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Abstract

There has been a tremendous increase in the volume of seataarallected over the last decade for
different monitoring or surveillance tasks. For exampdeabytes of Earth Science data is collected from
modern satellites, in-situ sensors and different climadelefs. Similarly, petabytes of flight performance
data is downloaded from all commercial airlines at theipessive operational hubs. Both these types
datasets need to be analyzed for finding interesting pat@rror searching for extremes or outliers.
Information extraction from such rich data sources usingaaded data mining methodologies is a
challenging task not only due to the massive volume of daté, diso because these datasets are
physically stored at different geographical locationshwiinly a subset of features available at at any
location. Moving these petabytes of data over the networla ingle location may waste a lot of
bandwidth, and can take days to finish. To solve this probieris paper, we present a novel algorithm
which can identify outliers in the global data without mayiall the data to one location where only
a subset of the features is stored at any location. We protre theoretically and experimentally that
the algorithm offers high accuracy compared to a cent@dla@gorithm with only a fraction of the cost
required for centralization. The experiments are dematesiron two large publicly available datasets:
(1) the NASA MODerate-resolution Imaging SpectroradioengMODIS) satellite images and (2) a
‘Commercial Modular Aero-Propulsion System Simulatiofiieh generates simulated data of realistic

large commercial turbofan engines.

I. INTRODUCTION

Anomaly detection or outlier detection [1] is widely used tietectingabnormalor unusual
patterns from data. Depending on how anomalies are definf#fdredit algorithms have been
developed for finding anomalies from a dataset, each withréit assumptions and complexities
[2], [3], [4]. Outlier detection is well studied when all ttdata is at one location (centralized
version); however, the problem is more challenging when dhta is at stored at different
locations such that each site only has a subset of featutesiftes). The goal is to identify
anomalies in such distributed datasets by minimizing thealmer of data elements transferred
between the sites.

For example, in Earth science applications, data is c@ttand generated by growing number
of satellites, in-situ sensors and increasingly compl@sgstem and climate models. This growth
in volume and complexity is going to continue because in ofde the scientists to better

understand and predict the Earth system processes, theyegilire far more comprehensive
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data sets spanning many years and more complex models. ké¢ithatinch of NASAs Terra
and Aqua missions, and the expected launches of number @iamssrecommended by the
Decadal Survey, the need for more efficient and scalable plateessing system is crucial.
The volume of data itself is often a limiting factor in obt&ig the information needed by the
scientists and decision makers. This data volume will graamf hundreds of terabytes to tens
of petabytes throughout the lifespan of the proposed Dé&utaey missions. More data means
more information, only if there are sophisticated meandftihg through the data for extracting
the relevant information from this data avalanche.

A very interesting task relevant to the Earth science comiyus identification of anoma-
lies within the ecosystemse.g. wildfires, droughts, floods, insect/pest damage, wind da&nag
logging), so that experts can then focus their analysisrtsffon the identified areas. There
are dozens of variables that define the health of the ecosyatel both long-term and short-
term changes in these variables can serve as early indcataratural disasters and shifts in
climate and ecosystem health. These changes can have pidaoaio-economic impacts and it
is important to develop capabilities for identificationaéyrsis and response to these changes in
a timely manner. In order to fully understand the Earth swystescientists need to be able to
analyze together a number of datasets from satellites,ngreensors and models. Every data
component has a different observation or predictive cédipabind therefore a global analysis on
a combination of modalities gives better results than shglg particular feature. For example,
observing different but related phenomena, predictinghate impacts at different timesteps, or
providing observations of the same phenomena throughreiffeneans, such as ground sensor
or a radar are expected to enable better comprehension ared ancurate characterization of
changes and disturbances in Earth systems.

The situation is greatly complicated by the fact most of tamdepresenting different modali-
ties are stored at geographically distributed archivesh 18 NASA's Distributed Active Archive
Centers (DAAC), each containing data specific to only a subkthe scientific community and
thus it is almost impossible to perform a globally consistamalysis. Given this scenario, the
current approach would be for the scientist to look at onlylasst of the dataset available at one
site (and thereby compromise on the quality of the result$) bring all the data together in one
place and then perform the analysis. While the second apipnoarks for lower data volumes, it

is not feasible to centralize all the data when it grows beywhat can be gathered using current

December 3, 2010 DRAFT



network infrastructure in a timely manner. Another reasdry womplete centralization is not
possible is because the research is done in number of diffectence teams and organizations
in different countries. While there is a trend to consokdatore data at fewer data centers, the
capabilities to extract vital information from large dibtrted datasets will continue to be a key
for the Earth science community to be able to gather sigmficesults by analyzing the growing
data volumes being accumulated world wide.

In this paper we describe a novel and efficient algorithm fayraaly detection in distributed
databases where each site has only a subset of attributesohitributions of this work, based
on the state of the art in distributed anomaly detection, lmam®numerated as:

« To the best of the authors’ knowledge, this is the first atami that can perform outlier
detection when the data is distributed across several $W#s only a subset of features at
each site. In the distributed data mining literature thikriswn as the vertically partitioned
scenario.

« We theoretically derive the true positive rate and show thatfalse positive rate of the
algorithm is 0.

« For the proposed algorithm, the amount of communicationuired is less than 1% of
that required for centralization, yet is 99% accurate caegao a centralized algorithm in
finding the outliers. The accuracy is a function of the datecgq@age communicated and
can be tuned based on the performance requirements andaes@vailable to the users.

The rest of the paper is organized as follows. In the nexti@edSection 1) we present
the work related tho this area of research. We discuss thatioo$ and the one class SVM
formulation in Section Ill. In Section IV we present detaglout the proposed algorithm. We
discuss the theoretical analysis of the algorithm in Sactio Performance of the algorithm on

NASA satellite data is presented in Section VI. Finally wendade the paper in Section VII.

[l. RELATED WORK

Outlier or anomaly detection refers to the task of identifyabnormal or inconsistent patterns
from a dataset. While outliers may seem as undesirableemnitit a dataset, identifying them have
many potential applications such as in fraud and intrusietection, financial market analysis,
medical research and safety-critical vehicle health mameant. Broadly speaking, outliers can

be detected usingupervisedsemi-supervisedr unsupervisedechniques [5][1]. Unsupervised
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techniques, as the name suggests, do not require labetadides for detecting outliers. In this
category, the most popular methods are distance-basedessitydbased techniques. The basic
idea of these techniques is that outliers are points in lonsidg regions or those which are
far from other points. In their seminal work, Knoet al. [4] proposed a distance-based outlier
detection technique based on the idea of nearest neighbDoesnaive solution has a quadratic
time complexity since every data point needs to be comparexveéry other to find the nearest
neighbors. To overcome this, researchers have proposedategchniques such as the work
by Angiulli and Pizzuti [6], Ramaswamegt al. [7], and Bay and Schwabacher [2]. Density-
based outlier detection schemes, on the other hand, flagra @sian outlier if the point is
in a low density region. Using the ratio of training and teataddensities as an outlier score,
Hido et al. [3] propose a new inlier-based outlier detection technidbigpervised techniques
require labeled instances of both normal and abnormal tipardata for first building a model
(e.g.a classifier) and then testing if an unknown data point is anabione or an outlier. The
model can be probabilistic based on Bayesian inferencihg@if@eterministic such as decision
trees, support vector machines and neural networks [9]i-Sepervised techniques only require
labeled instances of normal data. Therefore, they are madelyvapplicable than the fully
supervised ones. These techniques build models of normal alad then flag as outliers all
those points which do not fit the model.

There exists a plethora of work on outlier detection fromtigpemporal databases. Barua
and Alhajj [10] present a technique for outlier detectioonfr meteorological data using a
parallel implementation of the well-known wavelet transfiation. The authors show that by
implementing the algorithm on modern high performance ruglte processors, they achieve
both improved speedup and accuracy. Birant and Kut [11]uds@ way of identifying both
spatial and temporal outliers in large databases. Theyedttat existing methods do not identify
both these outliers, and hence they propose a new DBSCANediug method to first cluster
the dataset based on the density of points and then tags leeyall points which have low
density in its neighborhood. Now depending upon the typeutlier detected, either spatial or
temporal neighborhood is considered. Both these methodsider outliers as single points. In
practice, there may be a group of points which are outkeysa tornado or other natural disaster
affecting a large area. Zhaet al. [12] present an outlier detection method based on wavelet

transformation which can detect region outliers. In thepraach, they first transform the image
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to the wavelet domain and then isolate those coefficientctwhre greater than a threshold.
Inverse wavelet transformation on this thresholded piaeésthen candidates for outliers which
are further filtered by running an outlier detection metHaghd cover change detection has been
studied by Borialet al.[13] and Potteet al.[14]. In [13], the authors have proposed a recursive
merging algorithm for change point detection. In their agmh, the data is stored as a matrix
of N locations and 12 months. Two most similar consecutiveuahcycles are merged, and the
distance is stored. This is applied recursively until onhe@nnual cycle is left remaining. The
change score for any location is based on whether any of teereéd distances are extreme.
They show how the method detects new golf courses, shop@nters and other land cover
changes. For more details on the recent work on change wetdot land cover data, readers
are referred to [13] and the references therein. Severakr ddthniques also exist for building
classification and prediction models for mining geospatath such as [15].

Although there is this huge body of literature on anomalyedebn techniques for Earth
Science data, many domain experts still continue to useitrérstatistical measures such as
points outside: + 30 of a Gaussian distribution as measures for identifying mitdé outliers
from the huge Earth Sciences datasets. One of the reasotiidas the fact that most of the
outlier detection techniques fail to scale to the order cdltgtes or petabytes which is the order
of the Earth Science data sets currently. Also, none of theseniques can handle the data
when it is vertically partitioned across a large number ¢éssi Although techniques exist for
horizontally partitioned scenarie.g.[16]), extending them to vertically partitioned scenaiso i
not obvious. Our proposed algorithm can perform anomalgalemn without centralizing all the

data to one location and thus, can handle massive datasets.

I1l. BACKGROUND

In this section we first define the notations and then disecudsclass SVM (wherev is
a user chosen parameter) which forms a building block for distributed anomaly detection
technique. Although we focus on SVM, our distributed altjori can be used with many other
base classifiers such as decision trees, neural netwolksbased classifiers etc. However, it
becomes extremely difficult to adopt a distance-basederuditection algorithme(g. k-NN) to
our framework mainly because none of the distances can bewech based on a single node’s

data.
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A. Notations

Let /%, ..., P, be a set of computation nodes wheéigis designated as the master node and the
others are denoted as the computational nodes. Let theetlatasodeP; (Vi > 0) be denoted by

Ry

D; = {:@ x_(,fj consisting ofm rows Whererji € R™. Here each row corresponds to
an observation and each column corresponds to a featuleitgtsensor measurement. It should
be noted here that there should be a one-to-one mapping dretilve rows across the different
nodes. That kind of correspondence, if not available for#wemeasured data, can be established
using standard cross matching techniques for data pregsingethat exist in the literatureg.

the Sloan Digital Sky Survéy In the distributed data mining literature, this is refert® as
the vertically partitioned data distribution scenarioeTglobal set of features:] is the vertical
concatenation of all the features over all nodes and is défise = [n; n, ... n,) (using
Matlab notation). Hence, the global data is the m x n matrix defined as the union of all

data over all nodese. D = [z] ... 7]

T with z; € R". Note that, here we make the
implicit assumption that thé-th row of all the sites corresponds to theh observation.e. the
observations have been cross-matched.

Let O; denote the set of local outliers at noés detected by an outlier detection algorithm
running onD; such that|O;| < |D;|. We give a precise definition of outlier and an algorithm
to detect those in the next section. The global set of ostlieand by a centralized algorithm
having access to all the data is denoted analogously by th@.sd&he set of outliers found by

the distributed algorithm is denoted I4y;,.

B. One class-SVM

Given a training dataset containing two classes of examples class SVMs, introduced by
Scholkopfet al. [17], is a supervised learning method for drawing a sepagatyperplane that
separates these two classes. In our discussion, we will tefpositively labeled data points
as normal and negatively label data points as outlierse&usbf using both types of examples
from the training data for constructing the hyperplane, ciass SVM uses only instances with
positive labels to do the same. It also uses a parameatgdrich denotes the maximum allowance

of outliers in the training data. During the training phatee SVM algorithm optimizes the

thtt p://cas. sdss. org/ astrodr 6/ en/t ool s/ crossi d/ upl oad. asp
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placement of the hyperplane in order to maximize the margiween the hyperplane and the
origin, which is the lone representative of the second cleis negative label.

In many cases, the decision boundary is non-linear in thetispace and the trick is to
transform the input data to a higher dimension space; therlatiowing for linear separability.
This mapping is often made implicit using a kernel functibn: R? x R — R (d is the
dimension of the data) which actually computes the innedypcod between the input vectors
in this (possibly) infinite dimensional space. Throughdus paper, we have used Radial Basis
Function (RBF) kernel:

—= =2
- = — @i — ;|
k(xi, xj) = exp <TJ> 1)

where ||-|| denotes the Euclidean norm anddefines the kernel widthr is often needs to be
tuned for a particular dataset.

Scholkopf [17] showed that in the high dimensional featspace it is possible to construct
an optimal hyperplane by maximizing the margin between tigiroand the hyperplane in the

feature space by solving the following optimization prable
minimize Q= 3 Z aok(x], x5) + p (Vm - Z ai>
1,7 7
subject to 0<a; <1, vel01] (2)

where «;’s are Lagrangian multipliersy is a user specified parameter that defines the upper
bound on the fraction of the training error and also the lol@und on the fraction of support
vectors, ang is the offset of the hyperplane from the origin. The optin@lson returns a set

of points SV from the training set known as teepport vectorgor which the0 < «; < 1 and

also the value of the bias term Now, for any test poinf;, not in the training set, the optimal

decision is based on the following inner product compuiatio
@)=Y ak(,7) - p 3)

The pointz; is an outlier if f(7}) < 0.
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C. Overview of algorithm

The distributed outlier detection algorithm that we haveedigped consists of two steps. In the
first step, a local anomaly detection algorithm is executegbah node which identifies outliers
based on the features present at these nodes only. Thea, |tttad outliers from each of the
nodes are collected at one central node (master node). Alithgthis, samples from the local
nodes are also collected at the master node to build a globa¢émThen, all these local outliers
are tested against the global model. Only those which agethgs outliers by the global model
are then output as the outliers from the distributed algoritWe will show both theoretically
and experimentally that our algorithm has a high true pasitate and zero false positive rate.
Figure 1 shows the proposed distributed architecture. \Algoghte on each of these steps in the

next section.

Global outliersQ,

Master site Py
01 Op
nq n9 np
) 2® 2P
e e )
meS NeJ e
P P, P,

Fig. 1. This figure shows the proposed distributed architectP, is the master site and the other sites are the computation
sites. Local outliers?; are sent taP,, which are then output the final outlie€3,.
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V. ALGORITHM DETAILS
A. Pruning rule

As stated earlier, the goal of distributed outlier detatigtwo-fold: (1) compute the correct set
of outliers (with respect to a centralized execution) andnfihimize the cost of communicating
the data to a central node for computation. Distributed ritlgms often define rules based on
the data to minimize communication while guaranteeing that global task is accomplished
[18][19][20]. These data dependent rules are such thagti$feed by all nodes independently,
then certain global properties of the dataset hold.

In this paper we use the following observation to prune thelmer of messages that need to

be sent to the master site for determining the global set tieost

Pruning rule: An observationz” € D may be a global outlier (with respect to all the features)
i.e. 7 € O, if it is an outlier with respect to at least one (or a subset)tloe features i.e.
Je{l.. p), 20eco,

In other words, we assume that a point cannot be a globaleoutlit is not an outlier for
any of the local sets (axis). While this statement may notrbe in general, it provides us with
a way of pruning the number of observations that needs to metgehe central site. We verify
theoretically that the percentage of correct detectioneim®es exponentially with the number of
features of the data at each site. Our experimental resubis ghat for two large real datasets,
this simple pruning strategy can detect more than 99% of titieecs that a centralized execution
would find with less than 1% of the communication cost reqlii@ centralization. Figure 2
points out the intuition behind the rule for the 2 dimensiarase. In this figure, the green dots
represent the normal points while a single red dot represiiet anomalous point. As seen, the
red dot is quite far from the green dots. We argue that in ofolethis to happen, the distance
along at least one of the axes will be large. In other wordsstrob the global outliers will be

a local outlier in at least one of the distributed sites.

B. Detailed description

The overall distributed anomaly detection algorithm cetssof two stages. The pseudo code

for the first step is shown in Alg. 1. In this step, each node wates the local outliers
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S
3

| - - - - = — - =

Y

Fig. 2. This figure shows the basic idea of the pruning rule-oh 2 this figure, the green dots represent the normal points
while a single red dot represents the anomalous point. As, $be red dot is far away from the green dots. The true distanc

between the red dot and the closest green dot is show by a baid. a'he distance along the axes are shown using dotted
lines. The observation is that for any true outlier, far ailmyn any of the normal points, the distance along the axelsalgb

be higher. Hence we can only analyze the local outliers frachesite.

independently. The input to this local step are the dataseaeh nodeD;, the size of training
setTy, a seeds of the random number generator, and the parametdihe algorithm first sets
the seed of the random number generatos.tdhen it selects a sample of siZe from D; and
uses it as the training set;. The rest is used for the testing phasg It then builds an SVM
model M; usingT; andv. Once the model has been built, all pointshh are tested using the
set of support vectors defined By;. All those elements inf{; whose test score is negative is
returned as the set of outlie(,.

In the second phase (Alg. 2), the local outliers are aggeebat the master sitg,. A sample
of sizeT, is drawn from each of the local sitd3; such that the same index (observation) is
selected from each node. A global SVM model is then learnethisnaggregated sample from
all the sites. Each element pf;_, O; is tested against this global model to assign a score. All
those elements it);_, O; whose score is less than 0 is then reported as the true setligfrou
O, by the distributed algorithm.

V. ALGORITHM ANALYSIS

In this section we provide performance analysis of the itsted algorithm.
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Algorithm 1: Local outlier detection at each nodg, i > 0

Input: DatasetD;), Training sample siz&(,), v, seeds
Output: Outlier setQ;

begin
setseed);
T; = SampleD;, T5); /1 Training data
H; + D;\Ty; /|l Test data
M; + SVMTraining(T;, v);
S+ SVMTest(M;, H;); /1l Assign a score to each point in H;

for j=1 to |H;| do
if S(j) <0 then
| 0i(4) < [Hi(G) SG)I;
SendQ; to Py;

Algorithm 2: Global outlier detection af,

Input: Oy, ..., O,, Training sample siz&(), v
Output: Outlier setOy

begin
T = Sample()\_, D;, Ts); /1 Training data sanpled fromall sites
H«+ U, 0; Il Test data
M + SVMTraining(T, v);
S+ SVMTest(M, H); [l Assign a score to each point in H

for j=1to |H| do
if S(j) <0 then
L L Oaj) < [H(G) SO

A. Correctness

Given a pointZ € D, Table | shows howz can be classified by both the distributed and
the centralized algorithm.

We first analyze the case in which there is only one featurenpele. Without any prior
information about the data distribution, we assume thatdag is drawn from an unknown
distribution but sampled uniformly and independently facle feature.

Theorem 1 (True positive)Given a pointz € ., the probability of correct detection (true
positive) of that point is given by

P(?e(’)dWeOc):l—g<1—%),

where R; is the maximum projection of the points along thth axis andp; is the distance of
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Distributed algorithm
Normal Outlier
Normal | True positive | False positive
Outlier | False negative True negative

Centralized algorithm

TABLE |
CONFUSION MATRIX FOR THE PERFORMANCE OF THE TWO ALGORITHM

Fig. 3. This figure shows the different hyper planes drawnhayalgorithm when using all the variables (A), ophdimension
values (B) and only:-dimension values (C). Note that different anomalies atmdbusing the different hyper-planes.

the hyperplane along theth axis, both measured from the origin.

Proof: First we note that
7 e 0, = 3j, x?er.

From Figure 3, the distributed algorithm can be viewed asvihg hyperplanes, one for each
dimension, which are the projection axis. Letand R; be the distance to the hyperplane and
the maximum projection distance of the points along #tlke dimension from the origin. The

probability that any poinfz’ € O, does not belong t@; for the i-th dimension is given by,
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Since the data for each axis is drawn independently, theapibity that =" does not belong to

(-7)

1=1

any of theO;’s is given by

Therefore the probability that the test point is includecineast one of the outlier sets is given

by
1 ﬁ (1 - ﬁ) .
i=1 R;
[
In the above expressior[}_, (1 - 1%) — 0 asp — oo since (1 - %) < 1. Therefore,
for large p, the true positive rate of the distributed algorithm apphms that of the centralized
algorithm.

Following a similar argument, it is easy to show that thedaiggative rate of any point is

P(760d|?¢(’)c):ﬁ(1—%).

=1
Finally, we show that the false positive rate of the alganitis 0. Note that in the second phase
of the distributed algorithm, we sample data from the nekwaord build an SVM. The resulting
hyperplane is the same that would have been built if the eentaitaset were at one location.
Therefore, any point which is not an outlier according@p (i.e. one of the red circles in the
figure), will also be tagged as a normal points @y since they both use the same hyperplane

for testing the points. As as result, the false positive cdtéhe algorithm is zero.

B. Message complexity

The total number of bytes necessary to centralize all of tita dt a single location and run

the centralized outlier detection algorithm is:

P
mXmny+mXng+---+mXn, =m X g n;
i=1

For the distributed algorithm, we perform two rounds of commication. First, we centralize
the outliers from all the sites and then we gather a samplézefis from all of them to build

a global model and test the outliers found by each of the Isitat. Note that for centralizing
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the outliers from site?”;, we need to visit other sites too in order to fetch the otheredisions.

Thus, total number of messages is given by,

p p p
|O | xZni+|(92|XZnZ—+---+|Op|xZni+?an1+---+Tsxng
i=1 i=1

i=1 g
centralizing samples

centralizing outliers

P p P P P
:Z|(9i\ X Zni+TSZni:Zni X <T3+Z|Oi|>
j=1 i=1 i=1 i=1 =

Now sincem > % |0;| + T, the distributed algorithm is far more communication eéfiti

than its centralized counterpart. We demonstrate this meoafly in Section VI.

C. Running time

The running time for the traditional-SVM algorithm can be written a® (m? " n;) or
O <m o, ni)2>, depending on the solution to the primal or the dual problereither of these
two cases, distributed computing can reduce the running liynsplittingn; across several nodes.
Therefore, the load at one node can be reduced ffofm? >°?_, n;) or O <m( - n,-)Q) to
O(m?n;) or O(mn?) respectively. This formulation can provide significantisge in terms of

computational complexity at each node. We demonstrateirihise experimental section.

VI. EXPERIMENTAL EVALUATION

This section demonstrates the performance of the propdgedtam on the California climate

dataset and the Commercial Modular Aero-Propulsion SySenulation (CMAPSS) dataset.

A. Dataset description

The first dataset used in this paper is the MODerate-resoluthaging Spectroradiometer
(MODIS) Reflectance product MCD43A4 (version 5) which pams 500-meter reflectance data
adjusted using a bidirectional reflectance distributionction (BRDF). The data is collected
at intervals of every 8 days as an image file of si283 x 738 where each entry is saved as
little-endian 32-bit float value. Each image is saved in 7asai@ bands at different wavelengths.
Along with the actual reflectance data for each pixel, we &laee the latitude and longitude
information for them. At the top level, the data is organiigdyear from 2001 to 2008. Under
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| Band || Spectral wavelength (ni)

620 - 670
841 - 876
459 - 479
545 - 565
1230 - 1250
1628 - 1652
2105 - 2155

~NOoO O~ WNBRE

TABLE I
SPECTRAL BAND FREQUENCIES FORMODIS DATA ACQUISITION.

this top level directory structure are separate files fohdaend (1 - 7) and each 8-day period
of the particular year. Within the period the best obseoretiwere selected for each location.

Each of the files represent a 2D dataset with the naming ctiowsnas follows:
MCD43A4.CATKM.005. <YYYYDDD > .< BAND > .flt32

where< YYYY DDD > is the beginning year-day of the period ardBAN D > represents
the observations in particular (spectral) band (band 1 dl@nThe indexing is 0-based, ranging
from O - 6 (where 0 = band 1, and 6 = band 7). The spectral bampidrecies for the MODIS
acquisition are as follows (see Table II):

The second dataset is a simulated commercial aircraft endgta. This data has been gen-
erated using the Commercial Modular Aero-Propulsion Sgs&mulation (C-MAPSS) [21].
The dataset contains full flight recordings sampled at 1 Hh &9 engine and flight condition
parameters recorded over a 90 minute flight that includesnado cruise at 35000 feet and

descent back to sea level. Interested readers can refeistdataset at DASHIink

B. Dataset preparation

In order to apply our anomaly detection method, we have padd the following prepro-
cessing steps on the MODIS dataset:

« We remove all the pixels which have a fill value of -999.

2htt ps://c3. ndc. nasa. gov/ dashl i nk/ resour ces/ 140/
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« For each band and each image (per day) we first convert the Zibxnof pixels into a
1-D representation (as a simple vector) and then append tleesors over all the days and
years to create a (very) long vector of intensities for tl@ad Combining for all the bands,
we get the size of this matrix a, 613,391 x 7.

« Along with this, we have also created a latitude and longitongtrix (each of sizé2, 613, 391 x
2) for each element in the data matrix.

« We then split the data into 7 sites, each site havings13, 391 tuples.
Figure 4 shows the dataset and the final output of the pregsoug step.

Band Band ...............
Band] Band1
Longitude Longitud
Latitude Pixel Latitude Pixel
Day1 of Year 2001 Day8 of Year 2001

|

Band1 Band2Band3Band4 Band5 Band6 Band7

Day1 of Year 2001

Day8 of Year 2001

Day353 of Year 2008

Fig. 4. This figure shows how the MODIS data set is structukexth file is an image of siz€203 x 738. There are seven
bands (separate images) for each of the 46 days per year§omars), since data is saved every 8th day. The data comtfins
both the intensity and the latitude and longitudes for eadation. First we take each (2-D) image containing the siters
as the pixels and convert it to a (1-D) vector. Then we appéedet vectors, thereby creating a very long vector. We do this
separately for each of the bands, and concatenate them sisieéd (see figure for details).

For the CMAPSS dataset, we did not perform any preprocessmghe data. It has been
used directly from the website. We only divided the dataigaly to simulate the distributed

scenario.
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C. Measurement metric

In all of our experiments we measured these quantitiesh@ percentage of correct detection
or detection rate, (2) the running time, and (3) the numbenegsages exchanged. By percentage
of correct detection we mean the number of common outlierglwhare found both by our
distributed algorithm and a centralized algorithm haviegess to all of the data but using the
same sample siZg, for training as the distributed algorithm. When comparingning time, we
plot the running time of our method and the centralized atlgor running on all the features.
Note that, for our distributed algorithm since each site manin parallel, we report the average
running time over all the sites. We also report the total nemdbf bytes transmitted by the
distributed algorithm.

D. Performance evaluation on MODIS dataset

In this section we discuss the performance of the distribwigorithm on the California
MODIS dataset. The first figure (Figure 5) shows how the detecate (both mean and standard
deviation) varies as the size of the training samflg (s varied. The results are an average
of 10 trials. We have varied, from 10,000 (0.79% of the entire dataset) to 1,000,000 4.92
of the entire dataset). For a uniformly selected trainingesize 10,000, the percentage of
correct detection is 98.33. It remains almost a constandiféerent sizes of the training set. For
1 million test points, the correct detection rate is clos®@3079%. This shows that our algorithm
is extremely accurate and returns the true set of outliees different sample sizes. Note that
in this context, true set of outliers refers to the outlievarfd by the centralized algorithm.

The next experiment demonstrates the gain of our algorithiim rgspect to running time. As
shown in Figure 6, the running time of our algorithm diver§resn the centralized algorithm as
T, is increased. For smalldr,, the running time is comparable to the centralized algoritAs
T, increases, our algorithm starts performing better. Thistigitive since with increasing size
of training sample, more computation is needed and thusuhgeimg time of the centralized
algorithm increases sharply. On the other hand, the diggtbalgorithm exhibits a slower growth
in running time since the total processing load is distebuacross all the processors. As shown
in Section V-C, the distributed algorithm exhibits superelr complexity at each node which

neatly concurs with the graph in Figure 6.
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Fig. 5. \Variation of the percentage of correct detectiorhwifte size of the training set as the latter is varied from A®,0
points (0.79% of the entire dataset) to 1,000,000 point82¢%. of the entire dataset) for MODIS. The samples are selecte
at random from the entire dataset. Percentage of correettitai means the number of anomalies detected by the ditdb
method compared to a centralized SVM algorithm using thizeedaitaset. As evident, the detection rate increases asathple
size increases.
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Fig. 6. \Variation of running time with the size of the traigirset for MODIS. The samples are selected at random from
the entire dataset. Both the running times of our algoritimd the centralized algorithm are shown. Clearly, the distgd
algorithm outperforms the centralized one as the sampkisizeases.

Message complexity of the algorithm is demonstrated in feéigt. The z-axis shows the
number of samples used for the training andgkexis refers to the ratio of the bytes transferred
by the distributed algorithm to that of the centralized alldpon, expressed in percentage. Note
that a value ofy = 100 means that the distributed algorithm does not provide anynconication
savings. For all the cases, the percentage message cotypplaries between 0.134 and 7.934.
This shows that the proposed algorithm is highly commuracagfficient.

Figure 8 shows the top 50 outliers for training set size of,@00. These outliers can be
an outcome of any of the following underlying phenomenorhsas change in vegetation due
to fire, algorithmic problems with atmospheric correctiool®uded data, bad sensor or pixels

corrupted during transmission. This is the general problth Earth Science - the complexity

December 3, 2010 DRAFT



20

® ©
L

N W N o o~
— 92—
[ ]

Percentage of bytes communicated

,_.
r @

. . .
112 5 10
Size of training set x10°

Fig. 7. Variation of the percentage of bytes communicatel thie size of the training set for MODIS. The samples arecsete

at random from the entire dataset. Thexis refers to the ratio of the bytes transferred by theribisted to the centralized
algorithm, expressed in percentage. As depicted, the mamimpercentage of bytes transferred is close to 8%, demdingtra
the excellent scalability of the proposed algorithm.

of the system itself makes it extremely difficult to find th@tr@ause for anomalies. Sometimes
it may be due to a simple change in vegetation due to fire, boiemes it may be caused
by other changes hundreds or thousands of miles away. Augbranalysis of these results is

beyond the scope of this work and will be reported in anotlegrep.

E. Performance evaluation on CMAPSS dataset

Figure 9 shows the detection rate of the distributed anondalection algorithm for the
CMAPSS dataset as the number of training samples is vargd fr,000 to 10,000. The left
and the right figures show the same for 1 feature per site arehtires per site respectively.
As shown, the detection rate is high for both these scenarios

Figure 10 shows the runtime for the same CMAPSS dataset wieesize of training set is
increased. As expected, the distributed algorithm showsiehnslower growth in running time
compared to the centralized algorithm.

Our last set of experiments (Fig. 11) show the variation deckon rate and running time
as the number of features per site are varied from 1 to 4. Asatgf, the detection rate shows
no variation. This justifies the claim that out method is thio the number of features at any
location. On the other hand, the running time of the algarighows a sub linear growth, better

than the theoretically derived quadratic growth as show8ention V.
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Fig. 8. Top 50 outliers detected by the distributed algamitfor 7s = 100,000.

VIlI. CONCLUSION

In this paper we have presented a distributed algorithm ldapaf detecting outliers from
distributed data where each site has a subset of the globalf $eatures. To the best of the
authors’ knowledge, this algorithm is the first which doesraaly detection from vertically
partitioned data in a communication efficient manner. Ounprg rule allows us to achieve high
accuracy and low communication cost, a must for processirapytes of data. We have provided
a comprehensive theoretical analysis of the algorithm tavsits gains. Experimental evaluation
is conducted with the NASA MODIS satellite image datasettfedCMAPSS dataset. The results
show that the algorithm is approximately 99% accurate witly d% of the communication

needed for centralizing all the data.
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