'00), volume 1855of LNCS, 2000.22. C. S. P�as�areanu, M. B. Dwyer, and W. Visser. Finding feasible abstra
t 
ounter-examples. STTT, 5(1):34{48, November 2003.23. C. S. P�as�areanu, R. Pel�anek, and W. Visser. Con
rete model 
he
king with abstra
tmat
hing and re�nement (extended version). RIACS Te
hni
al Report, 05.04, 2005.24. S. Shoham and O. Grumberg. Monotoni
 abstra
tion-re�nement for CTL. In Pro
.Tools and Algorithms for the Constru
tion and Analysis of Systems (TACAS'04),volume 2988 of LNCS, Bar
elona, Spain, 2004.25. A. Venet and G. Brat. Pre
ise and eÆ
ient stati
 array bound 
he
king for largeembedded C programs. In Pro
. Programming Language Design and Implementa-tion (PLDI'04), 2004.26. W. Visser, K. Havelund, G. Brat, S. J. Park, and F. Lerda. Model 
he
king pro-grams. Automated Software Engineering Journal, 10(2), April 2003.27. W. Visser, S. Park, and J. Penix. Applying predi
ate abstra
tion to model 
he
kobje
t-oriented programs. In 3rd ACM SIGSOFT Workshop on Formal Methodsin Software Pra
ti
e, 2000.28. T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for dete
ting redundantobje
t-oriented unit tests. In Pro
. 19th Automated Software Engineering, 2004.14


