	[image: image6.png]
	DRAFT
	##.##.SDP.##.v1

Date: 8/23/06
	

	[image: image5.png]
	DRAFT
	##.##.SDP.##.v1

Date: 8/23/06
	

Project Name (Acronym)

<Name of System> Software Development Plan

(Acronym)

Version N.N

<Preliminary/Draft/Final>
Document Custodian:

<Name, Title>

Prepared by:

<Name, Title>

Paper copies of this document may not be current and should not be relied on for official purposes. The current version is in the <project name> Project Library at< URL>

<date>

Ames Research Center

Moffett Field, California

94035
Signature Sheet
Approved by:

<name>

Date

<title>

<project name>
Approved by:

<name>

Date

<title>

<project name>
Approved by:

<name>

Date

<title>

<project name>
Submitted by:

<name>

Date

<title>

CHANGE LOG

	Date
	Sections Changed
	Reason For Change
	Revision

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Contents
Volume 1

11
Introduction

1.1
Identification
1
1.2
Referenced Documents
1
1.3
<system name> System Overview
2
1.4
<System Name> Software Description
2
1.5
Software Classification
4
2
Organization
4
2.1
<system name> Organization
4
2.1.1
<system name> Manager
4
2.1.2
<system name> System Engineer
5
2.1.3
<system name> Implementation Lead Engineer
5
2.1.4
<system name> Cognizant Engineers (CogE)
5
3
Work Breakdown Structure, Project Resources, and Schedule
6
3.1
Work Breakdown Structure
6
3.2
Project Resources
6
3.2.1
Cost Estimates and Budget
6
3.2.2
Staffing Profile
6
3.3
Schedule
6
4
Project Inputs from External Sources
7
4.1
System Software Requirements
7
4.2
Interface Definition
8
4.3
Third Party ARC Software
8
5
Assumptions, Constraints and Risks
8
5.1
Assumptions
8
5.2
Constraints
8
5.3
Risk Assessment
8
5.4
Software Development Process Overview
9
5.5
Software Taxonomy and Management Approaches
9
5.6
<system name> Element Approaches
13
5.6.1
Approach for Developed Software
13
5.6.2
Approach for Adapted Software
13
5.6.3
Approach for Reconfigured Subsystems
13
5.6.4
Approach for Established Subsystems
14
5.6.5
Commercial Off the Shelf Software
14
5.7
Phase Specific Activities
14
5.8
Initial Definition Phase
15
5.9
Increment Development Phases
17
5.10
Final Delivery Phase
18
5.11
Maintenance and Support Phase
19
5.12
Documentation
20
5.13
Deliverable Documents Policies and Procedures
20
5.14
<system name> System/Subsystem Level Document
21
5.15
Element and Program Set Level Documents
22
5.16
Non-Deliverable Documents
22
6
Reviews
23
6.1
General Requirements
23
6.2
<system name> System/Subsystem Level Review
23
6.3
Element/Program Set Level Reviews
23
7
Development Testing
24
8
Acceptance Testing
25
9
Quality Planning
25
9.1
Independent QA and IV&V
25
9.2
Controlled Records
25
10
Configuration Management
26
11
Development Standards
26
12
Metrics
27
13
Tools, Methods, and Environments
27
14
Procurements
28
15
Training
28
16
Delivery and Installation
28
17
Maintenance
28
18
Plan Updates
29
19
Variances with Software Development Process Description Requirements
29

Figures

2Figure 1. <system name> Functional Architecture

Figure 2. <system name> Subsystems
2
Figure 3. <system name> Organization
4
Figure 4. <system name> High Level Schedule
7
Figure 5. Required Documents
10
Figure 6. Required Reviews
11
Figure 7. Software Development Process
19
Figure 8. <system name> Tests
23

Tables

1Table 1. NASA and ARC Applicable Documents

Table 2. <project name> Project Documents
1
Table 3. Software Activities
13

Appendices

28Appendix A - <project name> <system name> Software Classification

Appendix B - <project name> <system name> Interface documents
36
Appendix C - Software Implementation Notes Template
38
Appendix D - Software Development Folder Template
41
Appendix E - Acronyms
44

Volume 1

1 Introduction

1.1 Identification

Describe the high-level purpose and function of this document, including major sub-sections, additional volumes (if necessary), and major appendices.

Sample text:

This Software Development Plan (SDP) describes the processes, procedures, and plan and schedule governing the software development effort for the <system name> of the <project name> Project. Volume 2 of this plan will contain Software Implementation Notes for each of the implementation Elements of the <system name> System (see Appendix C). These Implementation Notes will specify the processes and implementation artifacts to be used for each Element.

This SDP responds to the requirements of the “<project name> Software Management Plan” (SMP) <citation>. Compliance with this document ensures compliance with NASA, ARC, and ISO requirements for software development and management plans.

1.2 Referenced Documents

Provide list of all applicable Agency, Center and Project process and procedural requirements documents..

Sample text:

The following two tables identify ARC, and <project name> Project documentation applicable to the development of this Software Development Plan.

Table 1. NASA and ARC Applicable Documents

	Document/Revison

	Description
	Date

	NPR 7150.2
	NASA Software Engineering Requirements
	9/27/2004

	
	
	

	
	
	

Table 2. <project name> Project Documents

	Document/Revision

	Description
	Date

	
	<project name> Project Plan
	

	
	<project name> Systems Engineering Management Plan
	

	
	<project name> Risk Management Plan
	

	
	<project name> Configuration Management Plan
	

	
	<project name> Project Verification and Validation Plan
	

	
	<project name> Mission Plan
	

	
	<project name> Mission Assurance Plan
	

1.3 <system name> System Overview

Provide a high-level description of the overall system, including major functionalities and primary sub-elements.

Sample text:

The <system name> System <acronym> consists of <description> necessary for <description>. <description> are the primary elements of the system. The <system name> System <acronym> consists of <N> systems:

· <description>.

· <description>.

· <description>.

<insert graphic>

Figure 1. <system> Functional Architecture

1.4 <System Name> Software Description

Provide a high-level description of the software products included in the system. Describe how software supports specific phases of the mission. Describe subsets or sub-elements of software as required. Indicate any software products not covered by this SDP.

Sample text:

The <project name> software comprises all software necessary to perform <description>. <description>, is included in the <project name> software. Software tools specifically for <description> are not included in this software element. This element also includes all software necessary to <description>.

The <system name> is divided into subsystems, as shown in Figure 2.

<insert graphic>

Figure 2. <system name> Subsystems

· The <system name> supports <description> phases of the mission including <description>.

The <system name> subsystems (also called <system name> Elements) may deliver more than one software product (i.e., program set). A complete list of the program sets, expected for each subsystem and element, can be found in Appendix A.

1.5 Software Classification

Provide the software classification (A, B, C. D or E) for the software and/or individual software elements. Indicate authorization for software classifications.

Sample text:

Mission software is composed of Mission Critical (Class A), Mission Support (Class B), and Development Support (Class C) software, as defined in the <project name> Project Software Management Plan. <system name> program sets and their classifications are identified in Appendix A. These classifications are approved by the <project name> Manager and the Project Software System Engineer.

2 Organization
2.1 <system name> Organization

Describe the project management structure. Begin with a paragraph describing major management roles in descending hierarchical order. In succeeding paragraphs, provide detailed descriptions of the duties and responsibilities for each role.

Sample text:

The <system name> leadership comprises a <system name> Manager, <system name> System Engineer, <system name> Implementation Lead Engineer and a cadre of Cognizant Subsystem Engineers.

<insert graphic>

Figure 3. <system name> Organization

2.1.1 <system name> Manager

The <system name> Manager has overall responsibility for implementing and delivering <system name> hardware and software subsystems and implementation articles. This includes managing cost and schedule, technical quality, external interfaces, and representation to the <project name> Project and other ARC offices

The <system name> Manager reports to the <project name> <system name> System Manager.

2.1.2 <system name> System Engineer

The responsibilities include assisting the <system name> Manager in all <system name> programmatic and technical aspects. The <system name> System Engineer will lead development and documentation, architecture, design, implementation, interfaces and shall implement according to the Level 3 and 4 requirements.

The <system name> System Engineer reports to the <system name> Manager.

2.1.3 <system name> Implementation Lead Engineer

Specific duties include leading the development effort according to processes and procedures set forth in this document and ensuring the correct and timely design and implementation of the <project name> <system name> software. The <system name> Implementation Lead Engineer will work with the <system name> Manager and the <project name> Project Software Systems Engineer, keeping Project management informed of technical and programmatic <system name> software development issues.

The <system name> Implementation Lead Engineer reports to the <system name> Manager.

2.1.4 <system name> Cognizant Engineers (CogE)

Each <system name> CogE will manage their work area, both programmatically and technically, according to the procedures and processes set forth in this document. This includes ensuring the correct and timely design and implementation of his respective work area. The CogEs shall work with both the <system name> Manager and Implementation Lead Engineer in keeping project management informed of technical and programmatic issues with their work area.

3 Work Breakdown Structure, Project Resources, and Schedule

3.1 Work Breakdown Structure

Provide a single paragraph description of the project work breakdown structure. Indicate the location of all work agreements and other work-related documentation. Include a graphic representation if necessary.

Sample text:

The <system name> development effort is divided into (<N>) sub-elements. Work agreements, objectives, and products for each of the sub-elements can be found at: <N>

3.2 Project Resources

3.2.1 Cost Estimates and Budget

TBD

3.2.2 Staffing Profile

TBD

3.3 Schedule

A <system name> high-level schedule is provided in Figure 4. The MS detailed schedules can be found at:

<N>

[image: image1.png]
Figure 4. <system name> High Level Schedule

4 Project Inputs from External Sources

4.1 System Software Requirements

The <system name> System software requirements (Level 3-4), are divided into Mission Design (MD), <system name> System <acronym>, and the Ground Data System (<system name>). The <system name> System Engineering team will produce Level 4 requirements flowed down from, and/or derived from, Level 3. The requirements flow-down is tracked and maintained, using the DOORS requirement management tool. Each <system name> CogE shall provide inputs to, and concur with, requirements for the subsystem or element under his control.

Each <project name> Element, developing new software products for <project name>, shall produce a Level 5 requirements document. These requirements should be flowed down, and/or derived from, Level 4. Level 5 requirements should be traced back to Level 4. Once the requirement documents are approved, they will be baselined and placed in the Control Records part of the Documents Library. Changes to these documents will be under the <project name> <system name> Configuration Management. (See Section 13).

4.2 Interface Definition

Interfaces between <system name> elements and components external to the <system name> System shall be maintained by the <project name> Project Software System Engineer, outside the scope of this document. Interfaces between two or more <system name> elements (Software Interface Specifications) shall be prepared by the <system name> CogEs and approved by the <system name> Manager. Appendix B specifies Software Interface Specifications required by <system name> development.

4.3 Third Party ARC Software
A portion of <system name> software will be delivered by ARC entities external to the <project name> Project. These entities, and the software systems or subsystems they are to deliver are unique and will be managed on a case-by-case basis. Details on these differences will be documented via "Software Implementation Notes", to constitute Volume 2 of this document.

5 Assumptions, Constraints and Risks

5.1 Assumptions

Provide a description of additional software provided by parties external to the mission team.

Sample text:

The <project name> Project will use a set of ARC's core systems (<system name>) as well as use the <name> software package developed by <name>. In addition, new software will be developed specifically for <project name>.

5.2 Constraints

Provide a description of major constraints on the project and/or software development.

Sample text:

<project name> is highly schedule- and budget-constrained.

5.3 Risk Assessment

Provide a description of risk assessment strategies.

Sample text:

The <system name> Manager, with the assistance of the <system name> CogEs, shall assess <system name> software development programmatic and technical risks on a quarterly basis. Any risks identified shall be communicated to the Project Software System Engineer and the <system name> System Manager. These risks will be considered for assessment as part of the Project's Risk Management Process.

In addition, the <project name> Software Quality Assurance team will make an independent assessment of risks and report assessment findings to the <project name> Project Manager.

5.4 Software Development Process Overview

Provide an overview of the planned software development process.

Sample text:

The <system name> system’s software development process follows an incremental model. In this model, both system software requirements and software architecture are developed in their entirety during an initial definition phase. The definition phase is followed by several overlapping incremental development phases, each of which concludes in a scheduled <system name> build. Activities in this phase are at the <system name> Subsystem/Element and program set levels. Each incremental development phase will consist of analysis and design, implementation, and unit test of program sets. These program sets will then be integrated and tested into the corresponding subsystems/elements. After subsystems integration and test, a <system name> delivery will take place.

When the last incremental development phase has been completed, the <system name> will enter the final delivery phase. This phase consists of the final <system name> System test, end-user training, and delivery to operations.

The software will be built from the bottom up - earlier builds containing the multi-mission capabilities - while later builds will add <project name>-specific capabilities.

5.5 Software Taxonomy and Management Approaches

Provide a description of software taxonomy and management approach for different types of software to be included in the mission. Description of management approach will include required documentation and reviews.

Sample text:

The <system name> comprises a variety of program sets, ranging from “off the shelf” items, which will be used by <system name> with minor modification, to software custom-built for <project name>. As the development effort and risk varies by program set, the management approach must also vary. To bin the elements for assignment of an appropriate management approach, <system name> created the following software “type” definitions:

· Developed - new program sets designed and implemented for <project name> <system name> . (In general, these program sets start with some inherited software or algorithms.)

· Adapted - modified for <project name> <system name> specifics. Some new or modified code is required for new missions. (In general, these program sets start with existing software products, used by other missions.

· Reconfigured - non-software changes for <project name> <system name> (e.g., table changes).

· Established - standard program sets, no changes for <project name> <system name> .

The following matrixes specify design artifacts required for each type of software, indexed by criticality (Class A, B, C). Figure 5 specifies the required documents; and Figure 8 specifies the required reviews. Note that software developed by entities external to the Center will be subject to equivalent management requirements of their corresponding class and/or type of ARC-developed software. The <system name> Manger and the <project name> Project Software System Engineer will approve the processes and development artifacts for all externally-provide software.

[image: image2.wmf]
Figure 5. Required Documents

[image: image3.wmf]
Figure 6. Required Reviews

Software that will be used in a higher classification for <project name> <system name> than when it was developed should be promoted to this higher class. Tasks involved in promoting software may include:
· conduct an inheritance review;

· reverse engineer a software design document, if none exists;

· conduct a design review;

· reverse engineer SIS(s) document(s), if none exists;

· review the SISs with all the involved parties;

· produce a test plan and procedures;

· conduct the tests;

· write and review test outcome report; and

· conduct a delivery review.

Each <system name> Element is required to provide "Development Implementation Notes" (Appendix C). These notes contain implementation details specific to the Element. They also provide a way of documenting those requirements that will be waived or replaced with an equivalent for this Element. The "Development Implementation Notes" constitute Volume 2 of this document.

The “Development Implementation Notes” will be approved by the <system name> Manager, the <project name> Project Software System Engineer, the <project name> Mission System Manager, and the <project name> Mission Assurance Manager.

5.6 <system name> Element Approaches

Provide a description of the management approach for all sub-elements and externally-developed software elements.

Sample text:

5.6.1 Approach for Developed Software

All elements requiring significant new or modified software development for <system name> shall follow the incremental model, as specified in Phase Specific Activities, below.

5.6.2 Approach for Adapted Software

Subsystems in this type are typically known as “Multi-mission Software”, although new or modified source code is required for new missions, including <project name>. Where existing organizations, external to <project name>, have ongoing implementation efforts with established software processes, these processes may be used for the <project name> customization efforts. Existing processes will be reviewed by the <system name> Manager, and the negotiated process and deliverables will be documented in the “Software Implementation Notes.”

The delivering organization personnel will participate in integrating their subsystems into the <project name> <system name> and in developing the <project name> <system name> System Test Plan and test procedures. After delivery to <project name> <system name> CM, and integration, all adapted subsystem software will be verified through the <project name> <system name> system integration test process.

5.6.3 Approach for Reconfigured Subsystems

Reconfigured Subsystems are also known as “Multi-mission Software”, though some <project name> <system name> reconfiguration is required. No new source code development for <project name> <system name> will be performed. Non-development changes (e.g., tables, environment variables, scripts) shall be subject to detailed technical review, with <project name> participation, and will be placed under <project name> <system name> configuration management.

Personnel from the delivering organization will participate in integrating and testing their subsystems. For this purpose, a Subsystem Test Plan will be produced. After delivery to <project name> <system name> CM and integration, all reconfigured subsystem software will be verified through the <system name> system integration and test process.

5.6.4 Approach for Established Subsystems

Established Subsystems are developed and maintained by organizations external to the <project name> Project and used by the <project name> <system name> as a service. No modification for <system name> will be performed.

Personnel from the delivering organization will participate in integrating and testing their subsystems. For this purpose, a Subsystem Test Plan will be produced. After delivery to <project name> <system name> CM and integration, all reconfigured subsystem software will be verified through the <system name> system integration and test process.

5.6.5 Commercial Off the Shelf Software

When a Commercial-Off-The-Shelf (COTS) product is widely used at the Center (e.g., Microsoft Word, Sun Visual Workshop, etc.), and its capabilities and shortfalls are well known and accepted, the CogE may accept the product without further verification (after checking for known bugs and patches). When a COTS product is not widely used at the Center, the CogE shall verify and validate the product through test, demonstration, prototyping, or other means. The results of this validation shall be documented and reported to the <project name> <system name> Implementation Lead.

5.7 Phase Specific Activities

Provide a tabular description of individual activities planned per specific phase of the mission. Succeeding paragraphs should describe the objective of each individual phase of the project and a brief explanation of each activity planned during that phase.

Sample text:

Table 3 shows the activities that will take place in each phase of the software development process. A list of activities traces <project name> compliance with the list of activities enumerated in the <project name> Project Software Management Plan. Note that reviews will take place in each phase. See Section 9 for more detailed discussion of reviews.

Table 3. Software Activities

	Activity/Phase
	Initial Definition Phase
	Increment Development Phase
	Final Delivery Phase
	Maintenance and Support Phase

	Task Initiation Activities
	X
	X
	X
	X

	Task Planning Activities
	X
	X
	
	

	Task Monitoring and Controlling Activities
	X
	X
	X
	X

	Concept Exploration Activities
	X
	X
	
	

	System Allocation Activities
	X
	X
	
	

	Legacy Software Activities
	X
	X
	
	

	Requirements Activities
	X
	
	
	

	Design Activities
	X
	X
	
	

	Implementation Activities
	
	X
	X
	

	Installation Activities
	
	X
	X
	X

	Operation and Support Activities
	
	
	X
	X

	Maintenance Activities
	
	X
	X
	X

	Retirement Activities
	
	
	
	X

	Evaluation Activities
	X
	X
	X
	X

	Software Configuration Management Activities
	
	X
	X
	X

	Documentation Development Activities
	X
	X
	X
	X

	Training Activities
	
	X
	X
	

	Intellectual Property Protection
	X
	X
	
	X

5.8 Initial Definition Phase

The objective of this phase is to produce, review, and approve overall development plans, system software requirements, architecture, and preliminary design. The following activities will take place:

Task Initiation - Process definition, cost and schedule estimates, resource allocation, and metric selection.

Task Planning - Evaluations and plans for configuration management, installation, documentation, training, task management, and integration.

Task Monitoring and Controlling - Management risks, resources, controlled records, and collecting and analyzing metrics.

Concept Exploration - Identifying ideas, needs, formulation of potential approaches, and feasibility studies.

System Allocation - Analyzing functions, developing architecture, and decomposition of requirements.

Legacy Software - Evaluating legacy software sources, definition of re-use methodology.

Requirements - Elaborating functional requirements, develop software requirements, and defining interface requirements.

Design - Architectural design, preliminary design, and interface definition.

Evaluation - Conducting reviews (see Section 9), audits, traceability matrixes, and developing test procedures and test data.

Documentation Development - Producing, distributing, and archiving documentation. Documentation to be produced is detailed in Section 8.

Intellectual Property Protection Activities - Determine what software being developed represent inventions or innovations of value to ARC, NASA, or Industry. Identify candidate items for New Technology Reports. Educate the developers on their responsibilities under the New Technologies Process and their opportunities to benefit from the commercialization of technologies that they develop. Enter into non-disclosure agreements with outside organizations to protect ARC’s intellectual property and to protect those organizations’ property as it is being used by ARC. Plan to protect key technologies from being transferred to foreign nationals as required by the International Trade in Armaments Regulations (ITAR.)

5.9 Increment Development Phases

After the initial definition phase, a series of incremental development phases will implement and deliver <system name> capabilities. The following activities will take place in each incremental development phase:

Task Initiation - Cost and schedule review, and resource allocation.

Task Planning - At the beginning of each phase, the appropriate CogE will review the elements’ status and the plan for the phase. With the <system name> System Manager’s and <system name> Implementation Lead’s concurrence, plans for the phase will be updated and captured in an Increment Definition Agreement.

Task Monitoring and Controlling - Managing risks, resources, controlled records, and collecting and analyzing metrics.

Concept Exploration - Identifying ideas, needs, formulation of potential approaches, and feasibility studies.

System Allocation - Analyzing functions, and reviewing architecture and requirements.

Legacy Software - Evaluating re-use methodology, importing and integrating legacy software.

Design - Final architectural design and detail design.

Implementation– Creating executable code, performing configuration control, producing operating documentation and performing integration. The appropriate CogEs and <system name> SE shall have the responsibility of integrating multiple elements. Any defects identified during integration shall be documented.

Installation - Code deliveries to <project name> <system name> Configuration Management, distribution and installation into testing and Operational environments.

Maintenance - Identifying and correcting defects on previous increment; implementing improvements, and tracking and solving problems.

Evaluation - Conducting reviews (see Section 9), audits, and traceability matrixes; developing unit test procedures and test data; and executing unit test and report test results. When the unit test is complete, the element will conduct a subsystem delivery review prior to integration.

Software Configuration Management - Identifying configuration items, and performing configuration control and status reporting activities.

Documentation Development - Producing, distributing, and archiving documentation. Documentation to be produced is detailed in Section 8.

Training - Developing training materials; and validating and implementing a training program.

Intellectual Property Protection Activities - File New Technology Reports as inventions and innovations are completed and before their disclosure.

5.10 Final Delivery Phase

After the last incremental delivery is completed, final <system name> level tests and <project name> Mission System tests will take place. The following activities will occur in this phase:

Task Initiation - Reviewing cost and schedule and resource allocation.

Task Monitoring and Controlling - Managing risks, resources, and controlled records, and collecting and analyzing metrics.

Implementation – Performing system integration activities.

Installation - Distributing and installing into the operations environment.

Operation and Support - Operating the system, technical assistance and consulting, and tracking of Incident, Surprise and Anomaly (ISA) reports.

Maintenance - Identifying and correcting defects; implementing improvements, and tracking problems.

Evaluation - Conducting reviews, audits, and traceability matrices. Refining test plans and procedures; creating test drivers and data; and conducting <system name> level tests.

Software Configuration Management - Identifying configuration items, performing configuration control, and reporting status activities.

Documentation Development - Producing, distributing, and archiving documentation.

Training - Developing training materials; validating and implementing a training program.

5.11 Maintenance and Support Phase

The following activities will take place in this phase:

Task Initiation - Process definition, cost and schedule estimates, resource allocation, and metric selection.

Task Monitoring and Controlling - Managing risks, resources, and controlled records, and collecting and analyzing metrics.

Installation - Distributing and installing, in the operations environment.

Operation and Support - Operating the system, providing technical assistance and consulting, and tracking Incident, Surprise and Anomaly (ISA) reports.

Maintenance - Identifying and correcting defects; implementing improvements, and tracking problems.

Retirement - Archiving software artifacts, and removing all ITAR-protected or sensitive software and data from the systems, when released.

Evaluation - Conducting reviews (see Section 9), audits, and traceability matrixes, developing test procedures and test data.

Software Configuration Management - Identifying configuration items, performing configuration control, and reporting status activities.

Documentation Development - Producing, distributing, and archiving documentation.

Intellectual Property Protection - Submitting New Technology Reports, and supporting copyright and patent applications as necessary.

[image: image4.wmf]
Figure 7. Software Development Process

5.12 Documentation

Provide a description of all required documentation and document repository processes and procedures.

Sample text:

Documentation for the <system name> System falls into two categories: deliverable and non-deliverable. The following sections define procedures for review, approval, release, change control, and configuration management of the different categories.

5.13 Deliverable Documents Policies and Procedures

All <project name> deliverable documents are controlled documents and will be listed in the Project Master Controlled Documents List (MCDL). Additionally all deliverable documents will be:

· assigned permanent project-level and institutional-level designators,.

· marked with revision designators,

· marked "Draft" prior to review and approval,

· reviewed and approved by the appropriate reviewers, and

· stored in the <project name> Project Library (<URL)>)including all draft and final versions of deliverable documents.

5.14 <system name> System/Subsystem Level Document

<system name> Functional Requirements Document – The FRD defines and describes the system level requirements (Level 4) as well as requirements on each subsystem within the <system name> . The FRD has a section for the <system name> system as well as a section for each subsystem. It will include:

· Interface Requirements

· Functional Requirements

· Performance Requirements

· Quality Requirements (reliability, maintainability, availability, security, safety)

· Delivery, Installation, and Environmental Requirements

An appendix, containing a traceability matrix, will demonstrate a two-way allocation of requirements to, and from, higher-level documents.

<system name> Design Document – This document will function as the System’s Functional Design Document (FDD) and Integrated Software Functional Diagram (ISFD). It defines and describes the <system name> architectural design. Each subsystem will explain the design of that specific subsystem.

<system name> Software Interface Specifications – The <system name> shall maintain Software Interface Specifications (SIS) between <system name> elements and external elements.

<system name> Integration and Verification Plan and Procedures – The integration and verification plan will include test requirements and detailed procedures, as well as the facilities description necessary for test performance. An appendix will provide a matrix demonstrating the traceability of requirements to the tests in this document.

<system name> Subsystem Software Test plan and Procedures - This test plan will be prepared for each subsystem.

<system name> Training Plans and Procedures - This document will be appended to the <project name> Test and Training Plans and Procedures.

Each System level document will be reviewed and approved by the <project name> <system name> System Manager and the <project name> Project Software System Engineer. After approval, each System level document will be archived in the <project name> Library on <location>. All changes to approved documents will require approval by the <project name> Project Software System Engineer and the <project name> <system name> System Manager.

Each Subsystem level document will be reviewed and approved by the <project name> <system name> System Manager, the <project name> Project Software System Engineer, and the <system name> Manager. After approval, each Subsystem level document will be archived in the <project name> Library in <location>. All changes to approved documents will require approval by the <project name> Project Software System Engineer, the <project name> <system name> System Manager, and the <system name> Manager.

5.15 Element and Program Set Level Documents

Software Requirements Document (Level 5) – A document will be produced for the following <system name> Elements (which were classified as software "type" = developed):

Software Design Document – Includes the Integrated Software Functional Diagram for the element or program set.

Increment Definition Agreement -- Documents the increment in terms of requirements to implement. There shall be an agreement for each increment delivery of the software.

User’s Guide – Documents the element user interface.

Software Test Plans and Procedures Document – Provides test and procedures for the <system name> Element.

Release Description Document - Provides details of the software delivery.

5.16 Non-Deliverable Documents

Documents described in this subsection are not delivered outside of the CogE’s domain and are not subject to change control.

Software Development Folder (SDF) – Produced for each program set, or at a finer level of granularity as determined by the CogE. The requirements for SDF shall be described in the "Software Implementation Notes" for the Element. An outline for a SDF can be found in Appendix C.

6 Reviews

Provide a description of all reviews required by the project.

Sample text:

6.1 General Requirements

Requirements for reviews are written in the “<project name> Project Review Plan” (<project name> XXX-XX-XXX).

6.2 <system name> System/Subsystem Level Review

Mission System PDR - The primary objectives of this review are:

· Assure science objectives have been properly translated into definite and unambiguous requirements.

· Assure that the impacts of these requirements on the designs of the spacecraft, and launch vehicle are well understood so that trade-offs between requirements and constraints can be made properly.

· Assure that preliminary designs for all systems involved in the mission are compatible and obtain commitments from supporting agencies that they meet their functional requirements.

Mission System CDR - The primary objectives of this review are:

· Evaluate the operations concept for Science, Engineering, Navigation, etc.

· Evaluate uplink, downlink, ground data system development & integration.

· <project name> Verification & Validation.

· Flight Team Training & Certification

6.3 Element/Program Set Level Reviews

Inheritance Review - The primary objectives of this review are to:

· Evaluate compatibility of inherited product or process with requirements

· Assess risk and need for modification or testing

Software Requirements Review - The objective of this review are to:

· Evaluate the completeness, consistency and achievability of the Element or Program Set requirements.

· Evaluate the completeness of the flow-down of the <system name> System requirements to the Element or Program Set.

Peer Reviews - Reviews at the Element or Program Set level are defined as "Peer Reviews" in <project name> Project Review Plan. The following design artifacts are candidates to be peer reviewed:

· Software Design Document

· Increment Definition Agreements

· User's Guide

· Software Test Plans and Procedures Document

Delivery Review - In addition, each Element or Program Set will conduct a Delivery Review as specified in Figure 8.

7 Development Testing

Provide a description of all development testing required by the project.

Sample text:

Software is verified throughout all phases of the development cycle. Formal testing consists of Element / Program Set Tests, Subsystem Tests, and <system name> Integration and Verification Tests. Figure 8 describes the test process.

<insert image>

Figure 8. <system name> Tests

Element / Program Set tests are performed in each of the increment development phases. CogEs shall verify that the implementation of the software satisfies the design, including all allocated requirements and designed interfaces. Testing shall ensure that all code instructions are executed at least once. “Software Test Subsystem Plans” are used for this level of testing.

Subsystem software integration and test shall be performed based on the "Subsystem Software Test Plans and Procedures" document created by each subsystem. The subsystem CogE shall verify that software implemented the allocated requirements.

<system name> integration and verification tests shall be performed based on the "<system name> Integration and Verification Plan and Procedures", developed during the initial definition phase. These tests will verify the software in successfully implemented the allocated requirements. Subsystems will be integrated, a few at a time. At each step, the added functionality and interfaces will be verified. As the <project name> <system name> software versions are incremented, system tests will also be conducted. It is important that planned upgrades of individual <system name> subsystem software do not affect the ability of the remaining <system name> systems to continue to support the system tests.

After the <system name> integration and verification, the <system name> is delivered to the <project name> Verification and Validation for system tests. System tests shall be performed by following the <project name> Test and Training Plan (XXX_XX_XXX) End-to-End Information System (EEIS) Tests include the following Operations Compatibility tests, performed at the different test beds: thread testing, Sequence Verification Testing (SeqVT) and Operations Readiness Testing (ORTs).

8 Acceptance Testing

Provide a description of all acceptance testing required by the project.

Sample text:

Acceptance tests occur at different levels. When an element is delivered to the <project name> <system name> Configuration Management (<project name> <system name> CM) and a delivery review takes place, reports on subsystem test are required. Once the element is delivered, software integration and tests take place, as discussed in Section 10. Defects or problems with delivery will be treated as part of the Configuration Management, as discussed in Section 13.

The <system name> will be delivered for system tests to the <system name> System Verification and Validation.

9 Quality Planning

Provide a description of all quality planning processes required by the project.

Sample text:

9.1 Independent QA and IV&V

Independent quality assurance and independent verification and validation will be conducted, as specified in the <project name> Project Software Management Plan (<project name> <plan section citation>).
9.2 Controlled Records
The <system name> Subsystem CogE shall maintain, at minimum, the following controlled records, if not captured elsewhere:

· Approved changes in requirements

· Review (or verification) results, including an attendance list, a summary of requests for action, and the responses thereto

· Anomaly reports (problem/failure reports)

· Verification and validation of test tools, to evaluate whether the tools are capable of verifying the acceptability of the software product under development

· Test results, with clear indications whether the product has passed or failed

· Change requests/orders generated during development and, after launch.
In addition, critical design decisions, re-planning rationales, and other watershed events shall be captured as controlled records. This may be in memo or e-mail format but shall be as controlled records.

10 Configuration Management

Provide a description of all quality planning processes required by the project.

Sample text:

The <project name> Configuration Management Plan (<project name> <plan section citation>) provides high-level guidelines for software configuration management. In addition each CogE shall manage their own software development and documents before delivering them to the <project name> <system name> Configuration Management (These procedures will be documented in Appendix C).

Once a software module is under control of <project name> <system name> , the <system name> multi-mission (MM) process and procedures shall be followed. These include

· Scheduling a review meeting with the <system name> MM change board

· Delivery review

· Delivery of Release Description Document (RDD)

· Delivery of Software Test Results

· Delivery of Software Users Guide

· Software set delivery to the <system name> MM CVS repository

The <system name> MM process will maintain the accepted software under change control and will be responsible for installing the accepted software onto the Operational <system name> systems.

11 Development Standards

Provide a description of software development standards that will be adopted and followed by the project.

Sample text:

Each CogE shall specify the development standards followed by its element. These standards shall be documented in the "Software Implementation Notes". Standards include but are not limited to:

· Coding standards, including naming conventions, code format, in-line documentation and change history.

· Design rules including restrictions on language features and constructs, and complexity of code aggregates.

The following standards are recommended as guidelines for the CogEs:

JAVA Standard

http://www.ambysoft.com/javaCodingStandards.html
Fortran Standard

(<citation>)

C Standard

(<citation>)

C++ Standard

(<citation>)

12 Metrics

Provide a description of software development metrics that will be collected and reported by the project.

Sample text:

The <project name> Manager shall collect and report the following metrics:

· Budget plan vs. actual plan

· Workforce plan vs. actual schedule

· Number of milestones planned vs. number of milestones achieved

· Open and closed number of anomalies/defects by category (priority)

· Number of requirement changes versus total number of requirements

· For each increment delivery the number of requirements implemented shall be reported. This will allow us to measure the capabilities implemented in the software.

Each CogE is responsible for providing data for the metrics to the <system name> Systems Engineer on a monthly basis. Each CogE is also responsible for identifying metrics needed for his or her respective tasks and reporting on metrics. The <system name> Systems Engineer shall report the cumulative data to the <project name> Manager.
13 Tools, Methods, and Environments

Provide a description of all software tools and development environments that will utilized by the project.

Sample text:

The <system name> System Engineer shall maintain a matrix specifying the identifier and version number of all software tools and development environments. Typical examples include compilers, operating systems, integrated development environments, debuggers, profilers, etc. This matrix will be kept in <location> as a controlled document.

14 Procurements

Provide a description of the project procurement policy.

Sample text:

All procurements shall be made in accordance with <project name> Project acquisition policy. Acquisition policy for the Project is specified in the <project name> Project Implementation Plan <citation>).

15 Training

Provide a description of the project training procedures.

Sample text:

Training for mission operations personnel is discussed in the <project name> Test and Training Plan (<project name> <citation>). Each CogE is responsible for identifying technical training required for each engineer working within his or her element.

16 Delivery and Installation

Provide a description the project procurement policy.

Sample text:

All Software shall be delivered to the <system name> Multi-mission Configuration Management Process (See section 13). The <system name> MM CM process will be responsible for installing the accepted software onto the <system name> operational systems.

17 Maintenance

Provide a description the software maintenance procedures.

Sample text:

18 Plan Updates

Provide a description the plan update procedures.

Sample text:

Once this plan is approved by the different signatories it shall be placed under control in the <project name> <location> Library. This plan shall be reviewed by the <project name> <system name> System Engineer and the <project name> Implementation Lead Engineer at least once every fiscal quarter, as development proceeds. Any variance with this plan or practice shall be updated and this document shall be re-released.

Updates to Appendices shall be approved by the <project name> <system name> System Engineer, the <project name> Project Software System Engineer and the <project name> <system name> Implementation Lead Engineer as well as the CogE of the subsystem that originated the change.

19 Variances with Software Development Process Description Requirements

Provide a description of procedures for dealing with variances in the software development processes.

Sample text:
This Software Development Plan will be reviewed by the <project name> System Engineer. That SE will document variances with Software Development Process Description requirements in a separate report.

Appendix A - <project name> <system name> Software Classification

Appendix B - <project name> <system name> Interface documents

	Subsystem
	Interface

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

Appendix C - Software Implementation Notes Template

[image: image5.png]
<project name>

<system name> System
Software Implementation Notes

[Element/Program Set]: [Name]

[image: image6.png]
Prepared by:

[Name], <project name> <system name> [Element] CogE
Approved by:

Name, <project name> <system name> Manager

Name, <project name> Project Software Systems Engineer

Name, <project name> <system name> System Manager

1
Background

1.1
Name

[Element/Program Set] [Name]

1.2
<project name> Cognizant Individual

[Element/Program Set] [Name]

1.3
Components

[Names of all software program sets/modules, a. summary of their requirements, including its reason for being, its responsibilities, how it’s used, whether it’s a task or a library, etc. The audience for this section is manager or reviewer who wants to understand the role of this program set in the system]

1.4
Heritage Summary

[Which missions used this program set/software module, and what were the major differences between implementations. May point to Inheritance Review material]

1.5
Existing Documentation

[Pointer to all the existing documents related to the element/program set/module]

2
Implementation Plan

[Describe the implementation approach. State the Documents and Reviews involved in the implementation. Provide waivers for any of deviations from Software Management Plan. How many increment deliveries are planned? What is the functionality of the increments? Include pointer to Increment Definition Agreements].

3
Schedule

[Element (Level 5) schedule for the development of the program sets/modules including deliverables (e.g., program set versions, documents) and reviews]. Additional schedules for the program sets and modules are encouraged but not mandatory.

4
Configuration Management

[A description of the Configuration Management procedures that are used to provide configuration management during the development of the program set/module. Additionally enumerate software tools (compilers, lexical analyzers, DLLs, etc.) and environments by vendor and version number. State the location of original installation media. State backup and disaster recovery plan.]

5
Development Standards

[A list of the different coding standards associated with the element including naming conventions, code format, in-line documentation and change history. Additionally, design rules, including restrictions on language features and constructs, and complexity of code aggregates may be specified.]

6
Development Folders

[Specify development folder requirements. A sample Development Folder can be found in AppendixD]

Appendix D - Software Development Folder Template

<project name>

<system name> System
Software Development Folder

[Program Set/Module]: [Name]

[image: image7.png]
[Program Set/Module] Cognizant Engineer: [Name]
1
Background

1.1
Name

[Program Set/Module name]

1.2
<project name> Cognizant Individual

[Name]

1.3
Heritage Summary

Which missions used this program set/software module, and what were the major differences between implementations.]

1.4
Components

[Names and Summary of program set/software module, including its reason for being, its responsibilities, how it’s used, whether it’s a task or a library, etc. The audience for this section is manager or reviewer who wants to understand the role of this program set in the system.]

2
Schedule

[Schedules for the program sets and modules are encouraged but not mandatory.]
3
Interfaces

3.1
Context

[A diagram of all the interfaces that this module supports or is dependent upon. Show all software and hardware interfaces, if any.]

[Figure]

Figure #. [Program set/module name] context diagram

3.2
Interfaces

[Reference all SISs (and their version) relevant to this program set. SISs are between <system name> Elements. Document here interfaces between the modules of a program set or between the program sets of an Element.]
4
Problem Statement

4.1
Narrative

[A detailed, textual description of all the things this module must do and the behaviors that it must exhibit. Include rationale for behaviors. All the requirements listed in the next section should be addressed.]

4.2
Requirements Satisfied

4.2.1
System

[A list of requirements (or pointer) that a systems engineer might levy, did levy, or should have levied on this module.]

4.2.2
Detailed

[A list of requirements (or pointer) that a software architect/designer might levy, did levy, or should have levied on this module.]

5
Concept of Operations

[A narrative describing how this program set solves the problems it was intended to. This section is a high level user manual for this module.]

6
Design

[A detailed description of the design of this program set. Include object diagrams, algorithms, state charts, source listings – anything to get the point across. Do not defer to the source code. The audience for this section is a developer who must understand the module well enough to fix bugs, implement design changes, etc.]

7
Unit Test Software Design

[Describes the design of unit test software, and provides instructions for running unit tests.]

8
Unit Test Results

[Document the results of running the unit tests.]

9
Reviews

[Pointer to Review records for the Element/Program Set]

10
Deliveries

[Pointer to records of Deliveries of the Element/Program Set to <project name> <system name> CM]

Appendix E - Acronyms
AI

Action Item

ARC

Ames Research Center

CDR

Critical Design Review

CDRL
Contract Data Requirements List

CM

Configuration Management

CoMITS
Configuration Management Tracking System

COTR
Contracting Officer’s Technical Representative

COTS

Commercial Off-The-Shelf

CR

Confirmation Review

CTM

Contract Technical Manager

DAP

Data Analysis Program

DMC

Data Management Center

DPM

Deputy Project Manager

DRD

Data Requirements Description

FOP

Follow-up Observation Program

FPC

Flight Planning Center

FRR

Flight Readiness Review

FSE

Flight Systems Engineering

ICD

Interface Control Document

IP

Intellectual Property

ISA

Incident Surprise Anomaly

ITAR

International Traffic in Arms Regulations

JPL

Jet Propulsion Laboratory

MMO

Mission Management Office

MMR

Monthly Management Review

MOA

Memorandum of Agreement

NASA

National Aeronautics and Space Administration

PDR

Preliminary Design Review

PIP

Project Implementation Plan

PSE

Project System Engineer

QA

Quality Assurance

RFA

Request for Action

SDP

Software Development Plan

SDPol

Software Development Policy

SMP

Software Management Plan

SOC

Science Operations Center

SO

Science Office

SOW

Statement of Work

SRD

Science Requirements Document

SRR

System Requirements Review

SQA

Software Quality Assurance

TRR

Test Readiness Review

WBS

Work Breakdown Structure

PAGE
vi

_1103287874.xls
Reviews

		MER GDS Software Reviews Matrix - Element/Program Sets

				Documents (acronym list below)		a		IR		SRR		PR		DR

		SW Class		SW Type

		Class A		Developed						X		X		X

		Class A		Adapted				X		X		X		X

		Class A		Reconfigured				X						X

		Class A		Established				X						X

		Class B		Developed						X		X		X

		Class B		Adapted				X		X		X		X

		Class B		Reconfigured				X						X

		Class B		Established				X						X

		Class C		Developed										X

		Class C		Adapted										X

		Class C		Reconfigured										X

		Class C		Established										X

		Acronyms

		IR		Inheritance Review

		SRR		Software Requirements Review

		PR		Peer Review

		DR		Delivery Review

				Tailored to the development

Documents

		

		<Project Name> Software Documentation Matrix - Element/Program Sets

				Documents (acronym list below)				SRD		SIS		UG/SOM		SDD		STP		RDD/STA

		SW Class		SW Type

		Class A		Developed				X		X		X		X		X		X

		Class A		Adapted				X		X		X		X		X		X

		Class A		Reconfigured				X		X		X				X		X

		Class A		Established						X		X						X

		Class B		Developed				X		X		X		X		X		X

		Class B		Adapted						X		X				X		X

		Class B		Reconfigured						X		X				X		X

		Class B		Established						X		X						X

		Class C		Developed				X		X		X		X		X		X

		Class C		Adapted						X		X				X		X

		Class C		Reconfigured						X		X				X		X

		Class C		Established						X		X						X

		Acronyms

		SRD		Software Requirements Document

		SIS		Software Interface Specification (Requirements; Design; As Built)

		UG / SOM		User's Guide / Software Operators' Manual (if applicable)

		SDD		Software Design Document

		STP		Software Test Plan (Requirements and Detail Procedures)

		RDD/STA		Release Description Document/Software Transfer Agreement

				Tailored to the development

Definitions

		

		Definitions

		Developed:		Software designed and implemented for the MER GDS

		Adaptated:		Software to be modified for MER GDS

		Reconfigured:		Software with non-code changes for the MER GDS

		Established:		Standard software, no changes for MER GDS

_1103288042.xls
Reviews

		<Project Name> Software Reviews Matrix - Element/Program Sets

				Documents (acronym list below)		a		IR		SRR		PR		DR

		SW Class		SW Type

		Class A		Developed						X		X		X

		Class A		Adapted				X		X		X		X

		Class A		Reconfigured				X						X

		Class A		Established				X						X

		Class B		Developed						X		X		X

		Class B		Adapted				X		X		X		X

		Class B		Reconfigured				X						X

		Class B		Established				X						X

		Class C		Developed										X

		Class C		Adapted										X

		Class C		Reconfigured										X

		Class C		Established										X

		Acronyms

		IR		Inheritance Review

		SRR		Software Requirements Review

		PR		Peer Review

		DR		Delivery Review

				Tailored to the development

Documents

		

		MER GDS Software Documentation Matrix - Element/Program Sets

				Documents (acronym list below)		a		SRD		SIS		UG/SOM		SDD		STP		RDD/STA

		SW Class		SW Type

		Class A		Developed				X		X		X		X		X		X

		Class A		Adapted				X		X		X		X		X		X

		Class A		Reconfigured				X		X		X				X		X

		Class A		Established						X		X						X

		Class B		Developed				X		X		X		X		X		X

		Class B		Adapted						X		X				X		X

		Class B		Reconfigured						X		X				X		X

		Class B		Established						X		X						X

		Class C		Developed				X		X		X		X		X		X

		Class C		Adapted						X		X				X		X

		Class C		Reconfigured						X		X				X		X

		Class C		Established						X		X						X

		Acronyms

		SRD		Software Requirements Document

		SIS		Software Interface Specification (Requirements; Design; As Built)

		UG / SOM		User's Guide / Software Operators' Manual (if applicable)

		SDD		Software Design Document

		STP		Software Test Plan (Requirements and Detail Procedures)

		RDD/STA		Release Description Document/Software Transfer Agreement

				Tailored to the development

Definitions

		

		Definitions

		Developed:		Software designed and implemented for the MER GDS

		Adaptated:		Software to be modified for MER GDS

		Reconfigured:		Software with non-code changes for the MER GDS

		Established:		Standard software, no changes for MER GDS

