
 

AbstractÑ Data-based predictive control is an emerging
control method that stems from Model Predictive Control
(MPC). MPC computes current control action based on a
prediction of the system output a number of time steps into the
future and is generally derived from a known model of the
system. Data-based predictive control has the advantage of
deriving predictive models and controller gains from input-
output data. Thus, a controller can be designed from the
outputs of complex simulation code or a physical system
where no explicit model exists. If the output data happens to
be corrupted by periodic disturbances, the designed
controller will also have the built-in ability to reject these
disturbances without the need to know them. When data-based
predictive control is implemented online, it becomes a version
of adaptive control. One challenge of MPC is computational
requirements increasing with prediction horizon length. This
paper develops a closed-loop dynamic output feedback
controller that minimizes a multi-step-ahead receding-
horizon cost function with multirate prediction step. One
result is a reduced influence of prediction horizon and the
number of system outputs on the computational requirements
of the controller. Another result is an emphasis on portions of
the prediction window that are sampled more frequently. A
third result is the ability to include more outputs in the
feedback path than in the cost function.

I. INTRODUCTION

ATA-Based Predictive Control is an emerging control

method that stems from Model Predictive Control

(MPC). MPC is the concept where the current control action

is based on a prediction of the system output a number of

time steps into the future [1]-[3]. A sequence of control

actions (from the present time to some future time) is

computed that minimizes a finite-duration cost function.

Out of this sequence, only the present control input is

applied to the system. At the next time step, the entire

process repeats. Thus the starting and ending time steps of

the cost function shift one time step forward. The term

“receding-horizon” is often associated with this strategy.

In MPC, the system output is generally predicted using

the state-space model based approach or the input-output

model approach. These two approaches can be unified via an

interaction matrix, which offers a convenient mapping from

the state-space description to the input-output description

[4], [5]. One important feature of the interaction matrix

formulation is that, although the starting point of the MPC

derivation is state-space based, in the end the controller has

a dynamic output feedback form and can be implemented
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without an observer, and without explicit computation of

the entire future output and input histories.

Using the interaction matrix formulation, MPC combines

well with system identification to produce so-called “data-

based” designs. Data-based designs are advantageous because

they can be designed from the outputs of complex

simulation code or a physical system where no explicit

model exists [6]. Also, if the output data happens to be

corrupted by periodic disturbances, then the designed

controller will have the built-in ability to reject these

disturbances without the need to know them.

One of the challenges of data-based predictive control,

and MPC in general, is computational requirements

increasing with prediction horizon length. For traditional

MPC, the computational burden grows exponentially with

horizon length. Reference [7] proposes a strategy for

reducing computational burden of non-linear MPC by

implementing a multi-rate open-loop control strategy,

sampled in a non-equidistant way, where the shortest

sampling interval is placed at the beginning of the horizon,

and the following intervals are expanded exponentially with

time.

For data-based predictive control, the computational

burden grows only with the cube of the prediction horizon

the number of inputs and outputs, and the order of the

controller. However, this burden can still be large for large

horizon lengths, large controller orders, and systems with

many inputs and outputs. The computational burden can be

further compounded when it is implemented online, and can

limit the sampling rate.

While this contribution is inspired by computational

requirements, it also enables more freedom in the control

design by emphasizing portions of the prediction window

that are sampled more frequently, and by allowing the

inclusion of more outputs in the feedback path than in the

cost function.

This approach derives a relationship between a multi-step-

ahead receding-horizon cost function with a uniform

prediction step and a multi-step-ahead receding-horizon cost

function with multirate prediction step. The result is a

closed-loop dynamic output feedback controller that

minimizes the multi-step-ahead receding-horizon cost

function with multirate prediction step.

II. STATE-SPACE AND INPUT-OUTPUT REPRESENTATIONS

Consider an r-input, m-output system with the system

state x(k)  and output     y(k)  given by
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!  

x k +1( ) = Ax k( ) + Bu k( ) + Bdud k( )
y k( ) = Cx k( ) + Du k( )

. (1)

Neither the system model, defined by 

!  

A , 

! 

B , 

! 

Bd , 

! 

C ,

and 

!  

D , nor the initial state of the system, 

!  

x(0) , are

assumed known, but a set of sufficiently rich and long

excitation input 

! 

u(k)  and possibly disturbance–corrupted

output data 

! 

y(k)  is available. The disturbance input, 

! 

ud (k) ,

if present, is assumed to be a sum of a finite number of

unknown harmonics. Only an upper bound of the number of

harmonics is known.

The representation of the data history can be simplified

by the introduction of “super-vector” notation, defined by

 
  

!  

gw k( ) " g k( )T g k +1( )T L g k + w#1( )T[ ]
T

(2)

where g will generally represent an output or control input

(column) vector, w is the length of the vector.

For the system in (1), the output y(k) is dependent on the

initial state 

! 

x(0)  and the disturbance inputs 

!  

ud (k) . Since

the disturbance input and the initial state are assumed

unknown, it is beneficial to describe the system using a

relationship between the excitation input and disturbance-

corrupted output that does not explicitly include the terms

involving the initial state and the disturbances. In [4], the

interaction matrix formulation captures this input-output

relationship, which does not depend on initial state and

disturbances. It was shown that the following relationship

holds for excitation input and possibly disturbance-corrupted

output,

! 

ys k + q( ) = P
1
up k" p( ) " P

2
yp k" p( ) +Wus+q k( ) (3)

when p is selected such that 

!  

mp " n + 2 f +1 and 

!  

0 " q " p ,

where n is the system order, f is the number of distinct

disturbance frequencies, and the 1 accounts for a constant

disturbance if present. The parameters 

! 

P
1
, 

! 

P
2
, 

! 

W  are the

coefficients of an s-step ahead predictor model. In this

context, p is the number of past data points, q is the start of

the prediction horizon, and s is the length of the prediction

horizon. A conservative value for p can be chosen using an

upper bound on the order of the system and the number of

distinct disturbance frequencies.

III. MODEL PREDICTIVE CONTROL LAWS WITH UNIFORM

PREDICTION STEP

A predictive controller can be designed to minimize the

receding-horizon cost function

!  

J k( ) =
ys k + q( ) " zs k + q( )[ ]

T
Q ys k + q( ) " zs k + q( )[ ]

+ us+q
T k( )Rus+q k( )

# 

$ 

% 
% 

& 

'  

( 
( 
, (4)

where 

! 

zs(k + q)  is the desired output trajectory to be

tracked. The output error cost is evaluated over the interval

from time 

! 

k + q  to 

! 

k + s+ q"1, with a weight matrix of 

! 

Q .

The control input cost is evaluated over the interval from

time 

! 

k  to 

!  

k + s+ q" 1, with a weight matrix of 

!  

R.

The future control input history 

! 

us+q (k)  that minimizes

the resultant cost function can be found by substituting (3)

into (4), and taking the derivative with respect to 

! 

us+q (k) .

The future control input history becomes

  

!  

us+q (k) = A1up (k " p) + A2yp (k " p) +Bzs(k + q)  (5)

  

! 

A1 = "BP1 , A2 = BP2 ,B= (R +W T
QW )

+
W

T
Q . (6)

The optimal control law for the r  control inputs is

extracted from the first r  rows of (5). It assumes a dynamic

output feedback form shown in (7).

! 

u k( ) =Gup k " p( ) +Hyp k " p( ) +Kzs k + q( ) (7)

The gains G, H, and K are the first r  rows of   

! 

A
1
,   

!  

A2,

and B, respectively.

IV. MODEL PREDICTIVE CONTROL LAWS WITH

MULTIRATE PREDICTION STEP

Now consider the following cost function with a

multirate prediction step,

! 

J k( ) =
y k + q( ) " z k + q( )[ ]

T
Q y k + q( ) " z k + q( )[ ]

+ us+q
T

k( )Rus+q k( )

# 

$ 

% 
% 

& 

' 

( 
( 

(8)

where 

!  

y k + q( )  and 

!  

z k + q( )  are L vectors of future outputs

and desired outputs a t  arbitrary t ime steps

  

!  

e= e
1

e
2

e
3

L eL[ ] , as in (9), and 

!  

Q  is the weight

matrix of the multirate output error.

  

! 

y k + q( ) =

y v1,k + q + e1( )
y v2,k + q + e2( )
y v3,k + q + e3( )

M

y vL ,k + q + eL( )

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

,

  

!  

z k + q( ) =

z v1,k + q+e1( )
z v2,k + q+e2( )
z v3,k + q+e3( )

M

z vL ,k + q+eL( )

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

'  
'  
'  
'  
'  
'  

(9)

The outputs 

!  

y vi ,k + q+ ei( )  and desired outputs

!  

z vi ,k + q+ei( )  are arbitrary subsets of the system outputs

a n d  d e s i r e d  o u t p u t s .  T h e  indices

  

!  

vi = vi,1 vi,2 L vi,Ni
[ ], vi, j " m  denote the outputs used

at each time 

! 

ei . Using this notation, each output can be

assigned a distinct sampling rate, or be excluded from the

cost function entirely, e.g. a vector 

! 

y k + q( )  with a first

output sampled every other time step, a second output

sampled every third time step, and a third output omitted

from the cost function can be expressed as outputs at time

steps 

! 

e1,e2,e3,e4 ,e5[ ] = 1,3,4,5,7[ ]  and the outputs used



!  

v1,v2,v3,v4 ,v5[ ] =
1

2

" 

# 
$ 

% 

& 
'  ,1,2,1,

1

2

" 

# 
$ 

% 

& 
'  

" 

# 
$ 

% 

& 
'  . The selection of 

!  

ei  and

!  

vi  can be selected by the control designer to tune the

distribution of weights in the cost function. The selection of

!  

ei  can be used to tune the weighting matrices to weight

different portions of the prediction window with different

relative amounts. Portions that are sampled more frequently

have a higher relative weighting of the error than portions

that are weighted less frequently.

Equation (3) was derived with a uniform step size, and

cannot be directly applied. However, the cost function (8)

can be transformed to an equivalent form by defining a

selector matrix E , which is formed from the rows

  

! 

v
1

+ me
1

v
2

+ me
2

L vL + meL[ ]  of an s m  by sm

identity matrix. E relates 

!  

y k + q( ) to the uniformly sampled

future outputs 

!  

ys k + q( )  by

!  

y k + q( ) = Eys k + q( ) . (10)

Equation (10) assumes 

!  

0 " ei < s, but since s is a design

parameter, this is not restrictive. The future control input

history 

!  

us+q (k)  that minimizes (8) is then found by

substituting (3) into (10), substituting (10) into (8), and

taking the derivative with respect to 

! 

us+q (k) . The future

control input history becomes

  

! 

us+q (k) = A1up (k " p)+ A2yp (k " p)+Bz (k + q) (11)

  

!  

A1 = "BEP1, A2 = BEP2,B = (R +W
T

E
T

Q EW )+
W

T
E

T
Q .

(12)

The counterpart to (7) is then

!  

u k( ) = Gup k " p( ) + Hyp k " p( ) + Kz k + q( ) . (13)

The gains 

!  

G, 

!  

H , and 

!  

K , are the first r rows of 
  

!  

A
1
, 

  

! 

A2 ,

and   

!  

B, respectively.

V. ADAPTIVE DATA-BASED CONTROLLER DESIGN

To employ the optimal control law in (13), the controller

gains 

!  

G , 

!  

H , and 

!  

K , must be either known a priori  or

estimated online. The controller gains can be designed a

priori for the model predictive approach by relying on a

model of the system. Similarly, a data-based design can be

done a priori  in a two step approach, where the model 

!  

P
1
,

!  

P2, 

!  

W  is identified from input-output data and the gains

! 

G, 

!  

H , and 

!  

K , are then designed. For an online, adaptive

implementation of the control laws, the gains are designed

directly from input-output data via a relationship that relates

! 

G, 

!  

H , and 

! 

K , to input-output data. The equation that

enables the direct relationship for the uniform prediction

step was derived in [6] and is shown in (14).

  

!  

I " R +W T
QW( )

" 1
R

# 

$ % 
& 

'  ( us+q (k) = A1up (k " p)

+A 2yp (k " p) +Bys (k + q)
(14)

In (14) 

! 

Q and 

!  

R are the weighting matrices of the cost

function with uniform prediction step, and 

!  

W  is the

coefficient matrix of the s-step ahead predictor model in (3).

Further detail about the derivation of this equation can be

found in [6]. The corresponding equation for the multirate

prediction step can be shown to be

  

!  

I " R+WT ETQ EW( )
" 1

R
# 

$ % 
& 

'  ( us+q (k) = A1up (k " p)

+A2yp (k " p) +By (k + q)
(15)

The first r rows of (15) are extracted to produce the input-

output relationship shown in (16).

!  

Sus+q k( ) = Gup k " p( ) + Hyp k " p( ) + Ky k + q( ) (16)

!  

S is the first r  rows of 

! 

I " R +W
T

E
T
Q EW( )

"1
R

# 

$ % 
& 

' ( 
.

Equation (16) has the property of being an open-loop input-

output equation with the controller gains 

!  

G, 

! 

H , and 

! 

K ,

from (13) included explicitly as coefficients of the equation.

Using (16), the coefficients of the open-loop input-output

model can be identified, and used in (13) as the gains of a

dynamic feedback controller.

The data-based predictive controller developed in the

simulation updates 

!  

G , 

! 

H , and 

! 

K , online using (16) and

past input and output data. Since (16) is a non-causal input-

output relationship, the approach begins with a time shift of

!  

" s+ q( )  to the data sets within (16) in order to fully

populate the super-vectors of collected data, with the most

recent data used being 

!  

y k " 1( )  and 

!  

u k " 1( ) . The time-

shifted equation is then

! 

Sus+q k" s" q( ) = Gup k" p" s" q( )
+Hyp k" p" s" q( ) + Ky k" s( ).

(17)

Equation (17) is then arranged in the form

!  

Sus+q k " s" q( ) = # k( )$ k " 1( ) (18)

!  

" k( ) = G k( ) H k( ) K k( )[ ] ,

! 

" k#1( ) =

up k# p# s# q( )
yp k# p# s# q( )

y k# s( )

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 
.(19)

In general, any linear estimation algorithm may be used

to identify the parameters in 

!  

" k( ) . For this application a

recursive least-squares [8] estimation of the form

! 

" k( ) = " k#1( ) + Sus+q k# q# s( ) # " k#1( )$ k#1( ){ }% k( ) (20)



! 

" k( ) =
# k$1( )

T
% k$1( )

T

1+ # k$1( )
T
% k$1( )# k$1( )

(21)

!  

" k( ) = " k #1( ) # " k #1( )$ k #1( )% k( ) (22)

is used to update 

! 

G k( ) , 

! 

H k( ) , and 

!  

K k( ) , in 

! 

" k( ) , starting

with some initially large covariance matrix 

!  

" 0( )  and an

initial guess of the controller gains 

!  

" (0)  and 

!  

S . In practice,

the control error 

! 

Sus+q k " q" s( ) " # k "1( )$ k "1( ){ }  found

in (20) is subject to a dead-band. The estimation of 

!  

" k( )  is

conducted every time step. The optimal control input is then

! 

u k( ) = G k( )up k" p( ) + H k( )yp k" p( ) + K k( )z k + q( ). (23)

VI. SIMULATION RESULTS

The 5-degree-of-freedom system shown in Fig. 1 is used

to illustrate the control design method. The set up allows

various combinations of inputs, outputs, and disturbance

locations for illustration. The model mass matrix is a

diagonal matrix with m1, m2, … m5 on the main diagonal,

and the damping, and stiffness matrices are

!  

C =

c1 +c2 " c2 0 0 0

" c2 c2 +c3 " c3 0 0

0 " c3 c3 +c4 " c4 0

0 0 " c4 c4 +c5 " c5

0 0 0 " c5 c5

# 

$ 

% 
% 
% 
% 
% 
% 

& 

'  

( 
( 
( 
( 
( 
( 

K =

k1 + k2 " k2 0 0 0

" k2 k2 + k3 " k3 0 0

0 " k3 k3 + k4 " k4 0

0 0 " k4 k4 + k5 " k5

0 0 0 " k5 k5

# 

$ 

% 
% 
% 
% 
% 
% 

& 

'  

( 
( 
( 
( 
( 
( 

(24)

where mi=1.5, ki=5000, and ci=10, in consistent units. A

discrete-time model was generated from the continuous

model using a sampling interval of 0.01 second. The

examples illustrate various multi-input multi-output

controller designs with uniform and multirate cost

functions. The two inputs are the forces acting on masses 1

and 4 and the two collocated outputs are positions of the

same masses 1 and 4. The system has no direct transmission

term, thus the smallest value for q that can be selected is 1,

which is used here. In these examples, the disturbance input

acts on mass 3, and is unknown to the controller. The

disturbance is a sum of 5 harmonics at 2 Hz, 8 Hz, 12 Hz,

15 Hz, and 17 Hz. A typical disturbance input time history

is shown in Fig. 2. The mass 1 is to track a sinusoid with

frequency 0.159 Hz for and mass 2 is to track a sinusoids

with frequency 0.398. For all examples, the tracking gains

!  

G k( ) , 

! 

H k( ) , and 

!  

K k( ) , are computed from (19)-(22). The

selected weighting matrices are 

! 

Q =104 I , R= I . Larger Q
relative to R allows for faster tracking with better accuracy at

the expense of larger initial control effort. A large initial

control effort during convergence of the recursive algorithm

can result in temporary instability, which the controller

must then overcome.

A. Baseline Examples
1) Example 1: Uniform prediction step with long
prediction horizon

This example illustrates the case of a tracking controller

with a uniform prediction step using the recursive least-

squares solution in the presence of disturbances. The order

of the system is 10 (n = 10), there are 5 disturbance

frequencies (f = 5) and no constant disturbance, and the

system has 2 outputs (m = 2), therefore the minimum order

of the controller is p = 10 in order to satisfy the requirement

  

! 

mp " n + 2 f . In a practical application one may not know

the order of the system and the number of disturbance

frequencies, but only reasonable estimates of their upper

bounds.  In that case a much higher value of p should be

used. In this example we select p = 50 as such a “safe”

value. Next we select the duration of the prediction horizon

in the cost function s. Typically we select   

!  

s " p , as larger s
tends to enhance closed-loop stability. Here we select s =

50. A larger value for s results in an equal emphasis on the

short-term and long-term tracking error. All other control

parameters are kept at their previous values. The order of the

controller is p = 50. Figure 3 shows the performance of the

resulting controller when the controller is turned on after 3

seconds. Note that the controller initial inputs are of the

same magnitude as the inputs needed to track the desired

outputs, and the controlled outputs take some time to

converge to the desired outputs.

2) Example 2: Uniform prediction step with short
prediction horizon

This example illustrates the case of a tracking controller

with a uniform prediction step and a shorter prediction

length. Computational requirements and design

considerations may influence the selection of s, and a

smaller s may be chosen. Here we select s = 10. A smaller

value for s results in an emphasis on the short term tracking

error and ignores long-term errors. Figure 4 shows the

performance of the resulting controller when the controller is

turned on after 3 seconds. The controller causes the

controlled outputs to track the prescribed output trajectories

while simultaneously rejecting the disturbances. Note the

controller initial inputs are very large, and the outputs

converge quickly to the desired outputs. Decreasing the

length of the prediction horizon results in a 38% shorter

simulation time.

B. Multirate prediction step for emphasizing portions of
the prediction window.

1) Example 3: multirate prediction step with long
prediction horizon.

This example illustrates the reduced computational cost

of a controller with a multirate prediction step and a longer

prediction length. Here we select s = 50, and

  

!  

e= 1,2,K,10,11,13,K,19,21,26,K,46[ ] . In this example, e



was selected to weight the first 10 time steps heavily, the

next 10 time steps moderately, and the last 30 time steps

lightly. All other control parameters are kept at their

previous values. Figure 5 shows the performance of the

resulting controller when the controller is turned on after 3

seconds. Note that the controller initial inputs are of the

same magnitude as the inputs needed to track the desired

outputs as in Example 1, but the controlled outputs

converge more quickly to the desired outputs. Using the

Multirate cost function results in a 24% shorter simulation

time.

C. Multirate prediction step for including more outputs
in the feedback path than in the cost function.

1) Example 4: multirate prediction step tracking only
one output.

This example illustrates the decreased computational cost

of a controller tracking only one output with a multirate

prediction step and a long prediction length. Here we select

the sampling rate of the first output to be every time step,

and we exclude the second output from the cost function

only, i.e. 

! 

ei = i , 

! 

vi =1. Because there are still two outputs

from the system, m = 2, the value for p = 50 is kept as in

example 1. All other control parameters are kept at their

previous values. Figure 7 shows the performance of the

resulting controller when the controller is turned on after 3

seconds. Note that the controller initial inputs are of the

same magnitude as the inputs needed to track the desired

outputs and the output 1 converges to the desired output as

quickly as the same output in example 2. Note that output 2

does not have a desired trajectory to be tracked and is

uncontrolled.  Output 2 is used only a feedback output for

the controller. Because the same value of p is used, and only

one output is tracked, the simulation time decreases by

about 1%.

Table I summarizes the results of all four simulations.

VII. CONCLUSION

A multirate data-based predictive control has been

presented which reduces the computational cost of increasing

the prediction horizon length s and/or the number of outputs

m. The multirate data-based predictive control laws were

derived using a multi-rate cost function and the resulting

control laws are in dynamic output feedback form.

In general, the computation of the gains G, H, K , whether

done in batch or online is proportional to the cube of the

sum of the lengths of 

! 

up (k" p) , 

!  

yp (k " p) , and 

! 

ys(k + q) ,

i.e. 

! 

rp + mp+ ms( )3 . Larger values of m , p , and s  are

desirable for enhanced stability and tracking performance,

but incur additional computational costs. Computation for

the multirate controller design is proportional to the length

of 

! 

y k + q( )  instead of 

! 

ys (k + q)  which does not increase

with s and m.

This contribution can be applied to data-based predictive

control and model predictive control. Data-based predictive

control has been successfully employed for a number of

applications, including linear time-invariant systems and

multiple-vehicle formations, [9], [10]. This contribution is

especially applicable to adaptive data-based predictive

control, since the computational cost is incurred every time

step, and large computations can limit the bandwidth of the

controller. The adaptive version of data-based predictive

control is of particular interest for its potential application to

linear time-varying systems, such as for the control of

diffusion dependent chemical processes, control of aircraft

and in particular the flight and propulsion control of a Short

Take-off and Landing (STOL) aircraft [11].
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TABLE I
SUMMARY OF SIMULATION RESULTS

Control Technique
Control

aggressiveness
Computation

Time (%)

uniform prediction step, long
prediction length.

low 100%

uniform prediction step, short
prediction length.

high 62%

multirate prediction step, long

prediction length.
low 76%

multirate prediction step, long
prediction length, one output
used in cost function.

low 99%






