DRAFT - Code TI Software Life Cycle Model (working version 0.08A) - DRAFT

Introduction

1. Purpose

This document defines a common (generic) software life cycle model for projects within the Intelligent Systems Division to facilitate the implementation of effective project practices that will satisfy NASA and ARC procedural requirements for software engineering.

Applicability to Intelligent Systems Division: Intelligent systems research and development involves a broad range of software engineering activities to support systems prototyping, laboratory and field experimentation, and technology productization and deployment. The quality of both the research results and technology products deployed by the division are dependent on the quality and productivity of these software engineering activities. Therefore, it is important to have a clear understanding of these activities and their interrelations so that they can be planned, managed, and carried out in an effective, predictable fashion across the division.

Life cycle benefits: A life cycle model provides a description of the phases of an effort that moves from ideas to definition to building to usage to retirement. It provides a framework for defining and effectively communicating the lower level software development activities executed by projects. The life cycle model puts these procedures and practices into context and allows for their integration into a unified whole. Once a life cycle model and associated practices and procedures are defined, sustained improvement of the entire development process is possible, leading to improved performance and greater overall success in research and development efforts. A common life cycle model also provides a shared ontology that is a critical step toward establishing a division-wide software development community and becoming a “learning organization”.

2. Scope

The life cycle is applicable for class C, D and E software as defined by NPR 7150.2. Class A and B software should adhere to NPR 7150.2 requirements.

3. Relevant documents

This life cycle is the initial Code TI tailored version of APR 7120.1.

Software-based Technology Development Life Cycle Model

Purpose: To provide an overall context for software development within the Intelligent Systems Division by identifying the stages that software development projects go through as technology development moves from evaluating concepts and ideas to building and delivering an application.

Inputs/Entry Criteria:

1) A technology or product capability is identified that could be met with a software system.

2) Management approval to proceed with software development.

[image: image1.jpg]
Outputs: Demo/proof of concept software or application software that meets the identified needs.

Exit Criteria: Management authorization has expired.

Software Development Phases and Artifacts

Purpose: Identify the development phases and associated artifacts for Class C, D, and E software.

[image: image2.jpg]
[Mitch: Changed phase numbering in diagram above from 1.1, 1.2, etc. to just 1., 2., etc.]

Terms and Definitions

	Term
	Definition

	APR 7120.1
	Ames Procedural Requirements for “Ames Software Engineering Requirements”

	Class A software (Human Rated Software Systems)
	Applies to all space flight software subsystems (ground and flight) developed and/or operated by or for NASA to support human activity in space and that interact with NASA human space flight systems. Space flight system design and associated risks to humans are evaluated over the program's life cycle, including design, development, fabrication, processing, maintenance, launch, recovery, and final disposal.

	Class B software (Non-Human Space Rated Software Systems)
	Flight and ground software that must perform reliably in order to accomplish primary mission objectives.

	Class C software (Mission Support Software)
	Flight or ground software that is necessary for the science return from a single (non-critical) instrument or is used to analyze or process mission data or other software for which a defect could adversely impact attainment of some secondary mission objectives or cause operational problems for which potential work-arounds exist.

	Class D software (Analysis and Distribution Software).
	Non-space flight software. Software developed to perform science data collection, storage, and distribution; or perform engineering and hardware data analysis. A defect in Class D software may cause rework but has no direct impact on mission objectives or system safety.

	Class E software (Development Support Software).
	Non-space flight software. Software developed to explore a design concept; or support software or hardware development functions such as requirements management, design, test and integration, configuration management, documentation, or perform science analysis. A defect in Class E software may cause rework but has no direct impact on mission objectives or system safety.

	NPR 7150
	NASA Procedural Requirements for “NASA Software Engineering Requirements

Change Log

	Version
	Author
	Changes

	0.07C
	M. Ai-Chang
	· Purpose section re-written by John.

· Scope section re-written by Mitch.

· Modifications made by Mitch to the ‘Product SW Artifacts’ column to map to APR and NPR.

	0.08A
	M. Ai-Chang
	Content related to the two diagrams modified based on feedback from ADAPT project.

	0.08B
	J. Penix
	Purpose section update based on feedback from ADAPT project.

Outstanding Issues

	Version
	Author
	Issue

	0.08A
	M. Ai-Chang
	· Modifications made by Mitch to the ‘Product SW Artifacts’ column to map to APR and NPR. There are some artifacts required by APR and not NPR. Do we want to include those as required artifacts?

Intrinsyx Technologies
 Page 1 of 4 October 18, 2005

