
Avoiding “We can’t change that!”:
Software Architecture & Usability

Bonnie E. John
Human-Computer Interaction Institute

bej@cs.cmu.edu

Len Bass
Software Engineering Institute

ljb@sei.cmu.edu

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh PA 15123

CHI 2003 Tutorial

CHI2003 i John & Bass

Table of Contents

Agenda ii
Biographical Sketches of the Instructors iii
Objectives of the Course iv
Abstract v
Tutorial Slides

Introduction 1
The causes of “We can’t change that!” 5
Known solutions for certain types of usability changes 16
Usability & Software Architecture Approach (U&SA) 33

Canceling commands 42
Reusing information 52
Supporting international use 68
Observing system state 78

U&SA in analysis and design 93
Appendix I: General Usability Scenarios AI-1
Appendix II: Usability Benefits Hierarchy AII-1
Appendix III: Software Engineering Tactics Hierarchy AIII-1
Appendix IV: Benefits/Tactics Matrix AIV-1
References ref-1

CHI 2003 ii John & Bass

Agenda

Time Topic

6:00-6:15 Instructor introduction, audience background & tutorial
objectives

6:15-6:35 The causes of “We can’t change that!”

6:35-6:55 Known solutions for certain types of usability changes

6:55-7:15 Usability & Software Architecture Approach (U&SA)

7:15-7:45 BREAK

7:45-8:10 Example: Canceling commands

8:10-8:25 Example: Reusing information

8:25-8:40 Example: Supporting international use

8:40-8:55 Example: Observing system state

8:55-9:20 U&SA in analysis and design

9:20-9:30 Wrap-up

CHI 2003 iii John & Bass

Instructor Biographies

Bonnie John is an engineer (B.Engr., The Cooper Union, 1977; M. Engr.
Stanford, 1978) and cognitive psychologist (M.S. Carnegie Mellon, 1984;
Ph. D. Carnegie Mellon, 1988) who has worked both in industry (Bell
Laboratories, 1977-1983) and academe (Carnegie Mellon University, 1988-
present). She is an Associate Professor in the Human-Computer Interaction
Institute and the Director of the Masters Program in HCI. Her research
includes human performance modeling, usability evaluation methods, and
the relationship between usability and software architecture. She consults for
many industrial and government organizations.

Len Bass is an expert in software architecture & architecture design
methods. Author of six books including two textbooks on software
architecture & UI development, Len consults on large-scale software
projects in his role as Senior MTS on the Architecture Trade-off Analysis
Initiative at the Software Engineering Institute. His research area is the
achievement of various software quality attributes through software
architecture and he is the developer of software architecture analysis and
design methods. Len is also the past chair of the International Federation of
Information Processing Working Group on User Interface Engineering.

CHI 2003 iv John & Bass

Objectives of the course

Participants in this tutorial will

• Understand basic principles of software architecture for interactive
systems and its relationship to the usability of that system

• Be able to evaluate whether common usability scenarios will arise in
the systems they are developing and what implications these usability
scenarios have for software architecture design

• Understand patterns of software architecture that facilitate usability,
and recognize architectural decisions that preclude usability of the
end-product, so that they can effectively bring usability considerations
into early architectural design.

CHI 2003 v John & Bass

Abstract
The usability analyses or user test data are in; the development team is

poised to respond. The software had been carefully modularized so that
modifications to the UI would be fast and easy. When the usability problems
are presented, someone around the table exclaims, “Oh, no, we can’t change
THAT!” The requested modification or feature reaches too far in to the
architecture of the system to allow economically viable and timely changes
to be made. Even when the functionality is right, even when the UI is
separated from that functionality, architectural decisions made early in
development have precluded the implementation of a usable system. The
members of the design team are frustrated and disappointed that despite their
best efforts, despite following current best practice, they must ship a product
that is far less useable than they know it could be.

This scenario need not be played out if usability concerns are considered
during the earliest design decisions of a system, that is, during the
architectural design, just as concerns for performance, availability, security,
modifiability, and other quality attributes are considered. The relationships
between these attributes and architectural decisions are relatively well
understood and taught routinely in software architecture courses. However,
the prevailing wisdom in the last 20 years has been that usability had no
architectural role except through modifiability; design the UI to be easily
modified and usability will be realized through iterative design, analysis and
testing. Separation of the user interface has been quite effective, and is
commonly used in practice, but it has problems. First, there are many aspects
of usability that require architectural support other than separation, and,
second, the later changes are made to the system, the more expensive they
are to achieve. Forcing usability to be achieved through modification means
that time and budget pressures are likely to cut off iterations on the user
interface and result in a system that is not as usable as possible.

Recent developments made jointly by this tutorial’s instructors at the
Software Engineering and Human-Computer Interaction Institutes at
Carnegie Mellon University have established the relationship between
architectural decisions and usability. This tutorial will teach this relationship.
It will give usability specialists and software developers alike an explicit link
between their two realms of expertise, allowing both to participate more
effectively in the early design decisions of an interactive system. It will give
the entire design team the tools to consider usability from the very earliest
stages of design, and allow informed architectural decisions that do no
preclude usability.

CHI 2003 1 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 1

Avoiding “We can’t change
THAT!”

Software Architecture and Usability

Sponsored by the U.S. Department of Defense and NASA

Bonnie E John

Len Bass

Bonnie E. John
Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh PA 15213
1-412-268-7182
bej@cs.cmu.edu

Len Bass
Software Engineering Institute
Carnegie Mellon University
Pittsburgh PA 15213
1-412-268-6763
ljb@sei.cmu.edu

We appreciate the assistance from
Rob J. Adams
Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh PA 15213
1-412-268-1612
rjadams@cs.cmu.edu

CHI 2003 2 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 2

The scene
The usability analyses or user test data are in; the
development team is poised to respond. The software had
been carefully modularized so that modifications to the UI
would be fast and easy. When the usability problems are
presented, a developer around the table exclaims, “Oh, no,
we can’t change THAT!”

CHI 2003 3 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 3

The scene
The usability analyses or user test data are in; the
development team is poised to respond. The software had
been carefully modularized so that modifications to the UI
would be fast and easy. When the usability problems are
presented, a developer around the table exclaims, “Oh, no,
we can’t change THAT!”

The requested modification, feature, functionality, reaches
too far in to the architecture of the system to allow
economically viable and timely changes to be made.

• Even when the functionality is right,
• Even when the UI is separated from that functionality,
• Architectural decisions made early in development can

preclude the implementation of a usable system.

CHI 2003 4 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 4

Outline of tutorial

Analyze the causes of the “We can’t change THAT” problem

Discuss known solutions for certain classes of usability changes
and why they don’t work for everything.

Usability & Software Architecture (U&SA)
• General usability scenarios with architectural impact
• Architectural patterns and tactics to support usability

Applying U&SA to architecture evaluation and design

CHI 2003 5 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 5

Outline of tutorial

Analyze the causes of the “We can’t change THAT” problem

Discuss known solutions for certain classes of usability changes
and why they don’t work for everything.

Usability & Software Architecture (U&SA)
• General usability scenarios with architectural impact
• Architectural patterns and tactics to support usability

Applying U&SA to architecture evaluation and design

CHI 2003 6 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 6

What leads to “We can’t change
THAT!”?
Comes from the interaction between usability design
principles and software development principles.
• For usability, iterative design is key.
• For software engineering, architecture is key.

CHI 2003 7 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 7

What leads to “We can’t change THAT!”?

Iterative development is key

There are three types of needs revealed during iterative
development:
• needs requiring changes to the functionality (we’re not

going to talk about this)
• needs requiring changes to the “screen-deep” user

interface
• needs requiring changes that go beyond the “screen-

deep” user interface

CHI 2003 8 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 8

What leads to “We can’t change THAT!”?

Software architecture is key

We’ll discuss software architecture throughout the tutorial.

For now, the key point is that software architecture makes
some things easy to change and other things difficult to
change.

CHI 2003 9 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 9

What leads to “We can’t change THAT!”?

So what is the cause?

Changes that the Software
Architecture makes easy.

Needs discovered during
iterative development.

This is the realm of
“We can’t change THAT!”

CHI 2003 10 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 10

Desirable usability changes may
not get made
Usability is important to software engineers in particular business
contexts

• Usability has been identified as an important business goal in many
architectural evaluations conducted by the SEI

But…
• Usability is only one of many quality attributes of a software system:

- Correctness, reliability, efficiency, security, maintainability,
testability, flexibility, portability, reusability, interoperability
(Encyclopedia of Software Engineering)

• Software designers must trade off these quality attributes

Cost, schedule, and priority may preclude desirable usability changes.

McCall, J. (2001) Quality Factors. In Encyclopedia of Software Engineering (2nd

edition) John Marciniak, ed., John Wiley, New York, pp 1083-1093

CHI 2003 11 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 11

What is usability?

As many definitions as there are authors!

What’s important depends on context of use

Some commonly-seen aspects
• efficiency of use
• time to learn to use efficiently
• support for exploration and problem-solving
• user satisfaction (e.g., trust, pleasure, acceptance by

discretionary users)

Our concern is which of these are influenced by
architectural decisions

CHI 2003 12 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 12

What is software architecture?

Software architecture is the high-level structural design
• Enumeration of all major modules
• Enumeration of responsibilities for each module
• Interaction among modules specified

- Control and data flow
- Sequencing information
- Protocols of interaction
- Allocation to hardware

Software architecture is the first system artifact that can be
analyzed with respect to the quality attributes important to
the particular system

CHI 2003 13 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 13

Software engineers have
analysis techniques for many
attributes
Performance models exist for real time and database-
centered systems (Smith & Williams, 2001)

Reliability models exist for highly-available systems (Laprie,
1991)

Dozens of design patterns exist for the achievement of
modifiability (Gamma et. al; Buschmann et. al.)

Smith, C. & Williams, L., (2001) Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Reading, Ma.:Addison Wesley Longman.

Laprie, J.-C. (1992) Dependability: Basic Concepts and Terminology. Springer-Verlag:
Vienna.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., (1995) Design Patterns, Elements of
Reusable Object-Oriented Software, Reading, Ma: Addison Wesley Longman.

Buschmann, F., Meuneir, R, Rohnert, H., Sommerlad, P. and Stal, M., (1996) Pattern-
Oriented Software Architecture, A System of Patterns, Chichester, Eng: John Wiley
and Sons.

CHI 2003 14 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 14

What are the problems for
usability?
No commonly-used way to evaluate software architecture for
usability

Need to explicitly link usability concerns with software architecture
solutions

Need to be proactive at architectural design phase
to achieve usability

CHI 2003 15 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 15

Is this your experience?

As a UI professional, does anyone talk with you about
software architecture decisions?

Are usability considerations often absent from architectural
design meetings in your organization?

Does software architecture often get in the way of a usable
design?

Does the “We can’t change THAT!” argument arise
because of earlier, difficult to change, architectural
decisions?

CHI 2003 16 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 16

Outline of tutorial

Analyze the causes of the “We can’t change THAT” problem

Discuss known solutions for supporting changes in the screen-
deep user interface and why they don’t work for deeper changes.

Usability & Software Architecture (U&SA)
• General usability scenarios with architectural impact
• Architectural patterns and tactics to support usability

Applying U&SA to architecture evaluation and design

CHI 2003 17 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 17

How does software architecture
make some changes easy?
Difficulty of changes is related to the number of modules that
need to be changed.

The recognized need to make changes to the screen-deep user
interface suggests separating screen-deep concerns from other
concerns. Tactics to accomplish this include:
• Hiding of information
• Use of a data intermediary
• Use of a function intermediary

Examples of architectural patterns:
• Seeheim
• Model-View-Controller (MVC)
• Presentation-Abstraction-Control (PAC)
• Java 2 Enterprise Edition Model-View-Controller (J2EE MVC)

CHI 2003 18 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 18

Seeheim

Developed at the first UI software tools workshop which took
place in Seeheim, Germany in 1983.

Three layer model

Presentation - input/output manager
Dialog - mediator between Presentation & Application
Application - application functionality

UI toolkits map to the Presentation layer, e.g., Swing

CHI 2003 19 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 19

Seeheim

Dialog
Output
device

Input device

Key: Data flow
Module

Presentation

Application

CHI 2003 20 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 20

Aside: Software architectural
patterns
Seeheim is a “software architectural pattern”.

Provides some indication of assignment of responsibilities to
modules, e.g., Seeheim shows the separation of some user
interface responsibilities from application functionality

Unspecified:
• Allocation to processes
• Synchronous/asynchronous communication
• Decomposition of modules
• Class structure
• Other responsibilities of modules
• Exceptions

CHI 2003 21 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 21

Aside2: Architectural patterns vs.
software architecture

Architectural patterns provide very limited information
• Independent of application
• Much left unspecified
• Sufficient to give overall guidance for design approach

Software architecture of a particular system
• Enumeration of all major modules
• Each module has enumeration of responsibilities
• Interaction among modules specified

- Control and data flow
- Sequencing information
- Protocols of interaction
- Allocation to hardware

CHI 2003 22 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 22

Model-View-Controller

Designed to support modification of user interface

Dates from early 1980s - Smalltalk

Model - application functionality
View - output manager
Controller - input manager

Differences from Seeheim:
• MVC is object-oriented, Seeheim is layered
• MVC separates input and output, Seeheim combines

them

CHI 2003 23 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 23

Model-View-Controller

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

Command
Processor

Command
Processor

View
Output
device

Input device

Controller

CHI 2003 24 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 24

Presentation-Abstraction-Control

Developed in late 1980’s by group at University of Grenoble
led by Joelle Coutaz

Object-oriented

Presentation - input/output manager
Abstraction - application functionality
Control - mediator between Presentation & Abstraction

Differences from MVC
• Input and output are merged
• Control became a mediator

PAC can be thought of as an object-oriented Seeheim

CHI 2003 25 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 25

Presentation-Abstraction-Control

Command
Processor

Command
Processor

Presentation

Command
Processor

Command
Processor

Control
Output
device

Input device

Command
Processor

Command
Processor

Abstraction

CHI 2003 26 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 26

J2EE Model-View-Controller

Evolved from the Smalltalk MVC to better fit the web environment.
Portion of Sun’s description of the Java 2 Enterprise Edition

Object-oriented

Model - Application state and functionality
View - Renders models, sends user gestures to

Controller
Controller - Transforms interactions with the View into

actions to be performed by the model, selects
View

Differences from PAC
• Separates management of the input from the output
• View updates itself directly from the model

The Model is independent of both the View and the Controller. In the J2EE framework,
the Model is usually implemented using EJBs and a database (RDBMS).
In the J2EE framework, the Controller is typically implemented with Java Servlets.
The View is implemented using JSPs and HTML plus the client (e.g., the user’s web
browser).

CHI 2003 27 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 27

J2EE Model-View-Controller

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Output
device

Input device

Command
Processor

Command
Processor

Controller

The View is intended to run on the client computer, the Controller is intended to run on
the server computer, consequentially input is passed through the View to the Controller.
The arrow from the Controller to the View represents the fact that the Controller
determines the active View.

CHI 2003 28 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 28

J2EE Model-View-Controller

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller

All subsequent examples will be based on this architecture.

CHI 2003 29 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 29

Patterns in use

Once you’ve decided on a pattern, you can acquire
frameworks and toolkits that support building and changing
the screen-deep portions of the pattern.

e.g., Apache’s Struts framework & Sun’s Swing toolkit
support J2EE/MVC

Microsoft’s DocViews provides separation of Model from
View/Controller

KDE & GNOME are built on top of X-Windows which
follows Seeheim.

CHI 2003 30 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 30

What do these patterns have in
common?
All of the patterns

• hide the screen-deep user interface from the remainder of the
application.

• use an intermediary as a means of buffering changes in the user
interface from the remainder of the application.

They localize screen-deep changes to
<Presentation, View/Controller, or Presentation/Controller>.

Information hiding and use of intermediaries are examples of
architectural tactics - basic software engineering design principles.

We’ll use J2EE/MVC as an example for the remainder of this tutorial, but
the points are valid for the other patterns since they’re all based on
separating the screen-deep user interface from the remainder of the
application.

A full list of the tactics used in this tutorial is provided in Appendix III.

CHI 2003 31 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 31

How does J2EE/MVC support
iterative design?
Change color of text
• Modify only View

- View contains all display logic; changes to text only
require modifying the display

Change order of dialogs
• Modify only Controller

- Controller defines the presentation flow; changes to
dialog order only require modifying the Controller logic

CHI 2003 32 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 32

What happens when usability changes
reach deeper than the screen?

E.g., Add the ability to cancel commands
• Requires modification of all three modules

- View – provide the ability to cancel (button or
keyboard shortcut) and provide feedback

- Controller – listen for the cancel command
- Model – terminate activities and recover state prior to

the initiation of the command

Involves all modules

If requirement for cancel function is discovered after
architecture design, then will require extensive modification
to the design and may not get done because of cost and
schedule.

CHI 2003 33 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 33

Outline of tutorial

Analyze the causes of the “We can’t change THAT” problem

Discuss known solutions for supporting changes in the screen-
deep user interface and why they don’t work for deeper changes.

Usability & Software Architecture (U&SA)
• General usability scenarios with architectural impact
• Architectural patterns and tactics to support usability

Applying U&SA to architecture evaluation and design

CHI 2003 34 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 34

U&SA’s Strategy to solve the “We
can’t change THAT!” Problem

Achieve better usability of systems through making more
informed early software design decisions
• determine usability requirements that are impacted by

software architecture
• operationalize relationship between usability

requirements and software architecture
• incorporate the knowledge of these relationships in

software engineering design and evaluation methods

Make relationship between usability specialist and
software engineers proactive, not reactive

CHI 2003 35 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 35

U&SA’s Strategy – 2

Identify those aspects of usability that are “architecturally
sensitive” and embody them in small scenarios

Provide checklist of important software responsibilities,
software tactics, and possible architecture patterns to
satisfy these scenarios

Integrate architecturally sensitive aspects of usability into
software architecture evaluation methods (e.g., ATAMSM)

Use architecture patterns within software architecture
generation methods (e.g., ADD)

Short descriptions of the Attribute Tradeoff Analysis MethodSM (ATAMSM) and
Attribute-Driven Design (ADD) can be found in Bass, L.; Clements, P. & Kazman, R.
(2003). Software Architecture in Practice, 2nd edition. Reading, MA: Addison Wesley
Longman.

CHI 2003 36 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 36

What does architecturally-
sensitive mean?
A scenario is architecturally-sensitive if it is difficult to support by
patterns that only separate the user interface from the application.

Solution may:
• Require that multiple modules interact in particular ways
• Require that related information and actions be placed in a

single module and therefore can be easily changed

Consider the previously mentioned examples in J2EE/MVC:
• Changing color of font modifies only View

- NOT architecturally-sensitive
• Changing color of font modifies only Controller

- NOT architecturally-sensitive
• Adding a cancel command modifies all modules

- IS architecturally-sensitive

CHI 2003 37 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 37

Architecturally-sensitive usability
scenarios
Focussed on both end users and developers

Each usability scenario is a short description of an
interaction with a system.

Initially focused on single user at a desktop, but have also
proven useful in co-located collaborative environments.

Currently 27 scenarios (see Appendix I), e.g.,
• cancellation
• information reuse (not having to enter same information

multiple times)
• observing system state

CHI 2003 38 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 38

Elements of an architecturally-
sensitive usability scenario
package

General usability scenario

Usability benefits to the user

Checklist of responsibilities to allocate at architecture
design time

Example architectural pattern based on J2EE/MVC
• Software tactics to implement the pattern

CHI 2003 39 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 39

Usability benefits hierarchy
Increases individual user effectiveness
• Expedites routine performance

- Accelerates error-free portion of routine performance
- Reduces the impact of routine user errors (slips)

• Improves non-routine performance
- Supports problem-solving
- Facilitates learning

• Reduces the impact of user errors caused by lack of
knowledge (mistakes)
- Prevents mistakes
- Accommodates mistakes

Reduces the impact of system errors
• Prevents system errors
• Tolerates system errors

Increases user confidence and comfort

CHI 2003 40 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 40

Localize modifications
• Hide information
• Separate data from commands
• Separate data from the view of

that data
• Separate authoring from execution

Maintain multiple copies
• Data
• Commands

Use an intermediary
• Data
• Function

Software architecture tactics
hierarchy

Recording

Preemptive scheduling
policy

Support system
initiative
• Task model
• User model
• System model

CHI 2003 41 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 41

Examples of using general
scenario packages
Demonstrate how to use scenario packages
• Canceling commands
• Reusing information
• Supporting international use
• Observing system state

CHI 2003 42 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 42

Canceling commands:
Scenario
A user invokes an operation, then no longer wants the
operation to be performed. The user now wants to stop the
operation rather than wait for it to complete. It does not
matter why the user launched the operation. The mouse
could have slipped. The user could have mistaken one
command for another. The user could have decided to
invoke another operation. For these reasons (and many
more), systems should allow users to cancel operations.

CHI 2003 43 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 43

Canceling commands:

Benefits to the user

Increases individual effectiveness
• Expedites routine performance

- Reduces impact of slips
• Improves non-routine performance

- Supports problem-solving
• Reduces the impact of user errors caused by lack of

knowledge (mistakes)
- Accommodates mistakes

Reduces the impact of system errors
• Tolerates system errors

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips
Cancellation reduces the impact of slips by allowing users to revoke accidental
commands.

Increases individual effectiveness
Improves non-routine performance

Supports problem-solving
Cancellation facilitates problem-solving by allowing users to apply commands and
explore without fear, because they can always abort their actions.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge
(mistakes)

Accommodates mistakes
Cancellation accommodates user mistakes by allowing users to abort commands they
invoke through lack of knowledge.

Reduces the impact of system errors
Tolerates system errors

Cancellation helps users tolerate system error by allowing users to abort commands that
aren’t working properly (for example, a user cancels a download because the network is
jammed).

CHI 2003 44 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 44

Canceling commands:

Responsibilities to be allocated

1. Listen for a cancellation request (ALWAYS)
2. Terminate cancelled activities
3. Return system to state prior to cancelled command

invocation
4. Provide appropriate feedback to the user

CHI 2003 45 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 45

Canceling commands:

Sample architectural pattern

Collaborators

Active Modules

Cancellation
Manager

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller Cancellation
Listener

CHI 2003 46 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 46

Canceling commands:

Responsibilities of new module

Cancellation Listener (which is a Controller)
1. ALWAYS be listening for a cancellation request
1. Inform Cancellation Manager

Cancellation Manager (which is a Model)
2. Terminates active thread
3. Release resources
3. Return system to state prior to cancelled command

invocation
4. Give the user a report on the progress of the

termination
2. Inform any Collaborators (other Models) of termination

Responsibilities to be allocated:
1. Listen for a cancellation request (ALWAYS)
2. Terminate cancelled activities
3. Return system to state prior to cancelled command invocation
4. Provide appropriate feedback to the user

CHI 2003 47 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 47

Canceling commands:

New responsibilities of old
modules - 1

View
1. Provide means for user to request cancellation
1. Inform user of receipt of request
4. Inform user of the status of the cancellation request.

Responsibilities to be allocated:
1. Listen for a cancellation request (ALWAYS)
2. Terminate cancelled activities
3. Return system to state prior to cancelled command invocation
4. Provide appropriate feedback to the user

CHI 2003 48 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 48

Canceling commands:

New responsibilities of old
modules - 2

Active Modules (which are Models)
3. Cooperate with the Cancellation Manager to provide

resource and collaboration information
3. Have mechanism for preserving system state prior to

invocation

Collaborators (which are Models)
2. Be receptive to information about the termination of active

modules
2&3 At best, recursively act as an Active Module itself

(responsibilities above)

Responsibilities to be allocated:
1. Listen for a cancellation request (ALWAYS)
2. Terminate cancelled activities
3. Return system to state prior to cancelled command invocation
4. Provide appropriate feedback to the user

CHI 2003 49 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 49

Canceling commands:

Software tactics

Preemptive Scheduling policy

Support system initiative
• System model

Recording

Preemptive Scheduling
To adequately implement cancellation, the Cancellation Listener and Cancellation
Controller must occupy independent threads.

Support system initiative
System model

After a command has been cancelled, the system must consult an explicit model of itself
in order to predict state restoration time and to report progress.

Recording
The cancellation module must record its initial state so that the system can be returned
to the state prior to the invocation of the cancelled modules.

CHI 2003 50 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 50

Canceling a command

Collaborators

Active Modules

Cancellation
Manager

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller Cancellation
Listener

Step 1. User selects the option to cancel a running command.
Step 2. The View receives this command and passes it to the Cancellation listener,

which is waiting on a separate thread, then notifies the user that the cancellation
command was received.

Step 3. The Cancellation Listener notifies the Cancellation Manager that the selected
command must be terminated.

Step 4. The Cancellation Manager notifies the Active Module and its Collaborators that
their current activity must be terminated. There are two cases. Case 1: The
active module can respond to a cancel command. In this case it cleans up and
terminates itself. Case 2: The active module can’t respond and the Cancellation
Manager tells the operating system to kill the Active Module and the
Cancellation Manager cleans up after the Active Module.

Step 5. The Cancellation Manager notifies the View about the progress of the
command’s cancellation.

Step 6. The View notifies the user about the progress of the command’s cancellation.

CHI 2003 51 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 51

How does canceling commands
relate to your system?

CHI 2003 52 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 52

Reusing information:
Scenario
A user may wish to move data from one part of a system to
another. For example, a telemarketer may wish to move a
large list of phone numbers from a word processor to a
database. Re-entering this data by hand could be tedious
and/or excessively time-consuming. Users should be
provided with automatic (e.g., data propagation) or manual
(e.g., cut and paste) data transports between different parts
of a system. When such transports are available and easy
to use, the user’s ability to gain insight through multiple
perspectives and/or analysis techniques will be enhanced.

CHI 2003 53 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 53

Reusing information:

Benefits to the user

Increases individual effectiveness
• Expedites routine performance

- Accelerates error-free portion of routine performance
- Reduces impact of slips

• Improves non-routine performance
- Supports problem-solving

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance
In most cases, it is more efficient for systems to transport information from place to
place than it is for users to re-enter this information by hand. Thus, systems that support
information reuse accelerate routine performance.

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips
Automatic data transportation and/or re-entry require fewer human actions (e.g., typing,
mouse movements) than re-entering data by hand. Since performing more actions
introduces more opportunities for error, systems that support information reuse can
prevent slips.

Increases individual effectiveness
Improves non-routine performance

Supports problem-solving
When users can import and export data from one place to another easily, they may try
different applications to gain additional insight while solving problems. For example, a
user may export data from a traditional text–based statistics application to a data
visualization application. Thus, systems that support information reuse facilitate
problem-solving.

CHI 2003 54 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 54

Reusing information:

Two methods:
Manual & automatic

Manual
• Example: Copy & paste

Automatic
• Example: Propagation of information

CHI 2003 55 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 55

Reusing information -- Manual:

Responsibilities to be allocated

1. Provide information to be reused (from Information
Source)

2. Store information to be reused (in Information
Repository)

3. Provide feedback on the stored information
4. Retrieve stored information (from Information

Repository)
5. Receive information (into Information Sink)
6. Provide feedback on the retrieved information

CHI 2003 56 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 56

Reusing information -- Manual:

Sample architectural pattern

Information Source

Information Sink

Information
Reuse
Repository

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller

CHI 2003 57 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 57

Reusing information -- Manual:

New responsibilities of old
modules
View
1. Accept copy/paste commands from the user
1. Send data to the Controller
3. Provide feedback about the copied data.
6. Provide feedback about the pasted data.

Controller
1. Send data to the Information Reuse Repository
3. Send information about the copy operation to the View.

Model
5. Receive data from the Information Reuse Repository

Responsibilities to be allocated:
1. Provide information to be reused (from Information Source)
2. Store information to be reused (in Information Repository)
3. Provide feedback on the stored information
4. Retrieve stored information (from Information Repository)
5. Receive information (into Information Sink)
6. Provide feedback on the retrieved information

CHI 2003 58 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 58

Reusing information -- Manual:

Responsibilities of new module

Information Reuse Repository (which is a Model)
2. Receives data to be reused

(e.g., from the Controller in response to copy request)
2. Stores information to be reused
4. Accepts commands to retrieve stored information

(e.g., paste to the Model)
4. Dispense information to be reused to requesting

Models.
3. Provide information to the View for user feedback

about the repository contents.

Responsibilities to be allocated:
1. Provide information to be reused (from Information Source)
2. Store information to be reused (in Information Repository)
3. Provide feedback on the stored information
4. Retrieve stored information (from Information Repository)
5. Receive information (into Information Sink)
6. Provide feedback on the retrieved information

CHI 2003 59 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 59

Copying Information

Information Source

Information Sink

Information
Reuse
Repository

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller

Step 1. The user issues the copy request to the View.
Step 2. The View forwards the copy request to the Controller for processing.
Step 3. The Controller obtains the data to copy from the Information Source, which is

part of the View (we are assuming the data to copy is on the screen).
Step 4. The Controller sends the copied data to the Information Reuse Repository for

temporary storage.
Step 5. The Controller messages the View to provide feedback to the user that the copy

operation was successful.
Step 6. The View provides feedback to the user that the copy operation was successful.

CHI 2003 60 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 60

Pasting Information

Information Source

Information Sink

Information
Reuse
Repository

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller

Step 1. The user issues the paste request to the View.
Step 2. The View forwards the paste request to the Controller for processing.
Step 3. The Controller sends the paste request and destination (Information Sink)

information to the Information Reuse Repository.
Step 4. The Information Reuse Repository sends its current contents to the Information

Sink.
Step 5. The Information Sink messages the View to provide feedback to the user that

the paste operation was successful.
Step 6. The View provides feedback to the user that the paste operation was successful.

CHI 2003 61 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 61

Reusing information -- Automatic:

Responsibilities to be allocated

1. Know which data to store and retrieve from repository
(e.g., via a data dictionary)

2. Provide information to be reused (from Information
Source)

3. Store information to be reused (in Information
Repository)

4. (a) Retrieve stored information on request
OR

(b) Broadcast newly stored information
5. Receive information (into Information Sink)

CHI 2003 62 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 62

Reusing information -- Automatic:

Sample architectural pattern

Information Sink

Information Source

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller
Information
Reuse
Repository

CHI 2003 63 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 63

Reusing information -- Automatic:

New responsibilities of old
modules

Model
1. Know which data to store or retrieve from repository

(e.g., via a data dictionary)
2. Provide information (to Information Source)
5. Receive data from the Information Reuse Repository

(in Information Sink)
 AND OPTIONALLY

4a. Request information (from Information Source)

Responsibilities to be allocated:
1. Know which data to store and retrieve from repository (e.g., via a data dictionary)
2. Provide information to be reused (from Information Source)
3. Store information to be reused (in Information Repository)
4. (a) Retrieve stored information on request

OR
(b) Broadcasts newly stored information

5. Receive information (into Information Sink)

CHI 2003 64 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 64

Reusing information -- Automatic:

Responsibilities of new module

Information Reuse Repository (which is a Model)
3. Accept data to be reused from Model modules

(Information Source)
3. Save information to be reused
4a. Accepts requests to retrieve stored information from

the Model modules
OR

4b. Broadcasts newly stored information to Model
modules

4. Transfers information to be reused to Model modules
(Information Sink)

Responsibilities to be allocated:
1. Know which data to store and retrieve from repository (e.g., via a data dictionary)
2. Provide information to be reused (from Information Source)
3. Store information to be reused (in Information Repository)
4. (a) Retrieve stored information on request

OR
(b) Broadcasts newly stored information

5. Receive information (into Information Sink)

CHI 2003 65 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 65

Reusing information
automatically (On Request - option 4a)

Information Sink

Information Source

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller
Information
Reuse
Repository

Step 1. The user performs an action that requires information to be reused.
Step 2. The View sends this action to the Controller for interpretation.
Step 3. The Controller sends the action to the appropriate Model (Information Sink) for

processing.
Step 4. The Information Sink recognizes that it requires certain reusable information to

complete the request, perhaps by querying a data dictionary.
Step 5. The Information Sink requests this reusable information from the Information

Reuse Repository.
Step 6. The Information Reuse Repository locates the appropriate Model (Information

Source) that contains the reusable information and retrieves this information
from it.

Step 7. The Information Reuse Repository returns this information to the Information
Sink.

Step 8. The Information Sink uses this information to complete the processing of the
user’s request and notifies the View of its changes.

Step 9. The View provides feedback to the user of the results of the action.

CHI 2003 66 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 66

Reusing information:

Software tactics

Use an intermediary
• Data

Use an intermediary
Data

The information reuse repository acts as an indirection intermediary by separating the
data producer and consumer.

CHI 2003 67 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 67

How does reusing information
relate to your system?

CHI 2003 68 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 68

Supporting international use:
Scenario
A user may want to configure an application to
communicate in his or her language or according to the
norms of his or her culture. For example, a Japanese user
may wish to configure the operating system to support a
different keyboard layout. However, an application
developed in one culture may contain elements that are
confusing, offensive, or otherwise inappropriate in another.
Systems should be easily configurable for deployment in
multiple cultures.

CHI 2003 69 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 69

Supporting international use:

Benefits to the user

Increases individual effectiveness
• Expedites routine performance

- Accelerates error-free portion of routine performance
- Reduces impact of slips

• Improves non-routine performance
- Supports problem-solving
- Facilitates learning

• Reduces the impact of user errors caused by lack of
knowledge (mistakes)
- Prevents mistakes
- Accommodates mistakes

Increases confidence and comfort

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance
Systems that support internationalization accelerate users’ performance by allowing them to communicate with the system in the language
that they know best.

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips
Systems that support internationalization help accommodate users’ slips by presenting error messages in the language that they know best.

Increases individual effectiveness
Improves non-routine performance

Supports problem-solving
Systems that support internationalization facilitate problem-solving by allowing users to receive feedback from the system in the language
that they know best.

Increases individual effectiveness
Improves non-routine performance

Facilitates learning
Systems that support internationalization facilitate learning by allowing users to receive feedback from the system in the language that they
know best.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge

Prevents mistakes
Systems that support internationalization help users avoid linguistic mistakes by allowing them to communicate with the system in the
language that they know best.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge

Accommodates mistakes
Systems that support internationalization help accommodate user mistakes by presenting error messages in the language that they know best.
Incomprehensible error messages can compound existing misunderstanding.

Increases confidence and comfort
Being able to communicate with a system in the language that a user knows best reduces frustration and increases user satisfaction by
affirming the importance of the user’s national or cultural identify.

CHI 2003 70 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 70

Supporting international use:

Responsibilities to be allocated

1. Determine appropriate presentation for the user
2. Generate appropriate presentation to the user
3. Hold information from which the appropriate

presentation can be derived

CHI 2003 71 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 71

Supporting international use:

Deployment strategies

Single deployment supports multiple languages
• All languages must be present to be used at runtime
• User typically enters preference (i.e., additional

command needed to select preference, responsibility
allocated to a new Controller)

Each deployment supports only a single language
• Only one language need be present in each deployment
• A different version of the system can be created for each

deployment

Our example discusses only the second option.

The architect must decide whether to have a single deployment support multiple
languages (such as an ATM machine) or whether each deployed system only supports a
single language (such as software intended for use within an office where the users’
language is known). If a single deployment supports multiple languages, all of the
language dictionaries must be present and the presentation must decide on the layout at
runtime. This decision is made based on the user’s identity or expressed preference. If a
single deployment only supports one language then only the dictionary for that language
needs to be present, and different versions of the presentation module can be created.

CHI 2003 72 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 72

Supporting international use:

Sample architectural pattern for a
menu-based system

Customization
Specifications

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller

Customization
Specifications

Customization
Specifications

Language/
Dialect-specific
Dictionaries

This sample pattern assumes a menu-based system, not a command-based where the
commands have to be recognized in different languages.
This pattern does not support end-user customization.
In this pattern, customization specifications and the dictionaries are put in by the
developers. Thus, the first responsibility, determine appropriate presentation for this
user, is allocated to the developer, not to any software module.
The dictionaries are often not of single words from which prose is generated, but of all
the text that has to be presented. For instance, an entire error message may be an entry
in the dictionary.

CHI 2003 73 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 73

Supporting international use:

New responsibilities of old
modules

Controllers and Models
2. Communicate in terms independent from the

information displayed on the screen

Controller
2. Use information from dictionaries and customization

specifications to generate specifications for the View

View
2. Use information from the Controller and Models to

render the appropriate presentation for the user.

Responsibilities to be allocated:
1. Determine appropriate presentation for the user (allocated to the developer in this

example pattern)
2. Generate appropriate presentation to the user
3. Hold information from which the appropriate presentation can be derived

CHI 2003 74 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 74

Supporting international use:

Responsibilities of new modules

Language/Dialect-specific Dictionaries (which is a Controller)
3. Hold textual information from which the appropriate

presentation can be derived
Typically includes all text that will need to be presented: menu
items, error messages, etc.

Customization Specifications (which is a Controller)
3. Hold non-textual information from which the appropriate

presentation can be derived, e.g.,
- Screen real estate information when different languages

take up different space
- Order of screen painting
- Position of sidebars, etc.

Responsibilities to be allocated:
1. Determine appropriate presentation for the user (allocated to the developer in this

example pattern)
2. Generate appropriate presentation to the user
3. Hold information from which the appropriate presentation can be derived

CHI 2003 75 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 75

Internationalizing a menu-based
system

Customization
Specifications

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller

Customization
Specifications

Customization
Specifications

Language/
Dialect-specific
Dictionaries

Step 1. The user requests a screen that contains internationalized information from the
View.

Step 2. The View passes the request to the Controller to determine the appropriate
presentation.

Step 3. The Controller consults the Customization Specifications and Language /
Dialect-specific Dictionaries to obtain the necessary information to produce the
internationalized screen.

Step 4. The Controller uses this information to generate an internationalized screen
specification and passes this screen specification to the View.

Step 5. The View renders the internationalized screen and sends the output to the user.

CHI 2003 76 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 76

Supporting international use:

Software tactics

Localize modifications
• Separate data from view of data

Support system initiative
• User model

Localize modifications
Separate data from view of data

By separating the core data of a system from the view of that data, the View module can
map user-visible data into a form that is linguistically and culturally appropriate.

Support system initiative
User model

The View module accesses user-supplied customization specifications to configure
itself appropriately. These specifications model the user.

CHI 2003 77 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 77

How does supporting
international use relate to your
system?

CHI 2003 78 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 78

Observing system state:
Scenario
A user may not be presented with the system state data
necessary to operate the system (e.g., uninformative error
messages, no file size given for folders). Alternatively, the
system state may be presented in a way that violates
human tolerances (e.g., is presented too quickly for people
to read. See: Working at the User’s Pace). The system
state may also be presented in an unclear fashion, thereby
confusing the user. System designers should account for
human needs and capabilities when deciding what aspects
of system state to display and how to present them.

A special case of Observing System State occurs when a user is unable to determine the
level of security for data entered into a system. Such experiences may make the user
hesitate to use the system or avoid it altogether.

CHI 2003 79 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 79

Observing system state:

Benefits to the user

Increases individual effectiveness
• Expedites routine performance

- Reduces impact of slips
• Improves non-routine performance

- Supports problem solving
- Facilitates learning

• Reduces the impact of user errors caused by lack of
knowledge (mistakes)
- Prevents mistakes
- Accommodates mistakes

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips
When the inevitable slip happens, if the system state is readily and easily observed, the user will know how to correct the slip before
continuing further down an incorrect path.

Increases individual effectiveness
Improves non-routine performance

Supports problem solving
Human problem-solving depends on knowledge of current state (where you are), the goal state (where you want to be), and awareness
of the range of available actions. Thus, being able to observe the current system state is central to the process of problem solving.

Increases individual effectiveness
Improves non-routine performance

Facilitates learning
Learning correct actions depends on knowing the system state when the action produced a desired response. Thus, if the system state is
obscured or unobservable, the user’s ability to learn will be inhibited.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge

Prevents mistakes
A common type of mistake occurs when a user applies knowledge and procedures appropriate to one system state to a different,
inappropriate, system state. Making the system state easily available to users reduces the likelihood of this type of mistake.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge

Accommodates mistakes
If the system state is readily and easily observed, the user will know how to correct the mistake before continuing further down an
incorrect path.

Increases confidence and comfort
This applies to the special case of the user being unable to determine the level of security for data entered into a system. Such
experiences may make the user hesitate to use the system or avoid it altogether. Thus, systems that prominently display security
policies and security levels (both of which are features of system state) increase user confidence and comfort.

CHI 2003 80 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 80

Observing system state:

Responsibilities to be allocated

1. Hold system state information
2. Retrieve system state information
3. Display the system state to the user

CHI 2003 81 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 81

Observing system state:

Two methods

At user’s request
• The user asks to see particular information

On system’s initiative
• The system presents the user with information, e.g.,

error messages

CHI 2003 82 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 82

Observing system state at user’s request:

Sample architectural pattern

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller

Repository of
System State
Data

System State
Viewing
Controllers

CHI 2003 83 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 83

Observing system state at user’s request:

New responsibilities of old
modules

View
2&3. Respond to request to display state information as to

any other display request (no new responsibilities)

Model
1. Store system state data in the repository

Responsibilities to be allocated:
1. Hold system state information
2. Retrieve system state information
3. Display the system state to the user

CHI 2003 84 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 84

Observing system state at user’s request:

Responsibilities of new modules

Repository of System State Data (which is a Model)
1. Hold system state information
2&3. Passes necessary system state data to View upon

request from System State Viewing Controller

System State Viewing Controllers (which are Controllers)
2. Inform Repository of request to display system state

Responsibilities to be allocated:
1. Hold system state information
2. Retrieve system state information
3. Display the system state to the user

CHI 2003 85 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 85

Observing system state at user’s
request

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller

Repository of
System State
Data

System State
Viewing
Controllers

Step 1. The user issues a request to observe a part of the system’s current state to the
View.

Step 2. The View passes the request to a System State Viewing Controller for
processing.

Step 3. The System State Viewing Controller informs the Repository of System State
Data of a request. (The Repository was updated by the relevant Model when its
system state changed.)

Step 4. The Repository of System State Data sends the requested system state data to
the View for presenting to the user.

Step 5. The View displays the requested system state data to the user.

CHI 2003 86 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 86

Observing system state at system’s initiative:

Sample architectural pattern

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

System State
Viewing
Manager

Controller

Repository of
System State
Data

CHI 2003 87 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 87

Observing system state at system’s initiative:

New responsibilities of old
modules
Model
1. Store system state data in the repository

View
2&3. Respond to request to display state information as to

any other display request (no new responsibilities)

Controller
2. Provide information about the user’s actions to the

System State Viewing Manager.

Responsibilities to be allocated:
1. Hold system state information
2. Retrieve system state information
3. Display the system state to the user

CHI 2003 88 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 88

Repository of System State Data (which is a Model)
1. Hold system state information

System State Viewing Manager (which is a Model)
2. Monitor user’s actions passed to it by the Controller
2. Model the user, system and/or task
2. Retrieve state information and determine when to

display it
3. Inform the View of what to display when appropriate

Observing system state at system’s initiative:

Responsibilities of new modules

Responsibilities to be allocated:
1. Hold system state information
2. Retrieve system state information
3. Display the system state to the user

CHI 2003 89 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 89

Observing system state at
system’s initiative

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller
System State
Viewing
Manager

Repository of
System State
Data

Step 1. The View receives an action from the user that might effect the display of
system state data.

Step 2. The View sends this action to the appropriate Controller.

Step 3. The Controller notifies the System State Viewing Manager that the user
performed an action that might effect the display of system state.

Step 4. The System State Viewing Manager, which runs on a separate thread from the
main control thread, determines whether it is appropriate to display system state
data.

Step 5. If system state data should be displayed, the System State Viewing Manager
obtains it from the Repository of System State Data.

Step 6. The System State Viewing Manager updates the View to present the system state
data to the user.

Step 7. The View displays the system state data to the user.

CHI 2003 90 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 90

Observing system state:

Software tactics

Localize modifications
• Separate data from Commands

Preemptive Scheduling policy

Support system initiative
• Task model
• User model
• System model

Localize modifications
Separate data from Commands

State data is stored in a repository apart from the rest of the system.

Preemptive Scheduling policy
If data is to be presented on the system’s initiative, a module must occupy a separate
thread to monitor the user’s actions and determine when to present new data or update
the data currently displayed.

Support system initiative
Task model

If data is to be presented on the system’s initiative, the system can consult a model of
the task to determine what information to present to the user.

User model
If data is to be presented on the system’s initiative, the system can consult a model of
the user to determine what information to present.

System model
If data is to be presented on the system’s initiative, the system can consult a model of
itself to determine what information to present.

CHI 2003 91 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 91

How does observing system state
relate to your system?

CHI 2003 92 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 92

…and there are many more

So far, we have 27 general scenarios

You can find the benefits to the user, architectural patterns
and software tactics in SEI Technical Report CMU/SEI-
2001-TR-005, which is downloadable from

http://www.sei.cmu.edu/publications/documents/01.reports/01tr005.html

Bass, L., John, B. E. & Kates, J. (2000) Achieving usability through software
architecture (CMU/SEI-2001-TR-005). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University.

Note: in previous publications, including this technical report, we used the term
“software engineering mechanisms” where we now use “software architecture tactics”.

CHI 2003 93 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 93

Outline of tutorial

Analyze the causes of the “We can’t change THAT” problem

Discuss known solutions for supporting changes in the screen-
deep user interface and why they don’t work for deeper changes.

Usability & Software Architecture (U&SA)
• General usability scenarios with architectural impact
• Architectural patterns and tactics to support usability

Applying U&SA to architecture evaluation and design

CHI 2003 94 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 94

Applying the scenarios

Scenarios should be used as a checklist during the requirements
process.

Scenarios are revisited during the design process to make sure
they are supported by the architecture.

Scenarios act as a checklist for developers to ensure they are
implemented in the source code.

Scenarios should be re-checked during any modification effort

Scenarios can also come into procurement decisions, for
example, supporting international use may require purchasing a
database that supports double-byte characters for storing text
with non-roman lettering.

CHI 2003 95 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 95

U&SA applied to the NASA
MERBoard
The Mars Exploration Rover Board (MERBoard) is a
collaborative workspace to aid engineers and scientists
analyze data and plan the work of the Mars Exploration Rover

Pictures from the IBM website
http://www.research.ibm.com/resources/news/20020603_merboard.shtml

CHI 2003 96 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 96

Development timeline of the MERBoard
Fall 2001
Field Observations

Fall 2001
Development Starts

July 2002
Field Test 1

August 2002
Field Test 2

Spring 2003
Field Test 3

Architecture Redesign

Sept 2002
Architecture
Review for
Usability
Concerns

CHI 2003 97 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 97

Developers’ stated goals of the
architecture redesign
Initial design’s priority was to deliver a working system to the two

field trials, produced a “monolithic” system

Initial design worked, and received excellent response at the two
field trials

For future trials and deployment, extendibility, performance,
and reliability were driving changes to the architecture

Usability had always been stated as a goal for the MERBoard
project as a whole, but not at the architecture level

Through NASA’s High Dependability Computing Program, John &
Bass proposed usability as a quality aspect to be considered
during architecture redesign

CHI 2003 98 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 98

The process of considering usability
in the architecture redesign
3 hour meeting of entire team to get overview of U&SA approach

+ apply scenarios to the project

Front-end developer read TR + tutorial notes, 4 days elapsed time
over a weekend

Teleconference with Front-end developer to review scenarios, get
reaction to TR, ~1 hour

Front-end developer proposed a redesigned architecture (slide
100)

Teleconference with Front-end developer to review proposed new
architecture, ~1 hour, produced a revised architecture design
(slide 101)

CHI 2003 99 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 99

Applicability of the scenarios

Design & development team found 25 of 27 scenarios to be
applicable to their project

17 of the 25 applicable scenarios needed by the next field
trial; 8 were for the longer term

Easy for the development team to give concrete examples
of these scenarios for their users, often from direct
observation during the field trials

CHI 2003 100 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 100

Proposed architecture redesign

DispatcherGUI

PluginsPluginsPlugins Recorder

Save/Restore
 Interface

Administrator

Network
Interface

Selector

CHI 2003 101 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 101

Network
Interface

Selector

DispatcherGUI

PluginsPluginsPlugins Recorder

Save/Restore
 Interface

Administrator

Reuse Repository

E-mail
Manager

User

Plugin services,
e.g., View manager

Multiple
lines for each Plugin
(only one set drawn)

Responsibilities
of a good plugin,
e.g., recording,
cut&paste, saving
state periodically
through save/restore
interface Green = added component

Purple = modified component

Revised architecture design after U&SA input

CHI 2003 102 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 102

Summary of applying the U&SA
approach to MERBoard
Scenarios were well received by the developers, readily

understood how they fit (or didn’t) to their system

Scenarios DID apply to collaborative workspace
• We don’t know if there will be collaborative-specific

scenarios yet

Scenarios HAD an impact on the architecture redesign

Process did not seem too onerous

CHI 2003 103 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 103

“Nice to keep the list [of scenarios]
next to me, so when I’m making a
design decision I won’t forget
anything”
 - Front End Developer, Sept 2002

CHI 2003 104 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 104

More formal ways to consider usability in
architectural design and analysis

Must trade off between usability and other quality attributes such
as performance, security, etc.
• Selecting among quality attributes wrt business goals
• Assessing risks, cost and benefit
• Prioritizing

Techniques for exposing the trade-offs that have been or are
being made are available, e.g.,
• ATAM, SAAM and its descendants (Clements, Kazman, Klein,

2001)
• ADD (Bass, Clements & Kazman, 2003)

Usability can fit into these techniques as a quality attribute on
equal footing with the others

Clements, P., Kazman, R, & Klein, M. (2001) Evaluating software architectures:
Methods and case studies. Boston: Addison-Wesley.

Bass, L.; Clements, P. & Kazman, R. (2003). Software Architecture in Practice. 2nd

edition. Reading, MA: Addison Wesley Longman.

CHI 2003 105 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 105

A tool to help use U&SA:
The Benefit/Tactic Matrix
A laundry list of 27 usability scenarios may be cumbersome

X-axis = the benefits to the user
Y-axis = the software tactics that support a solution to a

scenario
Cells of the matrix are populated with the scenarios

CHI 2003 106 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 106

Benefit/Tactic Matrix

Accelerates
error-free
portion

Reduces
impact of slips

Supports
problem-
solving

Facilitates
learning

Prevents
mistakes

Accommo-
dates mistakes

Tolerates
system errors

Prevents
system errors

Hide information
4, 13, 14, 15,

20, 23
4, 13, 20 4, 13, 20 4, 13, 20 9, 14 23

Separate data
from the view of
that data

12, 13, 24, 25 12 12, 13, 22, 24,
25, 26

12, 13, 24 12, 13, 22, 24 12 12

Separate data
from commands 1, 24, 25 5, 17 5, 17, 24, 25,

26
5, 17, 24 1, 5, 17, 24 1, 5, 17 17

Separate authoring
from execution 1, 2 2 1, 2 1, 2

Data
16

Commands
2 2 22 2, 22 2

Data
7, 11, 14 11 7, 11 14

Function
6, 14, 20, 27 27 6, 20 20 20, 27 14 6 27

2, 7 2, 3, 21 3, 7, 21 2 2, 3, 21 3, 8

15, 18, 19 3, 5, 17, 18 3, 5, 10, 17 5, 10, 17 5, 17, 19 3, 5, 17 3 17, 18

Task model
18, 19 5, 17, 18 5, 10, 17 5, 10, 17 5, 17, 19 5, 17 17, 18

User model
12, 18 5, 12, 17, 18 5, 10, 12, 17,

22
5, 10, 12, 17 5, 12, 17, 22 5, 12, 17 12, 17, 18

System model
4, 6, 19, 23 3, 5, 17 3, 4, 5, 6, 17 4, 5, 17 4, 5, 17, 19 3, 5, 17 3 6, 23 17

Support system
initiative

Recording

Preemptive scheduling policy

Use an
intermediary

Increases
confidence
and comfort

Reduces impact of system
errors

Localize
Modifications

Maintain multiple
copies

Architectural
Tactics

Expedites routine performance

Increases individual effectiveness

Improves non-routine
performance

Reduces impact of mistakes

Usability
Benefits

1. Aggregating data 14. Modifying interfaces
2. Aggregating commands 15. Supporting multiple activity
3. Canceling commands 16. Navigating within a single view
4. Using applications concurrently 17. Observing system state
5. Checking for correctness 18. Working at the user’s pace
6. Maintaining device independence 19. Predicting task duration
7. Evaluating the system 20. Supporting comprehensive searching
8. Recovering from failure 21. Supporting undo
9. Retrieving forgotten passwords 22. Working in an unfamiliar context
10. Providing good help 23. Verifying resources
11. Reusing information 24. Operating consistently across views
12. Supporting international use 25. Making views accessible
13. Leveraging human knowledge 26. Supporting visualization
 27. Supporting personalization

A larger version of this matrix appears in Appendix IV.

CHI 2003 107 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 107

Narrow down the scenarios --
points to consider
Business goals

Types of users
• Novices only (e.g., an information kiosk)
• Skilled users primarily (e.g., telephone operators)
• Mixture of both (e.g., a high-turnover job)

Type of use
• Routine application of operating procedures
• Problem solving
• Creative expression

CHI 2003 108 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 108

Enter the Benefit/Tactic Matrix
through its columns
For example, If
• Business goals are to make inventory processing more

efficient
• Low-turnover job, so skilled users will dominate
• Its extremely important not to enter incorrect information

Then, enter the Benefit/Tactic matrix through Reduces
Impact of Slips
• Consider first only 9 scenarios:

2, 3, 5, 11, 12, 17, 18, 21, 27
• (Of course, as time permits, other scenarios can be considered)

CHI 2003 109 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 109

Find scenarios in the Matrix

Accelerates
error-free
portion

Reduces
impact of slips

Supports
problem-
solving

Facilitates
learning

Prevents
mistakes

Accommo-
dates mistakes

Tolerates
system errors

Prevents
system errors

Hide information
4, 13, 14, 15,

20, 23
4, 13, 20 4, 13, 20 4, 13, 20 9, 14 23

Separate data
from the view of
that data

12, 13, 24, 25 12 12, 13, 22, 24,
25, 26

12, 13, 24 12, 13, 22, 24 12 12

Separate data
from commands 1, 24, 25 5, 17 5, 17, 24, 25,

26
5, 17, 24 1, 5, 17, 24 1, 5, 17 17

Separate authoring
from execution 1, 2 2 1, 2 1, 2

Data
16

Commands
2 2 22 2, 22 2

Data
7, 11, 14 11 7, 11 14

Function
6, 14, 20, 27 27 6, 20 20 20, 27 14 6 27

2, 7 2, 3, 21 3, 7, 21 2 2, 3, 21 3, 8

15, 18, 19 3, 5, 17, 18 3, 5, 10, 17 5, 10, 17 5, 17, 19 3, 5, 17 3 17, 18

Task model
18, 19 5, 17, 18 5, 10, 17 5, 10, 17 5, 17, 19 5, 17 17, 18

User model
12, 18 5, 12, 17, 18 5, 10, 12, 17,

22
5, 10, 12, 17 5, 12, 17, 22 5, 12, 17 12, 17, 18

System model
4, 6, 19, 23 3, 5, 17 3, 4, 5, 6, 17 4, 5, 17 4, 5, 17, 19 3, 5, 17 3 6, 23 17

Increases
confidence
and comfort

Reduces impact of system
errors

Localize
Modifications

Maintain multiple
copies

Architectural
Tactics

Expedites routine performance

Increases individual effectiveness

Improves non-routine
performance

Reduces impact of mistakes

Usability
Benefits

Support system
initiative

Recording

Preemptive scheduling policy

Use an
intermediary

2. Aggregating commands
3. Canceling commands
5. Checking for correctness
11. Reusing information
12. Supporting international use
17. Observing system state
18. Working at the user’s pace
21. Supporting undo
27. Supporting personalization

CHI 2003 110 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 110

Make the scenarios concrete for
your system
Example: 11. Reusing information in inventory processing
A user may wish to move a large number of items from one
warehouse inventory list to another. Reentering this
information by hand provides opportunity for many errors to
occur and go unnoticed. Users should be able to select
many items and assign them all to the new inventory list
(equivalent of cut and paste).

In practice, users and other stakeholders should
participate in making the scenarios concrete.

Prioritize the scenarios and choose the most beneficial
ones to analyze first

CHI 2003 111 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 111

Accelerates
error-free
portion

Reduces
impact of slips

Supports
problem-
solving

Facilitates
learning

Prevents
mistakes

Accommo-
dates mistakes

Tolerates
system errors

Prevents
system errors

Hide information
4, 13, 14, 15,

20, 23 4, 13, 20 4, 13, 20 4, 13, 20 9, 14 23

Separate data
from the view of
that data

12, 13, 24, 25 12 12, 13, 22, 24,
25, 26

12, 13, 24 12, 13, 22, 24 12 12

Separate data
from commands 1, 24, 25 5, 17 5, 17, 24, 25,

26
5, 17, 24 1, 5, 17, 24 1, 5, 17 17

Separate authoring
from execution 1, 2 2 1, 2 1, 2

Data
16

Commands
2 2 22 2, 22 2

Data
7, 11, 14 11 7, 11 14

Function
6, 14, 20, 27 27 6, 20 20 20, 27 14 6 27

2, 7 2, 3, 21 3, 7, 21 2 2, 3, 21 3, 8

15, 18, 19 3, 5, 17, 18 3, 5, 10, 17 5, 10, 17 5, 17, 19 3, 5, 17 3 17, 18

Task model
18, 19 5, 17, 18 5, 10, 17 5, 10, 17 5, 17, 19 5, 17 17, 18

User model
12, 18 5, 12, 17, 18 5, 10, 12, 17,

22 5, 10, 12, 17 5, 12, 17, 22 5, 12, 17 12, 17, 18

System model
4, 6, 19, 23 3, 5, 17 3, 4, 5, 6, 17 4, 5, 17 4, 5, 17, 19 3, 5, 17 3 6, 23 17

Increases
confidence
and comfort

Reduces impact of system
errors

Localize
Modifications

Maintain multiple
copies

Architectural
Tactics

Expedites routine performance

Increases individual effectiveness

Improves non-routine
performance

Reduces impact of mistakes

Usability
Benefits

Support system
initiative

Recording

Preemptive scheduling policy

Use an
intermediary

Go into the Matrix to find tactics
Read across the rows to find the tactics that support
solution to the scenarios.
• Example:

11. Reusing information requires the tactic “use an
intermediary for data” (see slide 66)

CHI 2003 112 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 112

Refer to an architectural pattern
that supports this scenario
For suggestions as to an architectural pattern, go back to
these slides or the Technical Report
• Example:

11. Reusing information has sample architectural
patterns on slides 56 (for manual,below) and 62 (for
automatic)

Information Source

Information Sink

Information
Reuse
Repository

Output
device

Input device

Command
Processor

Command
Processor

Model
Command
Processor

Command
Processor

View

Command
Processor

Command
Processor

Controller

CHI 2003 113 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 113

Enter the Benefit/Tactic Matrix
through its rows
To see what additional usability benefits might be easy to attain

Accelerates
error-free
portion

Reduces
impact of slips

Supports
problem-
solving

Facilitates
learning

Prevents
mistakes

Accommo-
dates mistakes

Tolerates
system errors

Prevents
system errors

Hide information
4, 13, 14, 15,

20, 23 4, 13, 20 4, 13, 20 4, 13, 20 9, 14 23

Separate data
from the view of
that data

12, 13, 24, 25 12 12, 13, 22, 24,
25, 26

12, 13, 24 12, 13, 22, 24 12 12

Separate data
from commands 1, 24, 25 5, 17 5, 17, 24, 25,

26
5, 17, 24 1, 5, 17, 24 1, 5, 17 17

Separate authoring
from execution 1, 2 2 1, 2 1, 2

Data
16

Commands
2 2 22 2, 22 2

Data
7, 11, 14 11 7, 11 14

Function
6, 14, 20, 27 27 6, 20 20 20, 27 14 6 27

2, 7 2, 3, 21 3, 7, 21 2 2, 3, 21 3, 8

15, 18, 19 3, 5, 17, 18 3, 5, 10, 17 5, 10, 17 5, 17, 19 3, 5, 17 3 17, 18

Task model
18, 19 5, 17, 18 5, 10, 17 5, 10, 17 5, 17, 19 5, 17 17, 18

User model
12, 18 5, 12, 17, 18 5, 10, 12, 17,

22 5, 10, 12, 17 5, 12, 17, 22 5, 12, 17 12, 17, 18

System model
4, 6, 19, 23 3, 5, 17 3, 4, 5, 6, 17 4, 5, 17 4, 5, 17, 19 3, 5, 17 3 6, 23 17

Increases
confidence
and comfort

Reduces impact of system
errors

Localize
Modifications

Maintain multiple
copies

Architectural
Tactics

Expedites routine performance

Increases individual effectiveness

Improves non-routine
performance

Reduces impact of mistakes

Usability
Benefits

Support system
initiative

Recording

Preemptive scheduling policy

Use an
intermediary

Scenario 7 and 14 use the same tactic as Scenario 11.

CHI 2003 114 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 114

Examine additional scenarios for
costs and benefits
To see what additional usability benefits might be easy to attain

Example:
Scenario 11, Reusing information, requires the tactic “use an
intermediary for data”
• The pattern on slide 56 for Scenario 11 shows that pasted data

comes from the Information Reuse Repository instead of only from
the user through the Controller.

• Thus there will already be code in place for the pasted data to
“masquerade” as user input.

Scenario 7, Evaluating the system, calls for using an intermediary for
data to allow test data to “masquerade” as user input.
• The same code used to allow pasted data, or a slight variation,

may also allow test data to masquerade as user input.

CHI 2003 115 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 115

Accelerates
error-free
portion

Reduces
impact of slips

Supports
problem-
solving

Facilitates
learning

Prevents
mistakes

Accommo-
dates mistakes

Tolerates
system errors

Prevents
system errors

Hide information
4, 13, 14, 15,

20, 23
4, 13, 20 4, 13, 20 4, 13, 20 9, 14 23

Separate data
from the view of
that data

12, 13, 24, 25 12 12, 13, 22, 24,
25, 26

12, 13, 24 12, 13, 22, 24 12 12

Separate data
from commands 1, 24, 25 5, 17 5, 17, 24, 25,

26
5, 17, 24 1, 5, 17, 24 1, 5, 17 17

Separate authoring
from execution 1, 2 2 1, 2 1, 2

Data
16

Commands
2 2 22 2, 22 2

Data
7, 11, 14 11 7, 11 14

Function
6, 14, 20, 27 27 6, 20 20 20, 27 14 6 27

2, 7 2, 3, 21 3, 7, 21 2 2, 3, 21 3, 8

15, 18, 19 3, 5, 17, 18 3, 5, 10, 17 5, 10, 17 5, 17, 19 3, 5, 17 3 17, 18

Task model
18, 19 5, 17, 18 5, 10, 17 5, 10, 17 5, 17, 19 5, 17 17, 18

User model
12, 18 5, 12, 17, 18 5, 10, 12, 17,

22
5, 10, 12, 17 5, 12, 17, 22 5, 12, 17 12, 17, 18

System model
4, 6, 19, 23 3, 5, 17 3, 4, 5, 6, 17 4, 5, 17 4, 5, 17, 19 3, 5, 17 3 6, 23 17

Increases
confidence
and comfort

Reduces impact of system
errors

Localize
Modifications

Maintain multiple
copies

Architectural
Tactics

Expedites routine performance

Increases individual effectiveness

Improves non-routine
performance

Reduces impact of mistakes

Usability
Benefits

Support system
initiative

Recording

Preemptive scheduling policy

Use an
intermediary

Costs and benefits of additional
scenarios

The tactic of using an intermediary for data will already be in place to support Scenario 11.
It is possible that the code that implements this tactic may be reused or modified to support
Scenario 7. In addition, to get the benefits provided by Scenario 7 (accelerates error-free
portion of routine performance of the development team and supports problem solving of
the development team), the tactic of recording must be added. The design team can assess
the costs of adding that tactic versus the potential usability benefits.

CHI 2003 116 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 116

Add to the scenarios

Initial set concentrated on single user on a desktop
machine
• Have been used effectively in a collaborative whiteboard

support environment
• No guarantee of being complete -- please help us find

scenarios we’ve missed
• Although many scenarios generalize to off-the-desktop

or multi-user systems, these application areas are bound
to generate new ones

On the paper we hand out, write any general scenario you can think of that is important
in the systems you use and/or design. We’ll collect them and update our list and
architectural analyses.

If you think of any others, or would like updates on this work, please send us e-mail at
ljb@sei.cmu.edu
bej@cs.cmu.edu

CHI 2003 117 John & Bass

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 117

That’s it.
We’re on our way to avoiding
“We can’t change THAT!”

Questions?

CHI 2003 AI-1 John & Bass

Appendix I
General Usability Scenarios
(excerpt from Bass, L., John, B. E., & Kates, J. (2001). Achieving
usability through software architecture (CMU/SEI-2001-TR-005).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University)

This section enumerates the usability scenarios that we have identified as being architectur-
ally sensitive. A general usability scenario describes an interaction that some stakeholder
(e.g., end user, developer, system administrator) has with the system under consideration
from a usability point of view.

We generated the list of usability scenarios by surveying the literature, by personal experi-
ence, and by asking colleagues [Gram 1996, Newman 1995, Nielsen 1993]. We also screened
the list so that all entries have explicit software architectural implications and solutions. Sec-
tion 5 provides an architectural pattern that implements each scenario given in this report.

1. Aggregating Data

A user may want to perform one or more actions on more than one object. For example, an
Adobe® Illustrator® user may want to enlarge many lines in a drawing. It could become te-
dious to perform these actions one at a time. Furthermore, the specific aggregations of actions
or data that a user wishes to perform cannot be predicted; they result from the requirements
of each task. Systems, therefore, should allow users to select and act upon arbitrary combina-
tions of data.

2. Aggregating Commands

A user may want to complete a long-running, multi-step procedure consisting of several
commands. For example, a psychology researcher may wish to execute a batch of commands
on a data file during analysis. It could become tedious to invoke these commands one at a
time, or to provide parameters for each command as it executes. If the computer is unable to
accept the required inputs for this procedure up front, the user will be forced to wait for each
input to be requested. Systems should provide a batch or macro capability to allow users to
aggregate commands.

3. Canceling Commands

A user invokes an operation, then no longer wants the operation to be performed. The user
now wants to stop the operation rather than wait for it to complete. It does not matter why the

CHI 2003 AI-2 John & Bass

user launched the operation. The mouse could have slipped. The user could have mistaken
one command for another. The user could have decided to invoke another operation. For
these reasons (and many more), systems should allow users to cancel operations.

4. Using Applications Concurrently

A user may want to work with arbitrary combinations of applications concurrently. These
applications may interfere with each other. For example, some versions of IBM® ViaVoice
and Microsoft® Word contend for control of the cursor with unpredictable results. Systems
should ensure that users can employ multiple applications concurrently without conflict.
(See: Supporting Multiple Activities)

5. Checking for Correctness

A user may make an error that he or she does not notice. However, human error is frequently
circumscribed by the structure of the system; the nature of the task at hand, and by predict-
able perceptual, cognitive, and motor limitations. For example, users often type “hte” instead
of “the” in word processors. The frequency of the word “the” in English and the fact that
“hte” is not an English word, combined with the frequency of typing errors that involve
switching letters typed by alternate hands, make automatically correcting to “the” almost al-
ways appropriate. Computer-aided correction becomes both possible and appropriate under
such circumstances. Depending on context, error correction can be enforced directly (e.g.,
automatic text replacement, fields that only accept numbers) or suggested through system
prompts.

6. Maintaining Device Independence

A user attempts to install a new device. The device may conflict with other devices already
present in the system. Alternatively, the device may not function in certain specific applica-
tions. For example, a microphone that uses the Universal Serial Bus (USB) may fail to func-
tion with older sound software. Systems should be designed to reduce the severity and fre-
quency of device conflicts. When device conflicts occur, the system should provide the
information necessary to either solve the problem or seek assistance. (Devices include print-
ers, storage/media, and I/O apparatus.)

7. Evaluating the System

A system designer or administrator may be unable to test a system for robustness, correct-
ness, or usability in a systematic fashion. For example, the usability expert on a development
team might want to log test users’ keystrokes, but may not have the facilities to do so. Sys-
tems should include test points and data gathering capabilities to facilitate evaluation.

CHI 2003 AI-3 John & Bass

8. Recovering from Failure

A system may suddenly stop functioning while a user is working. Such failures might include
a loss of network connectivity or hard drive failure in a user’s PC. In these or other cases,
valuable data or effort may be lost. Users should be provided with the means to reduce the
amount of work lost from system failures.

9. Retrieving Forgotten Passwords

A user may forget a password. Retrieving and/or changing it may be difficult or may cause
lapses in security. Systems should provide alternative, secure tactics to grant users access. For
example, some online stores ask each user for a maiden name, birthday, or the name of a fa-
vorite pet in lieu of a forgotten password.

10. Providing Good Help

A user needs help. The user may find, however, that a system’s help procedures do not adapt
adequately to the context. For example, a user’s computer may crash. After rebooting, the
help system automatically opens to a general table of contents rather than to a section on re-
storing lost data or searching for conflicts. Help content may also lack the depth of informa-
tion required to address the user’s problem. For example, an operating system’s help area
may contain an entry on customizing the desktop with an image, but may fail to provide a list
of the types of image files that can be used. Help procedures should be context dependent and
sufficiently complete to assist users in solving problems.

11. Reusing Information

A user may wish to move data from one part of a system to another. For example, a telemar-
keter may wish to move a large list of phone numbers from a word processor to a database.
Re-entering this data by hand could be tedious and/or excessively time-consuming. Users
should be provided with automatic (e.g., data propagation) or manual (e.g., cut and paste)
data transports between different parts of a system. When such transports are available and
easy to use, the user’s ability to gain insight through multiple perspectives and/or analysis
techniques will be enhanced.

12. Supporting International Use

A user may want to configure an application to communicate in his or her language or ac-
cording to the norms of his or her culture. For example, a Japanese user may wish to config-
ure the operating system to support a different keyboard layout. However, an application de-
veloped in one culture may contain elements that are confusing, offensive, or otherwise
inappropriate in another. Systems should be easily configurable for deployment in multiple
cultures.

CHI 2003 AI-4 John & Bass

13. Leveraging Human Knowledge

People use what they already know when approaching new situations. Such situations may
include using new applications on a familiar platform, a new version of a familiar applica-
tion, or a new product in an established product line.

New approaches usually bring new functionality or power. When, however, users are unable
to apply what they already know, a corresponding cost in productivity and training time is
incurred. For example, new versions of applications often assign items to different menus or
change their names. As a result, users skilled in the older version are reduced to the level of
novices again, searching menus for the function they know exists.

System designers should strive to develop upgrades that leverage users’ knowledge of prior
systems and allow them to move quickly and efficiently to the new system.

14. Modifying Interfaces

Iterative design is the lifeblood of current software development practice, yet a system devel-
oper may find it prohibitively difficult to change the user interface of an application to reflect
new functions and/or new presentation desires. System designers should ensure that their user
interfaces can be easily modified.

15. Supporting Multiple Activities

Users often need to work on multiple tasks more or less simultaneously (e.g., check mail and
write a paper). A system or its applications should allow the user to switch quickly back and
forth between these tasks.

16. Navigating Within a Single View

A user may want to navigate from data visible on-screen to data not currently displayed. For
example, he or she may wish to jump from the letter “A” to the letter “Q” in an online ency-
clopedia without consulting the table of contents. If the system takes too long to display the
new data or if the user must execute a cumbersome command sequence to arrive at her or his
destination, the user’s time will be wasted. System designers should strive to ensure that us-
ers can navigate within a view easily and attempt to keep wait times reasonably short. (See:
Working at the User’s Pace)

17. Observing System State

A user may not be presented with the system state data necessary to operate the system (e.g.,
uninformative error messages, no file size given for folders). Alternatively, the system state
may be presented in a way that violates human tolerances (e.g., is presented too quickly for

CHI 2003 AI-5 John & Bass

people to read. See: Working at the User’s Pace). The system state may also be presented in
an unclear fashion, thereby confusing the user. System designers should account for human
needs and capabilities when deciding what aspects of system state to display and how to pre-
sent them.

A special case of Observing System State occurs when a user is unable to determine the level
of security for data entered into a system. Such experiences may make the user hesitate to use
the system or avoid it altogether.

18. Working at the User’s Pace

A system might not accommodate a user’s pace in performing an operation. This may make
the user feel hurried or frustrated. For example, ATMs often beep incessantly when a user
“fails” to insert an envelope in time. Also, Microsoft Word’s scrolling algorithm does not take
system speed into account and becomes unusable on fast systems (the data flies by too
quickly for human comfort). Systems should account for human needs and capabilities when
pacing the stages in an interaction. Systems should also allow users to adjust this pace as
needed.

19. Predicting Task Duration

A user may want to work on another task while a system completes a long running operation.
For example, an animator may want to leave the office to make copies or to eat while a com-
puter renders frames. If systems do not provide expected task durations, users will be unable
to make informed decisions about what to do while the computer “works.” Thus, systems
should present expected task durations.

20. Supporting Comprehensive Searching

A user wants to search some files or some aspects of those files for various types of content.
For example, a user may wish to search text for a specific string or all movies for a particular
frame. Search capabilities may be inconsistent across different systems and media, thereby
limiting the user’s opportunity to work. Systems should allow users to search data in a com-
prehensive and consistent manner by relevant criteria.

21. Supporting Undo

A user performs an operation, then no longer wants the effect of that operation. For example,
a user may accidentally delete a paragraph in a document and wish to restore it. The system
should allow the user to return to the state before that operation was performed. Furthermore,
it is desirable that the user then be able to undo the prior operation (multi-level undo).

CHI 2003 AI-6 John & Bass

22. Working in an Unfamiliar Context

A user needs to work on a problem in a different context. Discrepancies between this new
context and the one the user is accustomed to may interfere with the ability to work. For ex-
ample, a clerk in business office A wants to post a payment for a customer of business unit B.
Each business unit has a unique user interface, and the clerk has only used unit A’s previ-
ously. The clerk may have trouble adapting to business unit B’s interface (same system, un-
familiar context.) Systems should provide a novice (verbose) interface to offer guidance to
users operating in unfamiliar contexts.

23. Verifying Resources

An application may fail to verify that necessary resources exist before beginning an opera-
tion. This failure may cause errors to occur unexpectedly during execution. For example,
some versions of Adobe® PhotoShop® may begin to save a file only to run out of disk space
before completing the operation. Applications should verify that all necessary resources are
available before beginning an operation.

24. Operating Consistently Across Views

A user may become confused by functional deviations between different views of the same
data. Commands that had been available in one view may become unavailable in another or
may require different access methods. For example, users cannot run a spell check in the
Outline View utility found in a mid-90’s version of Microsoft Word. Systems should make
commands available based on the type and content of a user’s data, rather than the current
view of that data, as long as those operations make sense in the current view.

For example, allowing users to perform operations on individual points in a scatter plot while
viewing the plot at such a magnification that individual points cannot be visually distin-
guished does not make sense. A naïve user is likely to destroy the underlying data. The sys-
tem should prevent selection of single points when their density exceeds the resolution of the
screen, and inform the user how to zoom in, access the data in a more detailed view, or oth-
erwise act on single data points. (See: Providing Good Help and Supporting Visualization)

25. Making Views Accessible

Users often want to see data from other viewpoints. For example, a user may wish to see the
outline of a long document and the details of the prose. If certain views become unavailable
in certain modes of operation, or if switching between views is cumbersome, the user’s abil-
ity to gain insight through multiple perspectives will be constrained. (See: Supporting Visu-
alization)

CHI 2003 AI-7 John & Bass

26. Supporting Visualization

A user wishes to see data from a different viewpoint. Systems should provide a reasonable set
of task-related views to enhance users’ ability to gain additional insight while solving prob-
lems. For example, Microsoft Word provides several views to help users compose docu-
ments, including Outline and Page Layout modes.

27. Supporting Personalization (not in CMU/SEI-2001-TR-005)

A user wants to work in a particular configuration of features that the system provides. The
user may want this configuration to persist over multiple uses of the system (as opposed to
having to set it up each time). Systems should enable a user to specify their preferences for
features and provide the possibility for these preferences to endure. For example, customizing
Netscape’s toolbar or saving a hierarchical structure of bookmarks.

CHI 2003 AII-1 John & Bass

Appendix II
Details of the Usability Benefit Hierarchy
(excerpt from Bass, L., John, B. E., & Kates, J. (2001). Achieving
usability through software architecture (CMU/SEI-2001-TR-005).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University)

To create usable systems, designers must first ensure that their proposed products provide the
functionality their users actually need to perform work as opposed to the functionality that
the marketing or development team imagines they need. In other words, systems must pro-
vide functionality that fits the individual, organizational, and social structure of the work
context. Although specifying and identifying needed functionality are fundamental steps in
the development process, these design phases do not typically involve architectural concerns.
Thus, we will not discuss them here. (We refer readers interested in these issues to Contextual
Design [Beyer 1998].)

Assuming that the functionality needed by a system’s users is correctly identified and speci-
fied, the usability of such a system can still be seriously compromised by architectural deci-
sions that hinder or even prevent the required benefits. In extreme cases, the resulting system
can become virtually unusable.

This section organizes and presents scenarios by their usability benefits. We arrived at the
hierarchy of usability benefits presented in Table 1 using a bottom-up process called the af-
finity process [Beyer 1998]. We took this approach rather than taking an existing definition of
usability and sorting the scenarios into it because it was not clear that architecturally sensitive
scenarios would cover the typical range of usability benefits. However, the resulting hierar-
chy does not differ significantly from organizations of usability given by other authors [e.g.,
Newman 1995; Nielsen 1993; Shneiderman 1998], and we view this as partial confirmation
that our set of architecturally sensitive scenarios covers, in some sense, the usability space.
Each scenario occurs in one or more positions in the hierarchy.

The entries in this chapter discuss each item of the usability benefit hierarchy. One premise of
this work has been that the design of a system embodies tradeoffs between benefits (usabil-
ity) and cost (software engineering). Hence in each section, we discuss the appropriate mes-
sages for each benefit. This will enable the usability engineer to better argue the potential
benefits of each scenario and the software engineer to know what instrumentation should be
embedded into the system to support the benefit calculations.

CHI 2003 AII-2 John & Bass

Table 1. Usability Benefits Heirarchy

Increases individual user effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance
Reduces the impact of routine user errors (slips)

Improves non-routine performance
Supports problem-solving
Facilitates learning

Reduces the impact of user errors caused by lack of knowledge (mistakes)
Prevents mistakes
Accommodates mistakes

Reduces the impact of system errors
Prevents system errors
Tolerates system errors

Increases user confidence and comfort

1 Increases Individual User Effectiveness

If addressed properly, the scenarios included in this category will improve the performance of
individual users. Such increases in productivity, though seemingly small when considered
discretely, can aggregate to produce substantial benefits for an organization as a whole.

1.1 Expedites routine performance

In a routine task, a user recognizes a situation, knows what the next goal should be, and
knows what to do to accomplish that goal. No problem-solving is necessary. All that remains
is for the user to recall and execute the commands necessary to complete the task.

When performing routine tasks, even skilled users will become faster but will probably not
develop new methods to complete their tasks [Card 1983]. This is in contrast to a problem-
solving or learning situation where the user is likely to discover or learn a new method while
performing a task. (For an example of learning and problem-solving behavior, see non-
routine performance.)

Although users know what to do to accomplish routine tasks, they will still make errors. In
fact, observations of skilled users performing routine tasks reveal that about 20% of a user’s
time may be consumed by making, then recovering from, mistakes. These “routine errors”
result from “slips” in execution (e.g., hitting the wrong key or selecting the menu item next to
the one desired), rather than from a lack of knowledge (i.e., not knowing which command to

CHI 2003 AII-3 John & Bass

use). Slips can never be totally prevented if there are multiple actions available to a user, but
some system designs accommodate these errors more successfully than others.

Accelerates error-free portion of routine performance

Routine tasks take time for a user to recognize the situation, recall the next goal and the
method used to accomplish it, and to mentally and/or physically execute the commands to
accomplish the goal. We call the minimum required time to accomplish a task, assuming no
slips, the error-free portion of routine performance.

In practice, the actual performance time is the sum of this minimum time and the time it takes
to make and recover from slips. Systems can be designed to maximize error-free performance
time, thereby reducing time to perform routine tasks and increasing individual effectiveness.

Reduces the impact of routine user errors (slips)

The negative impact of routine user errors can be reduced in two ways. First, since users will
always slip, reducing the number of opportunities for error (roughly corresponding to the
number and difficulty of steps in a given procedure) will usually reduce its occurrence. Sec-
ond, systems can be designed to better accommodate user slips by providing adequate recov-
ery methods.

1.2 Improves non-routine performance

In a non-routine task, a user does not know exactly what to do. In this situation, the user may
experiment within the interface by clicking on buttons either randomly or systematically to
observe the effects. The user might guess at actions based on previous experience. He or she
might also use a tutorial, a help system, or documentation. Success in these “weak methods”
of dealing with a new situation can be helped or hindered through system design.

Supports problem-solving

Users employ problem-solving behavior when they do not know exactly what to do. This be-
havior can be described as a search through a problem space [Newell and Simon 1972].
When confronted with a new problem, people guess at solutions based on previous experi-
ence, try things at random to see what happens, or search for the desired effect.

For this discussion, we assume that the user understands the goal of the task (e.g., I would
like to replace all occurrences of “bush” with “shrub”), but the user may have to search
through the system’s available commands to achieve the desired outcome.

Measures of how well a system supports problem-solving include

• the time it takes to accomplish a novel task

CHI 2003 AII-4 John & Bass

• the number of incorrect paths the user takes while accomplishing a novel task

• the type of incorrect paths the user takes while accomplishing a novel task (e.g., paths
that have unforeseen and permanent side effects or benign paths that change nothing but
simply add to the problem-solving time)

• the time necessary to recover from incorrect paths (Systems that support UNDO usually
score well on this measure.)

In addition to reducing time spent on incorrect paths, well-designed systems may actually
enhance users’ problem-solving capabilities, further improving productivity.

Facilitates learning

Humans continuously learn as they perform tasks. Even in routine situations, humans con-
tinue to speed up with each repetition, eventually reaching a plateau where further improve-
ments in performance become nearly imperceptible. In non-routine situations, people learn by
receiving training, consulting instructions (using a help system, documentation, or asking a
friend), by exploring the system, by applying previous experience to the new situation, and/or
by reasoning based on what they know (or think they know) about a system. They may also
learn by making a mistake, observing that the erroneous action does not produce the desired
result, and by remembering not to perform this action again.

Measures of how well a system supports learning typically include

• the number of times a task must be performed by a user before it is completed without
error. (Often investigators include a repetition requirement to avoid the “luck” factor; for
example, a user must perform a task n times without error.)

• the time before a user fulfills the error-free repetition requirement (defined above)

• incidental learning measures, in which a user first performs a task until some level of
mastery is reached. The user then performs a different task that he or she has not prac-
ticed. The problem-solving and learning measures associated with this second task are
measures of incidental learning.

1.3 Reduces the impact of user errors caused by lack of
knowledge (mistakes)

In addition to the errors people make even when they know how to accomplish their tasks
(slips, discussed above), people make errors when they do not know what to do in the current
situation. In a typical scenario, a user does not understand that the current situation differs in
important ways from previously encountered situations, and therefore he or she misapplies

CHI 2003 AII-5 John & Bass

knowledge of procedures that have worked before.1 Errors due to lack of knowledge are
called mistakes.

Design cannot prevent all mistakes, but careful design can prevent some of them. For exam-
ple, a typical technique to help prevent mistakes is to gray out inapplicable menu items. Since
some mistakes will still occur, systems should also be designed to accommodate them.

Prevents mistakes

The following are typical measures of how well a system helps to prevent mistakes:

• the number of mistaken actions that a user could make while completing a task

• the type of mistakes the user could make while accomplishing a task (e.g., paths that have
unforeseen and permanent side effects, or benign paths that change nothing)

(While these measures appear similar to those associated with problem-solving; that case fo-
cuses on how well the system guides the user back to the correct path. Preventing mistakes
focuses on how well the system guides the user away from an incorrect path. The difference
is subtle.)

Accommodates mistakes

Since mistakes will occur if the user has the freedom to stray from a correct path, the system
should accommodate these errors. The most telling measures of such accommodation are

• the degree to which the system can be restored to the state prior to the mistake

• the time necessary to recover from mistakes (Systems that support UNDO usually score
well on this measure.) This duration includes the time needed to restore all data and re-
sources to the state before the error.

2 Reduces the Impact of System Errors

Systems will always operate with some degree of error. Networks will go down, power fail-
ures will occur, and applications will contend for resources and conflict. Design cannot pre-
vent all system errors, but careful design can prevent some of them. All systems should be
designed to tolerate system errors. This section differs from section 3.1. “Reduces the impact
of routine user errors” only in the source of the error discussed. Here, we address system

1 It is often difficult to distinguish a mistake from an exploratory problem-solving action. Typically,

a mistake is when the user “knows” what to do and is wrong; while problem-solving is when the
user doesn’t know what to do and is trying to find the correct way. Therefore, the difference can
only be detected through means other than the observation of actions – think-aloud protocols or
interviews about what a person intended when taking an action, or his or her response when the
action does not have the intended result (which indicates a mistake) typically allow observers to
make this distinction. However, for architecture design, this distinction is not important; some us-
ers may be problem-solving and others making mistakes, but the architecture should support both.

CHI 2003 AII-6 John & Bass

error, not user error. The measures stay the same but the object of measurement becomes the
system.

2.1 Prevents system errors

As with preventing mistakes, the measures associated with preventing system errors are the
number and type of error that occur as a user performs a task.

2.2 Tolerates system errors

Since system errors will occur, systems should be set up to tolerate them. Again, as with ac-
commodating mistakes, the most telling measures of error tolerance are

• the degree to which the system state can be restored to the state before the error.

• the time necessary to recover from errors. This duration includes the time needed to re-
store all data and resources to the system state before the error.

3 Increases user confidence and comfort

In the scenarios included in this category, the benefits do not involve users’ efficiency, prob-
lem-solving processes, ability to learn, or propensity to make mistakes. The benefits do in-
volve how they feel about the system; for some architectural decisions do facilitate or inhibit
capabilities that increase user confidence and comfort, and this may be of value to an organi-
zation. Measures of confidence and comfort are more indirect than the time- and error-based
metrics in the preceding categories, and typically involve questionnaires or interviews, or
analysis of buying behavior (e.g., return customers and referrals).

CHI 2003 AIII-1 John & Bass

Appendix III
Software Architecture Tactics Hierarchy
(Adapted from Bass, L., John, B. E., & Kates, J. (2001). Achieving usability through
software architecture (CMU/SEI-2001-TR-005). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University and Bass, L, Clements, P., and Kazman, R.
Software Architecture in Practice, 2nd edition, 2003. Addison-Wesley Longman.
In the original version of CMU/SEI-2001-TR-005 and several of our previously pub-
lished papers, we used the term “mechanisms” instead of “tactics” to refer to tech-
niques for addressing the usability scenarios. The tactics given here extend the tac-
tics given in Chapter 5 of Software Architecture in Practice.)

This chapter gives the software architecture hierarchy and describes the software architecture
tactics used in the list of usability scenarios. The hierarchy, in brief, is given in Table 3 and
each tactic listed is described in subsequent sections.

Table 2 Software Architecture Hierarchy

Localize expected changes

- Maintain semantic consistency

- Separate data from commands

- Separate data from the view of that data

- Separate authoring from execution
 Maintain multiple copies

- Data

- Commands
Use an intermediary

- Data

- Function
Recording

Preemptive scheduling Policy

Support system initiative

- Task model

- User model

- System model

CHI 2003 AIII-2 John & Bass

An item that affects the range of these tactics is how broadly they are shared. That is, embed-
ding a use of a tactic in the infrastructure and making it available to any application is more
far reaching than keeping a tactic within a single application or within a set of applications.
We do not capture this range consideration within the description of the tactics.

1 Localize expected changes

Although there is no necessarily a precise relationship between the number of modules af-
fected by a set of changes and the cost of implementing those changes, keeping modifications
restricted to a small set of modules will generally reduce the cost. The goal of these tactics is
to assign responsibilities to modules such that anticipated changes will be limited in scope.
We identify four tactics to accomplish this.

1.1 Hide information

Information hiding is probably the most basic software engineering tactic. It means enclosing
functionality within a module, exposing only what is necessary to achieve that functionality,
and returning results. Everything else is hidden within the module. This is localizing expected
changes because the encapsulated functionality is separated from other functionality. Encap-
sulation enables a developer to modify the algorithms within the module without changing
other portions of the system.

1.2 Separate data from commands

Separating data from function is a tactic that allows a number of distinct commands to be per-
formed on a set of data, or a single command to be performed on a number of distinct data
sets. When using this tactic, the data (or sets of data) are encapsulated separately from the
command or commands. The commands are user-specified commands (or maybe abbrevia-
tions or aggregations of user commands). This tactic is most appropriate when either the set
of commands or the set of data are dynamic. That is, the data being operated on by the com-
mands may be highly changeable and the set of commands that the user can specify may be
highly changeable.

1.3 Separate data from the view of that data

Separating data from the view of that data is a tactic that allows distinct perspectives to be
placed on a set of data. The data is itself encapsulated into an area with various access and
modification functions, as above. The description of how a user might wish to see that data is
also maintained as a distinct collection. It specifies items such as units, language, filters for
data items, methods for combining data items, style sheets, and so forth. Separating the data
from a description of the view of that data allows different users to express different prefer-
ences, allows data to be hidden from certain users, and allows users to view the data differ-
ently depending on the platform they are currently using.

CHI 2003 AIII-3 John & Bass

1.4 Separate authoring from execution

Separation of the authoring of a specification of an action from the execution of that specifi-
cation is a basic element of all software development. This separation is an example of lo-
calization in that the support necessary for authoring a specification is distinct from the sup-
port necessary to interact with the result of an execution of that specification. We are
interested in a much more restrictive meaning of this separation. We are interested in the as-
pect of authoring that allows an end user to specify the behavior of a software system within
that system. This may be as simple as choosing settings on a menu or as complicated as using
a scripting language. The specification may also persist across executions of the system or it
may exist for only the current execution. The specification may also be a schedule of par-
ticular activities to be executed after terminating the current execution.

Authoring incurs a cost in human behavior. That is, it takes time and effort. Any analysis of
the costs and benefits of allowing the end user to author behavior should consider the cost of
authoring as well as the benefits that result.

2 Maintain multiple copies

Maintaining multiple copies is the tactic of having duplicate copies or variants within the
software system of some entity. This entity can be data or it can be function. The general rea-
sons why one would replicate either data or function are to increase performance, to increase
reliability, or to provide alternative routes for the achievement of a particular result.

2.1 Data

The reason for maintaining multiple copies of data is sometimes to increase performance and
sometimes to increase availability. One instance of this tactic for the purpose of improving
performance is to cache data in the same structure in several different locations with different
access times. For example, a web page may be cached on a local machine to decrease re-
trieval time from the Internet. Another form of this tactic is to maintain the data in different
structures. For example, large data sets are often maintained with index files that speed up the
searching process. One form of this tactic to improve availability is the saving of state for the
purpose of restarting a system in the event of failure.

Regardless of the reason for maintaining multiple copies, whenever the same data is found in
two locations it is necessary to maintain consistency. That is, regardless of where it is ac-
cessed, the data should be the same. There are a variety of schemes that maintain consistency;
the important point is to ensure consistency whenever replication is used.

CHI 2003 AIII-4 John & Bass

2.2 Commands

Multiple copies of a command may exist in order to provide for multiple user interfaces to
achieve the same functionality. These user interfaces could be remote versus local, or it could
be that alternative paths are available for an end user to achieve a desired functionality. In any
case, different commands may be available to achieve the same goal.

3 Use an intermediary

Using an intermediary is a tactic intended to reduce the coupling between distinct elements.

3.1 Data

We will use the terms “data producer” and “data consumer” to describe the data intermediary
tactic. A direct connection would have the data producer providing the data directly to the
data consumer(s). This means that there is a tight coupling between the data producer and the
data consumer(s) and that either knowledge of the consumer is embedded in the producer or
vice versa. Either type of knowledge means that the addition or deletion of a data consumer
will affect the data producer (or vice versa). By interposing an intermediary, the coupling can
be reduced.

The intermediary works by providing a separate module to distribute the data. A consumer
would register with the distribution manager that it is interested in a particular data item and a
producer would register with the distribution manager that it produces a particular data item.
The registration process can be done either at specification time or at execution time. Both
the consumer and producer of data have a direct relationship with the distribution manager
but not with each other. A new consumer can be added or removed by informing the distribu-
tion manager, while the producer remains unaffected.

3.2 Function

An intermediary function is interposed between various alternative methods of accomplishing
a particular service. Terms such as a “virtual device,” a “virtual tool kit,” a “strategy pattern,”
and a “factory pattern” describe this tactic. Binding between the service requester and the
alternative service provider service may be done before or at execution time. In any case, the
service requester uses a single interface to interact with the function intermediary, and the
function intermediary translates the information received specifically for the alternative cho-
sen.

4 Recording

This tactic records system state periodically for further use. Some of the variables that are
dependent upon the particular application of the tactic are

CHI 2003 AIII-5 John & Bass

• the frequency with which the state is recorded

• the actual state recorded

• the use to which the recorded state is put

• the persistence of the data recorded. Some applications require that the state is recorded
in persistent storage; others require that it be recorded in volatile storage.

• the consistency of the data recorded. In some cases, the data will be consistent because
the application interrupts its other activities in order to record data. In other cases, con-
sistency of the data may not matter. In still other cases, a transaction type tactic may be
required in order to guarantee data consistency.

5 Preemptive scheduling policy

Scheduling policy determines which resources are assigned to what activities within the
computer system. The types of resources may be physical, such as memory, central process-
ing unit, input/output peripherals; or they may be logical, such as queues, flags, or other enti-
ties.

In general, scheduling can be done on a preemptive or a non-preemptive basis. That is, once
an activity has a resource, it may have the resource taken away (preemptive) or it may keep
that resource until it voluntarily yields it (non-preemptive). Within these two broad catego-
ries are a variety of scheduling tactics. The choice of a particular tactic for a particular re-
source is based on several considerations including the type of resource, maximizing utiliza-
tion of the resource, minimizing waiting time for the resource, and priority of one task over
another. Measures of a scheduling tactic include utilization of the resource, worst-case wait-
ing time, average waiting time, and so forth.

Preemptive scheduling allows the software system to have multiple simultaneous activities.
In fact, the activities are not simultaneous when examined at a tiny time scale (measured in
terms of microseconds) but they appear simultaneous when examined at a larger time scale
(measured in terms of 10s of milliseconds). The term thread refers to a logical sequence of
activities within the computer system. At any point in time, a thread is either active (con-
suming the processor resource) or blocked (waiting for a resource or for some input). Having
multiple simultaneous activities is expressed as having multiple threads. Having multiple
threads is most often accomplished (although not exclusively) by using a preemptive proces-
sor scheduling strategy.

6 Support system initiative

The terms “system initiative” and “user initiative” are used to differentiate whether the sys-
tem is merely responding to the user or taking the initiative to offer some information or ac-
tion without the user explicitly requesting. Examples of system initiative are progress bars
indicating how close to completion a particular task is, making assumptions about the user to
control scrolling rate or making assumptions about the task to fix misspellings. System ini-

CHI 2003 AIII-6 John & Bass

tiative is supported by keeping a model (either implicit or explicit) within the system which
allows the model to be used for prediction. Different models can predict different types of
items. Each model requires various types of input to accomplish its prediction. Clearly identi-
fying the models that the system uses to predict either its own behavior or the user’s intention
enables designers to tailor and modify those models either dynamically or off-line during de-
velopment.

6.1 Task model

In this case, the model maintained is that of the task. The model of the task is used to deter-
mine context so the system can have some idea of what the user is attempting to accomplish
and can provide various kinds of assistance such as correcting erroneous input.

6.2 User model

In this case, the model maintained is of the user. The model determines the user’s knowledge
of the system, the user’s behavior in terms of expected response time, and other aspects that
are specific to a user or a class of users. User models are maintained for customization and
for anticipating response times.

6.3 System

In this case, the model maintained is that of the system. The model determines the expected
behavior of the system so that appropriate feedback can be given to the user. The model of
the system predicts items such as the time needed to complete current activity.

CHI 2003 AIV-1 John & Bass

Appendix IV
Benefits/Tactics Matrix
In this appendix, we present a matrix that puts the benefits hierarchy on one axis and the tac-
tics hierarchy on the other. Each cell contains the general usability scenarios that correspond
to the tactics and benefit hierarchies.

On the one hand, this matrix reproduces the information presented in Sections 4 and 6 in
CMU/SEI-2001-TR-005. On the other, the matrix provides additional benefits. The software
design team can decide which usability benefits are most valued in a particular project, use
the matrix to focus on the general scenarios providing those benefits to see which are appli-
cable to the project, and then read off the software tactics necessary to implement those sce-
narios. The team can use this information to generate the architecture or to evaluate an exist-
ing architecture to see what usability risks might be inherent in their design. Alternatively, the
team could look at the tactics included in a current system design and use the matrix to dis-
cover which general usability scenarios could be implemented using those tactics, and which
additional usability scenarios could be addressed with only small changes to the architecture.
We expect this matrix to be the vehicle for referencing the work presented here and thereby
increase its utility beyond the linear format of prose and diagrams.

CHI 2003 AIV-2 John & Bass

KEY
1 Aggregating data 10 Providing good help 19 Predicting task duration
2 Aggregating commands 11 Reusing information 20 Supporting comprehensive searching
3 Canceling commands 12 Supporting international use 21 Supporting Undo
4 Using applications concurrently 13 Leveraging human knowledge 22 Working in an unfamiliar context
5 Checking for correctness 14 Modifying interfaces 23 Verifying resources
6 Maintaining device independence 15 Supporting multiple activity 24 Operating consistently across views
7 Evaluating the system 16 Navigating within a single view 25 Making views accessible
8 Recovering from failure 17 Observing system state 26 Supporting visualization
9 Retrieving forgotten passwords 18 Working at the user’s pace 27 Supporting personalization

Accelerates
error-free
portion

Reduces
impact of slips

Supports
problem-
solving

Facilitates
learning

Prevents
mistakes

Accommo-
dates mistakes

Tolerates
system errors

Prevents
system errors

Hide information
4, 13, 14, 15,

20, 23
4, 13, 20 4, 13, 20 4, 13, 20 9, 14 23

Separate data
from the view of
that data

12, 13, 24, 25 12
12, 13, 22, 24,

25, 26 12, 13, 24 12, 13, 22, 24 12 12

Separate data
from commands 1, 24, 25 5, 17

5, 17, 24, 25,
26 5, 17, 24 1, 5, 17, 24 1, 5, 17 17

Separate authoring
from execution 1, 2 2 1, 2 1, 2

Data
16

Commands
2 2 22 2, 22 2

Data
7, 11, 14 11 7, 11 14

Function
6, 14, 20, 27 27 6, 20 20 20, 27 14 6 27

2, 7 2, 3, 21 3, 7, 21 2 2, 3, 21 3, 8

15, 18, 19 3, 5, 17, 18 3, 5, 10, 17 5, 10, 17 5, 17, 19 3, 5, 17 3 17, 18

Task model
18, 19 5, 17, 18 5, 10, 17 5, 10, 17 5, 17, 19 5, 17 17, 18

User model
12, 18 5, 12, 17, 18 5, 10, 12, 17,

22
5, 10, 12, 17 5, 12, 17, 22 5, 12, 17 12, 17, 18

System model
4, 6, 19, 23 3, 5, 17 3, 4, 5, 6, 17 4, 5, 17 4, 5, 17, 19 3, 5, 17 3 6, 23 17

Support system
initiative

Recording

Preemptive scheduling policy

Use an
intermediary

Increases
confidence
and comfort

Reduces impact of system
errors

Localize
Modifications

Maintain multiple
copies

Architectural
Tactics

Expedites routine performance

Increases individual effectiveness

Improves non-routine
performance

Reduces impact of mistakes

Usability
Benefits

CHI 2003 ref-1 John & Bass

References

References in Usability and Software Architecture

Bass, L., John, B. E. & Kates, J. (2000) Achieving usability through software
architecture (CMU/SEI-2001-TR-005). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University.
Downloadable from
www.sei.cmu.edu/publications/documents/01.reports/01tr005.html

References in software engineering and software architecture
cited in the slides or appendices

Bachmann, F., Bass, L., Chastek, G., Donohoe, P., & Peruzzi, F. (2000) The
architecture based design method (CMU/SEI-2000-TR-001). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University.
Downloadable from
www.sei.cmu.edu/publications/documents/00.reports/00tr001.html

Bass, L.; Clements, P. & Kazman, R. (2003). Software Architecture in Prac-
tice. 2nd edition. Reading, MA: Addison Wesley Longman.

Buschmann, F., Meuneir, R, Rohnert, H., Sommerlad, P. and Stal, M., (1996)
Pattern-Oriented Software Architecture, A System of Patterns, Chichester,
Eng: John Wiley and Sons.

Clements, P., Kazman, R, & Klein, M. (2001). Evaluating software architec-
tures: Methods and case studies. Boston: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., (1995) Design Patterns,
Elements of Reusable Object-Oriented Software, Reading, MA: Addison
Wesley Longman.

Klein, M. & Bachmann, F. (2000). Quality Attribute Design Primitives
(CMU/SEI-2000-TN-2000-017). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University.
Downloadable from
www.sei.cmu.edu/publications/documents/00.reports/00tr017.html

Laprie, J.-C. (1992) Dependability: Basic Concepts and Terminology.
Springer-Verlag: Vienna.

McCall, J. (2001) Quality Factors. In Encyclopedia of Software Engineering
(2nd edition) John Marciniak, ed., John Wiley, New York, pp 1083-1093

CHI 2003 ref-2 John & Bass

Smith, C. & Williams, L., (2001) Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software. Reading, Ma.:Addison Wesley
Longman.

References in human performance usability cited in the slides
or appendices

Beyer, H. & Holtzblatt, K. (1998) Contextual Design. San Francisco, CA:
Morgan Kaufmann Publishers, Inc.

Card, S. K., Moran, T. P. & Newell, A. (1983) The Psychology of Human-
Computer Interaction. Hillsdale, NJ: Erlbaum.

Gram, C. & Cockton, G. (1996) Design Principles for Interactive Systems.
London, England: Chapman and Hall.

Miller, D. P. & Swain, A. D. (1987) Human Error and Human Reliability. In
Gavriel Salvendy, ed. Handbook of Human Factors, New York: John Wiley
and Sons, Inc., pp. 219-257.

Newell, A. & Simon, H. A. (1972) Human Problem Solving. Englewood Cliffs,
NJ: Prentice-Hall.

Newman, W. & Lamming, M. (1985) Interactive System Design. Wokingham,
England: Addison-Wesley Publishing.

Nielsen, J. (1993) Usability Engineering. Boston, MA: Academic Press Inc.

Shneiderman, B. (1998) Designing the User Interface, 3rd ed. Reading, MA:
Addison-Wesley.

