Steady-State ALPS for Real-Valued Problems

Gregory S. Hornby
University Affiliated Research Center, U.C. Santa Cruz
NASA Ames Research Center, Mail Stop 269-3
Moffett Field, CA USA
gregory.s.hornby@nasa.gov

ABSTRACT

The objectives of this paper are to describe a steady-state version
of the Age-Layered Population Structure (ALPS) Evolutionary Al-
gorithm (EA) and to compare it against other GAs on real-valued
problems. Motivation for this work comes from our previous suc-
cess in demonstrating that a generational version of ALPS greatly
improves search performance on a Genetic Programming problem.
In making steady-state ALPS, some modifications were made to the
method for calculating age and the method for moving individuals
up age layers. To demonstrate that ALPS works well on real-valued
problems we compare it against CMA-ES and Differential Evo-
lution (DE) on five challenging, real-valued functions and on one
real-world problem. While CMA-ES and DE outperform ALPS on
the two unimodal test functions, ALPS is much better on the three
multimodal test problems and on the real-world problem. Further
examination shows that, unlike the other GAs, ALPS maintains a
genotypically diverse population throughout the entire search pro-
cess. These findings strongly suggest that the ALPS paradigm is
better able to avoid premature convergence then the other GAs.

Categories and Subject Descriptors

G.1.6 [Mathematics of Computer]: Numerical Analysis, Opti-
mization; 1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms

Algorithms, Performance, Reliability

Keywords

Age, Premature Convergence, Numerical Optimization, Evolution-
ary Algorithms

1. INTRODUCTION

Since the introduction of the initial Genetic Algorithm (GA) by
Holland [6] a number of variations have been introduced with the
goal of constructing a better optimizer [2, 5, 17]. While some im-
provements in performance have been achieved, premature conver-
gence is still a problem. In the Genetic Programming (GP) commu-
nity, the Age-Layered Population Structure (ALPS) Evolutionary

Copyright 2009 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
GECCO’09, July 8-12, 2009, Montréal, Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$10.00.

Algorithm (EA) was introduced as a way of addressing, and sig-
nificantly reducing, premature convergence [7]. ALPS differs from
other EAs in that it segregates the population into multiple layers
using a novel measure of age, and it reduces premature convergence
by introducing a new group of randomly generated individuals into
the bottom layer at regular intervals.

One advantage of ALPS is that it does not use any details of
the representation and, thus, can be used with any sort of encoding
scheme: GP programs, bit-strings, real-valued vectors of parame-
ters, sequences of integers (such as for solving a scheduling or TSP
problem), and anything else. Having been demonstrated to be ef-
fective on GP problems with GP representations [12, 16, 22], the
main objective of this paper is to introduce the ALPS paradigm
to the GA community by comparing ALPS against leading GA
systems on real-valued, GA problems. To demonstrate that ALPS
works well on real-valued problems we compare it against a basic
GA, the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [5] and Differential Evolution (DE) [17] on five challenging,
real-valued functions and on one real-world problem. Both CMA-
ES and DE use information from the genotypes in the population
to direct search and achieve improved performance. Intuitively we
might expect that these domain-specialized algorithms (CMA-ES
and DE) will always outperform a domain-independent algorithm
(ALPS) but instead we find that ALPS is the better algorithm on
multimodal problems. These results suggest that ALPS should be
the GA of choice on hard, real-world problems.

The second objective of this paper is to present a steady-state
variation of the original ALPS algorithm. One of the advantages of
a Steady-State GA is that it does not have the synchronization is-
sues of a Generational GA [19], and this can be quite beneficial for
implementation on distributed systems such as Beowulf clusters.
To implement a steady-state version of ALPS we needed to modify
those parts of the algorithm that depended on evolution happening
in discrete generations. One modification was changing the method
of measuring age from updating ages at the end of each generation
to basing age on a count of the number of evaluations divided by
the population size. Another modification was in the method by
which individuals are moved up layers, and here we added checks
to prevent replacement of recently moved individuals. We hope that
this description of a steady-state version of ALPS will be useful to
those for whom a steady-state EA is preferable to a generational
one.

The rest of this paper is organized as follows. In Section 2 we
discuss search algorithms and robustness. In Section 3 we describe
the ALPS paradigm and then in Section 4 we present our steady-
state version of ALPS. Sections 5 and 6 describe the experimental
setup and test problems. Results of the experiments are given in
Section 7 and we find that CMA-ES and DE outperform ALPS on

the uni-modal test problems but ALPS is much better on the three
multi-modal test problems and on the real-world problem. Sec-
tion 8 contains a discussion and thoughts on directions for future
work, and our conclusion is in Section 9.

2. IMPROVING SEARCH

In the field of optimization algorithms, one type of algorithmic
improvement is that of increasing the speed at which problems of
solvable difficulty can be solved. This is shown in papers in which
the comparison is on which algorithm can find the global optima
of a benchmark problem in the fewest number of evaluations. An-
other type of algorithmic improvement is increasing the robustness
of the algorithm. That is, either increasing the reliability of find-
ing the global optima or being able to find better results then other
algorithms. ALPS was developed to be a more robust EA — espe-
cially on hard problems — although not necessarily the fastest one
on easy problems. This interest in improving robustness on hard
problems, at the cost of slightly slower speed on easy problems,
is becoming a more useful tradeoff with the continual increase in
computing power available.

Combating premature convergence is one attribute of a robust
optimization algorithm. GAs cannot generally be run effectively
beyond some number of evaluations and this is because the popula-
tion converges prematurely to a local optimum and further applica-
tion of variation operators cannot generate viable individuals on a
different (and better) optima. To reduce the premature convergence
problem, many EA practitioners will try increasing the mutation
rate, the mutation size and/or the population size. Increasing the
mutation rate will keep diversity high and keep the population from
converging quickly but it is just as likely to replace good alleles and
building blocks as bad ones. Also, if the mutation size is too large
then the mutation operator will not create offspring near its parent
and the GA will be unable to explore narrow fitness peaks. Us-
ing a larger population simply increases the number of generations
before it converges with the hope of increasing the likelihood of
finding the fitness peak with global optima. But selecting the best
population size can be a challenge: using too large of a population
on a simple problem results in search taking much longer than nec-
essary, and on difficult problems the minimum size needed may be
too large to be feasible.

Another way to reduce premature convergence is to use some
system for explicitly maintaining genotypic diversity in the popu-
lation throughout an evolutionary run. Diversity of the population
can be maintained by modifying the replacement strategy, such as
with preselection [1], crowding [3], or deterministic crowding [15].
Another approach is the use of sharing functions, which modify the
fitness of individuals based on their genotypic similarity [4]. Alter-
natively, the population structure can be modified, such as with spa-
tially structured populations in which individuals have a location
and are restricted to interacting with their neighbors. In addition,
there are many newer methods which are variations of these basic
approaches. While these methods work to varying degrees, ulti-
mately, all such methods are limited to discovering solutions that
are within the basin(s) of attraction of the initial population.

One way to try to escape the basin(s) of attraction of the initial
population is to build a model of the fitness landscape, such as with
CMA-ES. But this adds the challenge of being able to build a suf-
ficiently good approximation. Another way of breaking out of the
basin of attraction of the current population is by regularly intro-
ducing new individuals, with new genetic material, into the pop-
ulation and this is the approach that is taken by the Age Layered
Population Structure (ALPS). This approach can be thought of as
combining multiple, independent GA runs into a single run.

3. ALPS PARADIGM

We developed the ALPS paradigm as a more robust EA that is
adept at avoiding premature convergence [7]. This ability is most
easily noticed when using a small population or when performing
extremely long evolutionary runs. With ALPS, a novel measure of
age is used to segregate individuals into different age-layers and
then, at regular intervals, the youngest layer is replaced with ran-
domly generated individuals. We first review the measure of age
and then how ALPS manages individuals in its age layers.

3.1 Measuring Age

Over the years age has been used in various EAs to try to im-
prove performance [8, 10, 11, 13]. In these systems all individuals,
whether they are created randomly or through mutation or recombi-
nation, start with an age value of 1. After each generation in which
an individual is kept in the population (eg. it is not changed through
mutation or recombination) its age is increased by one. Thus in
these systems age is a measure of how long a particular individual
with the same set of alleles has been in the population.

With ALPS, age is a measure of how long an individual’s fam-
ily of genotypic material has been in the population. Randomly
generated individuals, such as those that are created in the initial
generation of a canonical EA run, start with an age of 1. Each gen-
eration that an individual stays in the population (such as through
elitism) its age is increased by one. Individuals that are created
through mutation or recombination take the age of their oldest par-
ent and add one to it. For example, if individual Ind 4, age 23, and
individual Indp, age 28, are selected as parents for recombination
then their offspring, Indc, will be assigned an age of 29. At the
end of the reproduction phase Inda will have its age increased to
24 and Indpg will have its age increased to 29 and Indc will keep
its age of 29. In contrast, other age-based EA systems would assign
an age of 1 to Indc.

3.2 Generational ALPS

With the ALPS paradigm, the population is segregated into mul-
tiple age layers, with each layer having an upper age limit. The
EA acts on each age layer somewhat independently of the others,
with an exception being that parents can be selected from both the
current layer and the layer below. When an individual is too old
for its current layer, the algorithm tries to move it to the next layer
up. Also, at regular intervals the bottom layer is replaced with a
new sub-population of randomly generated individuals, each with
an age of 1. We now describe the algorithm in more detail.

Table 1: Different systems for setting the age-limits for each
age-layer and the corresponding maximum age in each layer
for an age—gap of 1.

Max age in layer

Aging-scheme 01 2 3 4 5 6
Linear 1 2 3 4 5 6 7
Fibonacci 1 2 3 5 8 13 21
Polynomial (n?) |1 2 4 9 16 25 49
Exponential (2") | 1 2 4 8 16 32 64

In setting up an ALPS run, the number of age layers and the age
limits for each layer are parameters that are set by the user. Differ-
ent systems can be used for setting these values, such as by using
linearly, polynomially or exponentially increasing limits (Table 1).
To keep the size of the population and number of layers manage-
able, and since there is generally little need to segregate individuals

which are within a few “generations” of each other, these values
are then multiplied by an age—gap parameter. Also, there is no
maximum age for the last layer and a single-layer version of ALPS
operates exactly as the standard EA. For example, in a system with
five layers, a polynomial aging-scheme and an age gap of seven the
maximum ages for the five layers are: 7, 14, 28, 56, and co.

With an ALPS-EA, evolution occurs in each layer somewhat in-
dependently of the others. When selecting parents to create new
individuals for a given layer, parents are selected from individuals
in that layer as well as the previous one. Restricting the selection of
parents in this way limits selection competition to those individuals
of similar ages and prevents the older individuals from dominat-
ing the younger ones. Once individuals have been in the “bottom”
layer of the population for as many generations as its age limit, all
individuals in this layer are replaced with randomly created indi-
viduals. For example, with the example in the previous paragraph,
the bottom layer is replaced with a new group of randomly created
individuals every 7 generations.

When an individual, 14, becomes too old for its current layer,
or it is selected for replacement by a new individual, an attempt is
made to move it up to the next highest layer. This attempt consists
of finding an individual, /g, in the next highest layer that is either
too old for that layer or less fit than the individual being moved up
(I4). If such an individual Iz is found then /4 is moved up and
takes individual Ig’s place otherwise, if no such I'p exists, individ-
ual I 4 is overwritten and discarded. If an individual I is replaced
by an individual /4 in this manner then, in being replaced by 4,
I is tested to see if it can be moved up to the next higher layer.
For example, consider a population with 10 layers of 25 individuals
per layer. If individual 2 in layer O, I 2, is replaced then it is tested
against all individuals in layer 1. Assume that there is an individ-
ual, I1 7, in layer 1 such that either o 2 has better fitness then I; 7
or I1,7 is too old for layer 1. In this case, first an attempt is made
to move [1 7 up to layer 2 — and if 11 7 can replace an individual in
layer 3, then an attempt is made to move that individual up to layer
4, and so on — then I 2 is placed in the population where 1 7 used
to be. If an individual cannot replace one in the next highest layer,
then it is overwritten by the individual that replaces it.

4. STEADY-STATE ALPS

For the Steady-State version of ALPS (ALPS-SS), one difference
between it and the generational version is the method for calculat-
ing the age of individuals. With Generational ALPS, the age of all
individuals is increased at the end of the generation. Since there are
no explicit generations with ALPS-SS, we keep track of the num-
ber of evaluations. Age is then calculated by taking the number
of evaluations in which an individual’s genetic material has been
in existence and dividing it by the size of the population. Ran-
domly generated individuals store the number of evaluations that
have been performed so far, and individuals created through mu-
tation and recombination store the smallest value of their parents.
The equation for calculating the age of an individual is:

age = 1 + (evalScurrent — €ValScreated) /POPSize (1)

Where: evalScurrent 1S the number of evaluations that have been
performed so far; evalscreateqa i the number of evaluations that
had been performed when the individual’s genetic material was first
created; and popsize is the number of individuals in the population.
A constant of 1 is added so that the age of randomly generated
individuals is 1 at creation time.

Using this measure of age, ALPS-SS works as follows. The al-
gorithm starts by configuring the age layers and then creating, and
evaluating, an initial, random population. Once the initial popula-

tion is created and evaluated, ALP S—SS enters its main loop which
consists of iteratively selecting an index in the population array for
which to create a new individual, creating the new individual, and
then inserting it in the population. In more detail, this main loop
consists of:

1: procedure ALPSSS()
2 while not done do
3 Select a target index, ¢. > Randomly or sequentially
4 if ¢ is in bottom layer & in re-initialization mode then
5: Make random individ in the next index of Layer 0.
6: Evaluate it.
7: if Finished re-initializing Layer O then
8 Turn off re-initialization mode.
9

: end if
10: Go back to the start of the main loop. > On line 7.
11: end if
12: Decide whether to do mutation or recombination.
13: Select the appropriate number of parents.
14: if No valid parents then
15: Put in re-initialization mode. > In bottom layer
16: Put a random individual in the first index.
17: Evaluate it and go back to the start of the main loop.
18: else if only one valid parent then
19: Mutate parent to create child.
20: else
21: Make the child using either mutation or recomb.
22: end if
23: Evaluate the new individual. > Will put in slot ¢
24: TryMoveUp(%)
25: individual in slot ¢ < new individual.

26: end while
27: end procedure
28: procedure TRYMOVEUP(7)

29: j «— individ in next highest layer which ¢ can replace.
30: if Such a j exists then

31: TryMoveUp(j)

32: individual in slot j < individual in slot ¢

33: end if

34: end procedure

The above algorithm allows for different methods of selecting
the parents (eg tournament selection or some form of roulette wheel
selection). In addition, elitism can be added either to just the top
layer or to all layers.

An additional change that is made to ALPS-SS is the method
by which individuals are moved up. In generational ALPS, all in-
dividuals that are being replaced in one layer are moved up as a
group at the end of the generation. This means that individuals be-
ing moved up cannot overwrite other individuals from their same
layer that are also being moved up. To prevent an individual which
is being moved up a layer from overwriting an individual that was
also just recently moved up, ALPS-SS has an additional check that
when moving an individual up it only replaces individuals that were
moved more than n evaluations ago (where n is the total size of the
population).

5. EXPERIMENTAL SETUP

The objective of these experiments is to compare the perfor-
mance of the Steady-State ALPS (ALPS-SS) GA against main-
stream algorithms in the GA community, and here we compare it
against a basic GA (BGA), CMA-ES and DE. ALPS-SS was de-
scribed in the previous section and we configure it as follows.! We

'Source code for ALPS is available at http://idesign.ucsc.edu

use 10 layers of 40 individuals, a fibonacci aging scheme with an
age gap of 3, and an elitism of 5. New individuals are created using
mutation or recombination, with equal probability. In selecting par-
ents, the first parent is chosen through a tournament selection with a
tournament size of 5 and the second parent (only needed for recom-
bination) is chosen at random. With mutation, either 1-4 genes are
randomly selected to be mutated or all genes are mutated. Genes
are mutated by selecting a mutation size from 1% to 0.000001%
(by randomly selecting one of x1072, x1073, ... x107%) of the
difference between the minimum and maximum values for that
gene and then this is used as the variance for a random number
with a normal distribution which is the mutation amount for that
gene. For recombination, a value for each gene 7 is selected at ran-
dom from the range [Py ; + (P1,i — P2,), P2,;], using a uniform
distribution.

The basic GA (BGA), CMA-ES and DE are implemented as fol-
lows. The BGA is implemented as a single layer of the ALPS with
a population size of 400 and an elitism of 2, everything else is the
same as with the ALPS algorithm. By keeping everything as sim-
ilar as possible between ALPS-SS and the BGA we can see what
advantages, if any, are given by using age layers.

For CMA-ES, we use the source code implemented by Hansen
[5], with most of the default parameters.2 We adjusted the standard
deviations for the initial individuals to appropriate values for each
problem domain (1.5 for the rotated Rosenbrock and F8F2 and 350
for the Griewangk, F101 and Rana problems). CMA-ES also has
a restart feature and this was constrained to only two restarts for
the Griewangk, Rosenbrock and F8F2 functions. Allowing more
restarts on these functions resulted in CMA-ES spending the vast
majority of its time performing its internal processing (modeling
the function) and it took orders of magnitude more time to run
then the other algorithms. Since CMA-ES outperforms the other
algorithms on the Griewangk and Rosenbrock functions, this upper
limit on the number of restarts is not a hindering constraint. On
the other functions the maximum restart level allowed for CMA-
ES was never reached and in all cases we configured the restarts to
double the population size.

We used an implementation of Differential Evolution developed
by Storn which has the latest features of a recent book on this
method [17].° We used the default settings of this implementa-
tion, with the exception of setting the population size to 400 so as
to match the population sizes of ALPS-SS and the basic GA and
also since preliminary trial runs suggested that this population size
was at least as good as smaller ones on these test problems. In ad-
dition, we configured the parameter value ranges appropriately for
each test problem.

6. TEST PROBLEMS

To test the different algorithms we use five benchmark problems
from the GA community. The first two benchmark problems are
the rotated Griewangk and Rosenbrock (F2 in De Jong’s test suite
[3]). Of the test functions used in this paper these two are the easi-
est and, being quite popular, are found in many GA papers, such as
Salomon’s [18]. While the Rosenbrock function is non-separable, it
is symmetric and unimodal with a long narrow ridge to the global
optima that some algorithms find easy to follow. The Griewangk
has been shown to become easier as the number of dimensions in-
crease, becoming nearly uni-modal for 10 or more dimensions [21].
The other three test problems we use are more challenging multi-

*Version 3.02.03.beta, which s
http://www.Iri.fr/~hansen/cmaes_inmatlab.html

3Version 4.0 from http://www.icsi.berkeley.edu/~storn/code.html

available at:

modal ones that were constructed by Whitley et al. [21] to address
some of the shortcomings of previous work, and these are F101,
Rana (also known as F102) and F8F2 (which is built using their
method of creating composite functions from the Griewangk (F8)
and the Rosenbrock (F2) functions). Since rotating functions has
been strongly advocated by GA practitioners [18, 20] we use ro-
tated versions of these five problems.*

The parameter range being explored for each of these functions is
as follows. For the Rotated Griewangk, Rotated F101 and Rotated
Rana, each parameter was constrained to the range [-512.0, 511.0].
For the Rotated Rosenbrock and Rotated F8F2 each parameter was
constrained to the range of [-2.048, 2.047].

The research in constructing nonsymmetric, non-separable, mul-
timodal test functions is an attempt to create functions that resem-
ble real-world functions, thus for the last problem we use an ac-
tual real-world problem: evolving an antenna design. One of the
successes in the EC community is the evolution of an X-band an-
tenna for NASA’s ST-5 Mission [9, 14], which was a co-winner
of the Gold Award at the first Human Competitive Competition at
GECCO-04. In our version of this problem a genotype consists
of a vector of 24 real-valued parameters which specify the XYZ
coordinates of eight end points of a bent wire. This wire is the
radiating element of an antenna which is to be optimized, and we
use the Numerical Electromagnetics Code (NEC) to simulate each
design.’ For this problem all antennas start with a feed-element
segment from (0.0, 0.0, 0.0) to (0.0, 0.0, 0.001) and then continue
with eight segments through each of the eight XYZ coordinates
specified by the genotype. Units for these antennas are in meters
(m), and the antenna was constrained to fit in a box of +0.04m
in the X and Y direction and 0-0.041m in the Z (up) direction —
this dimensional constraint approximates what might be given for
commercial antennas at this frequency. We use the same cost func-
tion as Lohn et al. [14] for their GA implementation, although here
we are optimizing for a single frequency (2106.0 MHz) whereas in
their work they were optimizing for two frequencies. This func-
tion sums squared difference of gain values for those values below
a given level (here we use 0.5 dBic):

cost = Z

0° < ¢ < 360°
0° < 0 < 90°

(gain, , — T)° ifgain,, <T (2)

Here gain , is the gain of the antenna in dBic (right-hand polar-
ization) at a particular angle, 7" is the target gain (0.5 dBic), ¢ is
the azimuth, and 6 is the elevation. The gain component of the
cost function samples in 5° increments in the upper hemisphere:
0° < 6 <90° and 0° < ¢ < 360°. Frequently NEC fails to eval-
uate an antenna — this happens with about one quarter of randomly
generated antennas but with much lower frequency on offspring of
successfully evaluated antennas — in which case a worst score of
1.0e+38 is returned.

7. EXPERIMENTAL RESULTS

In our experiments we performed 30 runs with each algorithm
for the test problems listed in the previous section. With the an-
tenna design problem, 24 real-valued parameters were used and
for the other problems 20 real-valued parameters were used. Each
run was for one million evaluations, although with CMA-ES it fre-
quently stopped after much fewer evaluations on the Griewangk,

“Source code for all five of these problems is available at:
http://www.cs.colostate.edu/~genitor/functions.html

SNEC?2 is available at: http://www.si-list.net/swindex html

cost (log scale)

cost

cost

Rotated Griewangk (uni-modal)

1000 T : :
1
0.001 | E
I
1 i = 4
Ly -
1609 [piif Eyol]
fe-12 [OMAES - |
1e-15 . . .
0 250000 500000 750000 1e+06
evaluations
(a)
Rotated F101 (multi-modal)
-4500 T : :
CMA-ES -~~~
Basic GA -
-6500 Diff Evol 1
ALPS ——
10500 |
-12500 . . .
0 250000 500000 750000 1e+06
evaluations
©
Rotated F8F2 (multi-modal)
525 . : :
Basic GA -
CMA-ES -~~~
425 | Diff Evol 7
ALPS ——
325 | 4
205 |
125 : : '
0 250000 500000 750000 1e+06
evaluations
(e

cost

cost

cost (log scale)

Rotated Rosenbrock (uni-modal)

40 | .]

Diff Evol

5 1 1 1
0 250000 500000 750000 1e+06
evaluations
(b)
Rotated Rana (multi-modal)
-3000 T T .
CMA-ES -~
Basic GA -
Diff Evol
-5000
-7000
-9000 . . .
0 250000 500000 750000 1e+06
evaluations
@
Antenna Design (multi-modal)
16000 T T .
Basic GA -
8000 F: CMA-ES -~ A
Diff Evol
4000 F
2000
1000
500
250 1 1 1
0 250000 500000 750000 1e+06
evaluations
(®

Figure 1: Performance plots for the different algorithms on the different test problems. Results are the average of 30 trials.

Rosenbrock and F8F2 functions. The goal for all six problems is
to find the minimum value in the search space and so we use the
terminology of optimizing “cost” instead of “fitness”. Results for
these runs are shown in the graphs in Figure 1, for which each line
is the average over the 30 trials of the best individual found. We
now go over results on each problem giving final results as average
best + the standard deviation.

The Rotated Griewangk function: ALPS: 1.542e-02+1.08e-
02; BGA: 4.266e-02+2.77e-02; CMA-ES: 1.805e-14+2.58e-14;
and DE: 6.991e-1340.00e+00. Here, ALPS only outperforms the
basic GA (BGA) with the difference between the two being highly
significant (P <0.001 using a two-tailed, Mann-Whitney test). Both
CMA-ES and DE seem to solve the problem, with CMA-ES being
the better of the two. From a performance plot on this problem
(Figure 1(a)) it can be seen that CMA-ES finds the solution in only
a few thousand evaluations whereas DE takes about 700,000 eval-
uations to find a solution. Interestingly, both ALPS and the BGA
start off doing better than DE, but after around 100,000 evaluations
they plateau and stop improving. Whitley et al. [21] have noted
that at higher dimensions this problem becomes smoother and ef-
fectively uni-modal so these results indicate that both CMA-ES and
DE do very well on relatively smooth, uni-modal problem whereas
ALPS and the BGA have some shortcomings.

The Rotated Rosenbrock function: ALPS: 10.88+2.12; BGA:
14.29£2.74; CMA-ES: 6.45340.659; and DE: 6.629+0.00. Per-
formance is plotted in Figure 1(b). Again, ALPS and the BGA
are quite mediocre — with the better performance by ALPS being
highly significant (P < 0.001, using a two-tailed Mann-Whitney
test) — although in this case they are both continuing to improve
slowly. Again, CMA-ES finds a solution after a few thousand eval-
uations whereas it takes DE much longer. This problem is basically
unimodal with a long (rotated) ridge to the optimum. It seems that
both CMA-ES and DE can follow this ridge effectively whereas
both ALPS and the BGA struggle to do so. Yet, none of the algo-
rithms comes close to the global optima, which is less than 5.

On the Rotated F101 function: ALPS: -1211£390; BGA:
-10311£871; CMA-ES: -8157£876; and DE: -10592+672. ALPS
has much better search performance then the other algorithms and
this difference is highly significant (P < 0.001, using a two-tailed,
Mann-Whitney test). Performance is plotted in Figure 1(c). On
this non-separable, non-symmetric, highly multi-modal function,
ALPS and the BGA have similar performance for the first few thou-
sand evaluations but then the BGA levels off, and ALPS keeps find-
ing better and better results. DE takes just over 100,000 evaluations
to catch up to the BGA and then ends up with slightly better results
— although the difference is not statistically significant (P > 0.05).
CMA-ES converges very quickly to a mediocre optima and has the
worst performance of all. Interestingly, even though ALPS needs
roughly 90,000 evaluations to find a solution better than the other
algorithms, it is still continually improving for the full one million
evaluations whereas the other algorithms effectively stop improv-
ing after less than 200,000 evaluations.

On the Rotated Rana: ALPS: -8385+318; BGA: -6917£599;
CMA-ES: -55874654; and DE: -6960.4529. The difference be-
tween ALPS and the other algorithms is highly significant (P <
0.001, using a two-tailed, Mann-Whitney test). Performance is
plotted in Figure 1(d), and is quite similar to that on the F101 func-
tion. Again both the BGA and DE converge at similar cost values,
with the difference between insignificant (P > 0.05). Again, this
shows that ALPS is the better algorithm on a highly multimodal
problem.

Rotated F8F2 function: ALPS: 140.+17.3; BGA: 230.1£54.5;
CMA-ES: 224+38; and DE: 207+40. The difference between

ALPS and the other algorithms is highly significant (P < 0.001,
using a two-tailed, Mann-Whitney test). Performance is plotted in
Figure 1(e) and this time the algorithms are more tightly clustered.
The BGA and CMA-ES start the fastest but both then level off and
are quickly passed by first DE and then by ALPS. Here the BGA,
CMA-ES and DE all have similar average results and the differ-
ences between the three of them is statistically insignificant (P >
0.05). Unlike the other three algorithms, ALPS continues finding
noticeably better results even after one million evaluations. A third
example that ALPS is the better algorithm on highly multimodal
problems.

The Antenna opt. problem: ALPS: 3234+630.; BGA: 1683+538;
CMA-ES: 1235+175; and DE: 1211+£233. The difference between
ALPS and the other algorithms is highly significant (P < 0.001,
using a two-tailed Mann-Whitney test). Performance is plotted in
Figure 1(f). Whereas the previous five problems are artificially con-
structed test functions that were designed to be challenging and to
mimic features of real-world problems, this is an actual real-world
problem. On this problem not only does ALPS find better solutions
than the other algorithms, but even after one million evaluations it
still seems to be improving faster then the other algorithms. What
has happened it that whereas the other algorithms have tended to
converge on mediocre solutions with Cost scores between 900 and
1300, the majority of solutions found with ALPS are between 0.0
and 20.0, with a few runs still having their best solution above 900.
If ALPS is run longer then these other runs will also converge at
solutions close to 0.0.

Overall, ALPS is the better algorithm on the multi-modal test
problems and the real-world problem and CMA-ES and DE are
the better functions on the unimodal problems. On the two uni-
modal test problems (Rotated Griewangk and Rotated Rosenbrock)
CMA-ES very quickly finds the best value with DE being slower
and covering to a slightly worse value. Interestingly, ALPS starts
faster then DE and is the better algorithm over the first 200,000
evaluations. On the three multi-modal test problems (Rotated F101,
Rotated Rana and Rotated F8F2) and on the real-world and the real-
world problem ALPS is by far the better algorithm.

8. DISCUSSION

One of the reasons put forth as to why ALPS is better at avoid-
ing premature convergence is that it does a good job of maintaining
genotypic diversity in the population. This idea can be tested by
tracking the standard deviation in the values for each gene over the
course of an evolutionary run, and this is plotted for F8F2 in Fig-
ure 2. This graph shows that with CMA-ES genotypic diversity
drops to a negligible amount almost immediately, which matches
its near-immediate plateau in improvements (Figure 1(c)). With
DE, genotypic diversity drops at a constant rate for the first 300,000
evaluations and then levels off at roughly 0.015. In this case, the
population has stopped improving after roughly 225,000 evalua-
tions. With the BGA, genotypic diversity drops to an average stan-
dard deviation of roughly 2.3 in 20,000 evaluations and then stays
at this level for the rest of the evolutionary run. Similarly, most
of the performance improvements achieved with the BGA are in
the first 20,000 evaluations. In contrast to the other three algo-
rithms, ALPS starts with and keeps an average standard deviation
of roughly 300 throughout the entire evolutionary run: there is no
loss of genotypic diversity. More importantly, even though it is
maintaining a high level of genotypic diversity, it is also outper-
forming the other algorithms (Figure 1(c)).

Tracking the cost of the best individual in each age layer of ALPS
can give more insight as to how the use of its age layers leads to a
more robust algorithm. The graph in Figure 3 plots the best cost in

Genotypic Standard Deviation
1000
100 ¢ .
10 f ™ e A

01t 1
0.01 ALPS]
0.001 I Basic GA ,,,,,,,,,,, i

0.0001 Diff Evol 1

CMA-ES -~~~ R

average std dev

1e-05 |
1e-06 |
1e-07 |,
1e-08 -

4
I

0 250000 500000 750000
evaluations

Figure 2: A graph of the genotypic diversity maintained by
each algorithm for a single run on F101. Diversity is calculated
by taking the standard deviation of each gene’s values over the
previous 400 evaluations and then the average of these 20 stan-
dard deviations is plotted.

3500

3000 |
2500 [

2000 A

fitness

1500

1000

500

O 1 1 - 1 — L 1
0 25000 50000 75000 100000

evaluations

Figure 3: Plots of the cost of the best individual in each layer
for an evolutionary run with ALPS.

each layer of a steady-state ALPS run. These cost values oscillate
in cycles that correspond to the age limits of the age layers. Arcs
connecting different layers can be seen and these show an evolu-
tionary line of genetic material moving up through the layers. For
example, for the first 20000 evaluations, the best cost in layers L3
through L8 are roughly the same and this is likely some family
of closely related individuals evolving through the population. At
around 20000 evaluations, their descendants are passed down into
Layer 9 and they take over as the new best individuals in the popu-
lation. Again, another arc starting in Layer O at 25000 evaluations
moves up through the layers until at around 55000 evaluations it
passes from Layer 5 to layers 6 through 9 and this line of indi-
viduals takes over as the best in the population. Finally, sometime
between 40000 to 50000 evaluations, offspring from the individuals
in Layer O start evolving to be better and better and their offspring
move up the layers until at around 85000 evaluations they become
the best individuals in the population and solve the function. This
shows how ALPS uses the different age layers to allow groups of

individuals to explore new and different parts of the fitness land-
scape and thereby reduce the problem of premature convergence.
While this implementation of ALPS does a good job at main-
taining diversity and optimizing on multimodal problems it does a
poor job of climbing the optima of a unimodal problem. It is possi-
ble that by using a better optimization algorithm within each layer
that better search performance can be achieved. DE always outper-
formed our implementation of a basic GA, which suggests that our
BGA is fairly mediocre. Since our implementation of ALPS uses
the BGA for each layer, a hybridized ALPS which uses Differential
Evolution at each layer (instead of a BGA) may have the strengths
of both algorithms: the ability to avoid prematurely converging on
the wrong local optima (from ALPS) with a strong ability to find
the best point on a given local optima (from DE). The implementa-
tion of a hybrid ALPS-DE GA is one direction for future work.

9. CONCLUSION

When the Age-Layered Population Structure (ALPS) was intro-
duced, it was shown to work well on a particular design problem
with a GP-style representation [7]. More recent work has found it
to work well with other GP systems and different problems [12, 16,
22]. One of the main interests in this paper was determining how
well ALPS would do on optimizing vectors of real-valued parame-
ters. For this we compared it against two of the more successful GA
algorithms, CMA-ES and Differential Evolution, both of which are
specialized to work on vectors of real-values. In our comparison
we found that CMA-ES and Differential Evolution outperformed
ALPS on the two unimodal test problems, but ALPS was the better
algorithm on the three multimodal test problems and on the real-
world antenna design problem.

By monitoring the standard deviation of gene values, we found
that ALPS keeps genotypic diversity fairly constant at a high value
throughout an evolutionary run whereas other algorithms lose di-
versity, which they never regain. An analysis into the movement
of individuals across the age layers of the ALPS algorithm shows
that it is successful at introducing new individuals into the pop-
ulation and allowing them to evolve to their potential. By better
combining exploration (by segregating individuals into layers) with
exploitation (optimizing within a layer) the ALPS paradigm better
avoids prematurely converging to the wrong local optima and, con-
sequently, is a better algorithm on multimodal problems. Since
many real-world problems of interest are multimodal, our results
strongly suggest that ALPS is worth considering for challenging
real-world problems.

Of interest is improving the performance of ALPS on the eas-
ier, unimodal problems. ALPS is just a paradigm for segregating
individuals by age and can be thought of as joining multiple, in-
dependent EA runs into a single, combined run. As such, the per-
formance of ALPS could be improved by using different search or
replacement methods or different variation operators then what was
used in these experiments. For example, using either Differential
Evolution or CMA-ES inside each age-layer of ALPS may signif-
icantly improve the performance of ALPS on unimodal functions.
In addition, using a better GA inside of ALPS may also result in
better performance on multi-modal problems.

A second contribution of this paper is our description of a steady-
state version of the ALPS algorithm. Necessary for this steady-state
implementation was the development of a way for calculating age
that does not rely on explicit generations. Also, it was necessary to
prevent individuals that were being moved up an age layer from re-
placing other individuals that had recently moved up. This version
of ALPS is likely to be of interest to those who need, or prefer, a
steady-state algorithm rather than a generational one.

Finally, since ALPS does not use any knowledge about the type
of representation being used, it can be used to evolve not only GP
type encodings, but also bit strings, vectors of real-valued param-
eters, ordered lists of numbers, or any other representation used in
the evolutionary community. We would expect that the advantages
shown here would carry over to EAs using other types of represen-
tational schemes and for other problems. Comparing ALPS to the
best systems for evolving bit strings or solving scheduling prob-
lems is another direction for future work.

Acknowledgements

This material is supported in part by the National Science Founda-
tion’s Creative-IT grant 0757532.

10. REFERENCES

[1] D.J. Cavicchio. Adaptive Search using simulated evolution.
PhD thesis, University of Michigan, Ann Arbor, 1970.

[2] M. Clerc and J. Kennedy. The particle swarm-explosion,
stability, and convergence in a multidimensional complex
space. [EEE Transactions on Evolutionary Computation,
6:58-73, 2002.

[3] K. A. DeJong. Analysis of the Behavior of a Class of Genetic
Adaptive Systems. Dept. Computer and Communication
Sciences, University of Michigan, Ann Arbor, 1975.

[4] D. E. Goldberg and J. Richardson. Genetic algorithms with
sharing for multimodal function optimization. In J. J.
Grefenstette, editor, Proc. of the Second Intl. Conf. on
Genetic Algorithms, pages 41-49. Lawrence Erlbaum
Associates, 1987.

[5] N. Hansen. The CMA evolution strategy: a comparing
review. In J. Lozano, P. Larranaga, 1. Inza, and
E. Bengoetxea, editors, Towards a new evolutionary
computation. Advances on estimation of distribution
algorithms, pages 75-102. Springer, 2006.

[6] J. H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, Mich., 1975.

[7]1 G.S. Hornby. ALPS: The age-layered population structure
for reducing the problem of premature convergence. In M. K.
et al., editor, Proc. of the Genetic and Evolutionary
Computation Conference, GECCO-2006, pages 815-822,
Seattle, WA, 2006. ACM Press.

[8] G.S. Hornby, M. Fujita, S. Takamura, T. Yamamoto, and
0. Hanagata. Autonomous evolution of gaits with the sony
quadruped robot. In Banzhaf, Daida, Eiben, Garzon,
Honavar, Jakiel, and Smith, editors, Proc. of the Genetic and
Evolutionary Computation Conference, pages 1297-1304.
Morgan Kaufmann, 1999.

[9] G. S. Hornby, J. D. Lohn, and D. S. Linden.
Computer-automated evolution of an X-band antenna for
NASA'’s Space Technology 5 mission. Evolutionary
Computation, accepted with revisions.

[10] A. Huber and D. A. Mlynski. An age-controlled evolutionary
algorithm for optimization problems in physical layout. In
International Symposium on Circuits and Systems, pages
262-265. IEEE Press, 1998.

[11] J.-H. Kim, J.-Y. Jeon, H.-K. Chae, and K. Koh. A novel
evolutionary algorithm with fast convergence. In /[EEE
International Conference on Evolutionary Computation,
pages 228-29. IEEE Press, 1995.

[12] M. F. Korns and L. Nunez. Profiling symbolic
regression-classification. In R. L. Riolo, T. Soule, and
B. Worzel, editors, Genetic Programming Theory and
Practice VI, Genetic and Evolutionary Computation,
chapter 14, pages 215-229. Springer, Ann Arbor, 15-17May
2008.

[13] N. Kubota, T. Fukuda, F. Arai, and K. Shimojima. Genetic
algorithm with age structure and its application to
self-organizing manufacturing system. In /EEE Symposium
on Emerging Technologies and Factory Automation, pages
472-477. IEEE Press, 1994.

[14] J. Lohn, G. Hornby, and D. Linden. Evolutionary antenna
design for a NASA spacecraft. In U.-M. O’Reilly, T. Yu,

R. L. Riolo, and B. Worzel, editors, Genetic Programming
Theory and Practice I, chapter 18, pages 301-315. Springer,
Ann Arbor, 2004.

[15] S. W. Mahfoud. Crowding and preselection revisited. In
R. Minner and B. Manderick, editors, Parallel Problem
Solving from Nature, 2, pages 27-36. North-Holland, 1992.

[16] T. McConaghy, P. Palmers, G. Gielen, and M. Steyaert.
Genetic programming with reuse of known designs. In R. L.
Riolo, T. Soule, and B. Worzel, editors, Genetic
Programming Theory and Practice V, Genetic and
Evolutionary Computation, chapter 10, pages 161-186.
Springer, Ann Arbor, 17-19May 2007.

[17] K. Price, R. Storn, and J. Lampinen. Differential Evolution -
A Practical Approach to Global Optimization. Springer,
2005.

[18] R. Salomon. Reevaluating genetic algorithm performance
under coordinate rotation of benchmark functions; a survey
of some theoretical and practical aspects of genetic
algorithms. BioSystems, 39(3):263-278, 1996.

[19] D. Whitley and J. Kauth. Genitor: A different genetic
algorithm. Technical Report CS 88-101, Colorado State
University, 1988.

[20] L. D. Whitley, M. Lunacek, and J. N. Knight. Ruffled by
ridges: How evolutionary algorithms can fail. In K. D. et al.,
editor, Proc. of the Genetic and Evolutionary Computation
Conference, Vol. 11, LNCS 3103, pages 294-306, New York,
2004. Springer-Verlag.

[21] L. D. Whitley, S. B. Rana, J. Dzubera, and K. E. Mathias.
Evaluating evolutionary algorithms. Artificial Intelligence,
85(1-2):245-276, 1996.

[22] A. Willis, S. Patel, and C. D. Clack. GP age-layer and
crossover effects in bid-offer spread prediction. In
Proceedings of the 10th annual conference on Genetic and
Evolutionary Computation Conference, Atlanta, GA, July
12-16 2008.

