
USING MODEL CHECKING TO DISCOVER AUTOMATION SURPRISES

Java class User:
- getExpectation()
- checkExpectation()

FAULTY
EXECUTION

start
incrMCPAlt
incrMCPAlt
pullAltKnob
fly
fly
incrMCPVS
fly

TRACE
TRANSLATOR

MACHINE INTERFACE

USERUSER TASK

start >
ncrMCPAlt^{1,10} >
pullAltKnob >
(pilotExp > fly)^{1,10} >
incrMCPVS^{1,10} >
(pilotExp > fly)^5;

DRIVER
GENERATOR

Java class
User Task

STUB
GENERATOR

GUI
STUBS

MACHINE
CODE

JPF
MODEL CHECKER

Java Models

INCONSISTENCY

Successful
capture region

Busted
capture region

Kill-the-capture anomaly

Explanation of Accomplishment
• POC: Guillaume Brat and Willem Visser
• Shown: The aim of this work is to develop an automated approach to identify mode confusion

problems (e.g., when a pilot thinks a plane is one mode when the plane is actually in another mode)
in automation used in modern aircraft and spacecraft. Specifically, we aim to develop a framework
that supports 1) automatic extraction of machine and interface models from code of automation, 2)
extraction of user and task models from manuals and training materials, 3) encoding of user tasks in
an intuitive notation, 4) automatic code generation from task specifications, and 5) analyzing the
obtained models for mode confusion problems.

• Accomplishment: We demonstrated our approach on the example of a Java web-based autopilot
tutorial used at NASA for pilot training. The main approach is to identify the four models of the
system: the machine, the interface, the user, and the user task. The user task is described, using
regular expressions, as a collection of sequences of actions performed on the display, and the
corresponding Java code is generated automatically. The user task plays the role of a driver that
synchronously executes the remaining models in the system. The JPF model checker is used to
explore all possible executions of the task and to check the consistency of the states across the
models. When an inconsistency is discovered, JPF records the (faulty) execution path. We also
automatically analyze these faulty execution paths to produce scenarios that illustrate inconsistencies
in terms of the actions that the user performs on the display.

• Future Plans: The focus of the current work is on the extraction of the machine, interface, user, and
the task models from given GUI applications. As an extension to the ongoing work, we see ourselves
working on 1) verification of several additional GUI applications used for simulation of cockpit and
shuttle automation, 2) improving the framework for processing GUI components and extracting
meaningful models from them, 3) developing a framework for interface design and code generation
for interfaces, and 4) construction of more elaborate user models.

USING MODEL CHECKING TO DISCOVER AUTOMATION SURPRISES

Kill-the-capture region:
if the pilot tries to capture
an altitude in this region,
the command is ignored

by the flight control system,
and the plane keeps going

past its desired altitude.

Capture region:
if the pilot tries to capture
an altitude in this region,
the command is accepted
by the flight control system,
and the plane will level off
at the desired altitude.

kill-the-capture anomaly

The pilot’s expectations
and task can be modeled
in a program, which can
drive the code of the flight
control system of a plane

JAVA PROGRAM

Void climb (int alt) {
….
}
Void move_rudder() {
…
…
}

JPF explores all possible executions of
this code, finds erroneous behaviors, and produces an error trace

The error trace is translated
into an anomalous scenario

JPF Model Checker

Explanation of Accomplishment
• POC: Guillaume Brat, Oksana Tkatchuk and Willem Visser
• Shown: The aim of this work is to develop an automated approach to identify mode

confusion problems in automation used in modern aircraft and spacecraft. These
problems arise when a pilot thinks a plane is one mode when the plane is actually in
another mode. For example, when a pilot tries to capture an altitude in the wrong region,
the plane will keep climbing (or descending) rather than leveling off. In our work, we
have developed a framework that supports 1) the automatic extraction of machine and
interface models from flight control code, 2) the creation of user models in Java, 3) the
encoding of user tasks in an intuitive notation that is automatically translated into Java
code, and 4) the analysis of the obtained models for mode confusion problems.

• Accomplishment: Previous work in this area required to model the machine (flight
control system), the user (pilot), its task, and the interface (cockpit display) in a formal
language. In our work, all can be done using the actual code that is flown. Hence, we
achieve a substantial gain in terms of fidelity of the analysis. We also simplify and
automate the task of verifying these interactive systems.

• Future Plans: The focus of the current work is on the extraction of the machine,
interface, user, and the task models from given GUI applications. As an extension to the
ongoing work, we see ourselves working on 1) verifying several additional GUI
applications used for simulation of cockpit and shuttle automation, 2) improving the
framework for processing GUI components and extracting meaningful models from
them, 3) developing a framework for interface design and code generation for interfaces,
and 4) constructing more elaborate user models.

	Explanation of Accomplishment
	Explanation of Accomplishment

