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The automation of pre-launch diagnostics for launch vehicles offers three potential 

benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground 

Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and 

diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground 

hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center 

(KSC) and while it was on the launch pad. The prototype combines three existing tools. The 

first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool 

from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE 

(Spacecraft Health Inference Engine), is a rule-based expert system that was developed at 

the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and 

mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool, 

IMS (Inductive Monitoring System), is an anomaly detection tool that was developed at 

NASA Ames Research Center. The three tools were integrated and deployed to KSC, where 

they were interfaced with live data. This paper describes how the prototype performed 

during the period before the launch, including accuracy and computer resource usage. The 

paper concludes with some of the lessons that we learned from the experience of developing 

and deploying the prototype. 

I. Definitions 

Many of the words, phrases, and acronyms that are used in the field of Integrated Systems Health Management 

(ISHM) are ill-defined, so we begin with some definitions. Anomaly detection is detecting that new data is different 

from what has been seen before. An anomaly may or may not be a fault. Fault detection is detecting that something 

has failed, resulting in a loss of function. Fault isolation is determining the location of the fault. Diagnostics is 

determining the specific failure mode. All of these methods take as input the steam of sensor values and commands, 

and output assessments of the system’s health. The Ares I-X Ground Diagnostic Prototype performs anomaly 

detection, fault detection, fault isolation, and diagnostics. 
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II. Introduction 

HE automation of pre-launch diagnostics for launch vehicles offers 

three potential benefits. First, it offers the potential to improve safety 

by detecting faults that might otherwise have been missed so that they can 

be corrected before launch. Second, it offers the potential to reduce launch 

delays by more quickly diagnosing the cause of anomalies that occur 

during pre-launch processing. Reducing launch delays will be critical to 

the success of NASA’s planned future missions that require in-orbit 

rendezvous. Third, it offers the potential to reduce costs, both by reducing 

launch delays and by reducing the number of people needed to monitor the 

pre-launch process. 

Ares I is the launch vehicle that NASA is currently developing to bring 

the Orion capsule and its crew of four astronauts to low-earth orbit on their 

way to the moon. Ares I-X
1
 was the first uninhabited test flight of Ares I. It 

launched on October 28, 2009 (see Figure 1). The Ares I-X Ground 

Diagnostic Prototype (GDP) is a prototype ground diagnostic system that 

provided anomaly detection, fault detection, fault isolation, and diagnostics 

for the Ares I-X first-stage Thrust Vector Control (TVC) and for the 

associated ground Hydraulic Support System (HSS) while the vehicle was 

in the Vehicle Assembly Building (VAB) at Kennedy Space Center (KSC) 

and while it was on the launch pad. The TVC is used to steer the vehicle 

during ascent by moving the nozzle of the first-stage solid rocket booster. 

The HSS provides hydraulic pressure for testing the TVC before launch. 

GDP is intended to serve as a prototype of a future operational ground 

diagnostic system for Ares I or other future launch vehicles. 

The prototype combines three existing diagnostic tools. The first tool, 

TEAMS (Testability Engineering and Maintenance System), is a model-

based tool that is a commercial product from Qualtech Systems Inc. 

(http://teamqsi.com). It uses a qualitative model of failure propagation to 

perform fault isolation and diagnostics. We adapted an existing TEAMS model of the TVC in order to use it for 

diagnostics, and developed a TEAMS model of the ground hydraulics. The second tool, SHINE (Spacecraft Health 

Inference Engine), is a rule-based 

expert system that was developed at the 

NASA Jet Propulsion Laboratory
2
. We 

developed SHINE rules for fault 

detection and mode identification. The 

prototype uses the outputs of SHINE as 

inputs to TEAMS. The third tool, IMS 

(Inductive Monitoring System)
3
, is an 

anomaly detection tool that was 

developed at NASA Ames Research 

Center and is currently being used to 

monitor three systems on the 

International Space Station. IMS 

automatically “learns” a model of 

historical nominal data in the form of a 

set of clusters and signals an alarm 

when new data fails to match this 

model. IMS offers the potential to 

detect faults that have not been 

modeled. The three tools were 

integrated and deployed to Hangar AE 

at KSC, where they were interfaced 

with live data from the Ares I-X vehicle 

and from the ground hydraulics. The 

T 

 
Figure 1. Ares I-X launch. Ares I-X 

launched from Kennedy Space Center 

on October 28, 2009. 

 

 
Figure 2. Ares I-X GDP Architecture. The architecture combines 

anomaly detection, fault detection, and diagnosis for the vehicle and the 

ground support equipment. 
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outputs of the tools were displayed on a console in Hangar AE, which is one of the locations from which the Ares I-

X launch was monitored. The architecture of the prototype is shown in Figure 2. 

In a previous publication
4
, we discussed how we selected the three tools based primarily on their ability to be 

certified for human spaceflight, and described our plans for the prototype. This paper describes how the prototype 

performed during the period before the launch. Section III describes the data that was used to test the prototype, 

including the simulated failures that were inserted into historical Shuttle data. Section IV describes how we used 

TEAMS and SHINE for fault detection and fault isolation, and includes a summary of the results from those tools. 

Section V describes how we used IMS for anomaly detection, and includes a summary of the results from that tool. 

Section VI describes the graphical tool that was used to display the outputs of the prototype. Section VII summarizes 

the computational performance of the prototype. The prototype was not certified, but Section VIII presents a brief 

summary of how we considered the need for certification in the design of the prototype and how we would propose 

to get it certified if it were deployed as an operational system. The paper concludes with some of the lessons than we 

learned from the experience of developing and deploying the prototype. 

III. Data Used for Testing the Prototype 

During the development and testing of Ares I-X GDP, Ares I-X data was not yet available. We therefore used 

historical Space Shuttle data to test the entire prototype. The Space Shuttle Solid Rocket Booster (SRB) TVC is 

virtually identical to the Ares I-X first-stage TVC, so the SRB TVC data was expected to be very similar to the Ares 

I-X TVC data. Similarly, the ground hydraulic system used with the SRB TVC is virtually identical to the ground 

hydraulic system used with the Ares I-X TVC. These expectations held up modestly well after our post-flight 

analysis, in consideration of all the tools that were deployed to support failure and anomaly detection, as will be 

discussed in subsequent sections. The differences that we found in the data were caused by differences in operations 

between Shuttle and Ares I-X, rather than by differences in the TVC or HSS hardware. 

The SRB TVC and the associated ground hydraulic system have had very few failures. We thus had available to 

us an abundance of nominal data, but very little failure data. We therefore decided to develop a set of failure 

simulations that could be used to test the ability of the prototype to detect and diagnose failures. We inserted 

simulated failures into the historical Shuttle data, and used the resulting data sets to test the prototype before the 

Ares I-X launch. We developed simulations of the following four failure modes: 

 FSM (Fuel Supply Module) pressure drop due to N2H4 (Hydrazine) leak 

 Hydraulic pumping unit over-temperature failure 

 Hydraulic fluid reservoir level drop due to hydraulic fluid leak 

 Actuator stuck during actuator positioning test 

For the FSM failure, we developed a physics-based simulation. For the other three failure modes, we did not have 

sufficient information available to develop physics-based simulations, so we used simple linear approximations. 

More details of the simulated failures can be found in Ref. 5. 

After the Ares I-X vehicle was assembled and powered up in the Vehicle Assembly Building (VAB), we began 

testing the prototype using live data from the vehicle. This testing continued until launch. 

IV. Fault Detection, Fault Isolation, and Diagnostics  

The software tool that was chosen to provide fault isolation and diagnostics for GDP is called TEAMS. TEAMS 

is a software package for performing model-based diagnostics based on the system design, component definitions, 

inputs, outputs, connectivity, signal flow and hierarchy. The TEAMS suite of tools includes TEAMS Designer, a 

graphical tool that is used to build TEAMS models, and TEAMS-RT, a real-time fault isolation and diagnosis engine 

that uses the TEAMS models. We used TEAMS Designer to build TEAMS models of the TVC and HSS, and 

deployed TEAMS-RT to Hangar AE. 

TEAMS-RT requires as its inputs a set of test results and the current system mode. Each test result has a “pass” 

or “fail” value, and typically represents the result of a test that is performed on the TVC. Most of the tests involve 

comparing a sensor value with a threshold. GDP uses a combination of SHINE rules and C code to compute the test 

results and the system mode. This “wrapper” code performs fault detection and mode identification. The diagnoses 

produced by TEAMS-RT label all of the components in the model as “good” (definitely not failed), “suspect” 

(possibly failed), or “bad” (definitely failed). 

TEAMS models are hierarchical; it is possible to “zoom in” on any of the modules displayed in TEAMS 

Designer to see the components within them. At the lowest level, the failure modes and test points are modeled. 

(The test results described above are input to the model at the test points.) We built separate TEAMS models of the 

TVC and the HSS, and then integrated them into a single model by using a simple top-level model. The failure 
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modes and components were modeled based on information provided in the Failure Modes and Effects Analysis for 

the vehicle, along with schematics, diagrams, users’ manuals, and knowledge from TVC engineers and systems 

engineers. The integrated model has 655 components, 893 failure modes, and 263 tests. The tests use data from 281 

measurements. 

Prior to the Ares I-X launch, we tested the TEAMS model and the wrapper code using historical Shuttle data 

from seven flights, into which we inserted simulated failures. This testing revealed some bugs in the SHINE rules. In 

some cases, we had initially made some assumptions about the TVC testing procedures that turned out to be false for 

at least one of the seven Shuttle flights. Other bugs were simply coding errors. After fixing all of the bugs, we were 

able to run the prototype on the data from all seven Shuttle flights with no false alarms, and with all of the simulated 

failures correctly detected. 

We obtained the first Ares I-X data shortly after Ares I-X had its initial power-up in the VAB, approximately six 

weeks before the launch. When we tested the prototype on this Ares I-X data, it produced a small number of false 

alarms, caused by differences in the test procedures between Shuttle and Ares I-X. Most of these false alarms were 

caused by incorrect mode identification. For example, some tests were performed in a different order for Ares I-X 

than they were for Shuttle. Prior to the launch, we fixed the SHINE rules for mode identification. Shortly before the 

launch, the prototype had a small number of false alarms caused by data dropouts. We had expected data dropouts 

during ascent, but had not expected data dropouts before launch. After the launch, we modified the wrapper code to 

detect data dropouts. After making this modification, we were able to run the prototype on the recorded data from 

the launch without any false alarms. Ares I-X did not have any failures in the systems we modeled, so the prototype 

had no correct detections and no missed detections. 

V. Anomaly Detection 

We ran IMS in parallel with the TEAMS/SHINE combination. We expected that TEAMS and SHINE would 

detect all of the known failure modes that we modeled, while IMS would have the potential to detect unknown 

failure modes and anomalies that are not yet failures. IMS has been proven as a mature tool by supporting various 

NASA Johnson Space Center (JSC) Shuttle and International Space Station (ISS) operations for four years as well as 

being licensed commercially for three years. It is currently running on a console at JSC Mission Control Center to 

monitor live data from the ISS Control Moment Gyroscopes, Early External Thermal Control System, and Rate 

Gyroscopic Assembly, and has been certified as Class C software for those three systems. 

The tool works under the principle of a one-class modeling algorithm by building a model of the nominal 

historical data on which it is trained. Because IMS only models the nominal data, and does not model any failure 

modes, it can potentially detect unknown failure modes. The model takes the form of a knowledge base (KB) of 

clusters. Once the KB has been learned, unseen data points are evaluated against the KB and assigned anomaly 

scores based on how different the data points are from the training data. If a new point falls within an existing 

cluster, then it is assigned an IMS score of zero. If it does not fall within an existing cluster, then the distance to the 

nearest cluster is used as the IMS score. 

IMS also calculates a contributing 

score for each measurement, 

representing each measurement’s 

contribution to the overall IMS score. 

When an anomalous period of the 

testing data is localized, these 

contributing IMS scores can be used to 

help diagnose the issue. 

Prior to the Ares I-X launch, we 

trained IMS on historical Space Shuttle 

data, and tested it using historical 

Shuttle data into which we had inserted 

simulated failures. During the Ares I-X 

pre-launch period, IMS processed live 

Ares I-X data, using the knowledge 

base that was the result of training IMS 

on historical Shuttle data. The 

remainder of this section describes the 

selection of measurements for use with 

 
Figure 3. AUC as a function of IMS Parameter Max Interp for 

Shuttle data from the VAB. The red dot indicates the optimal value. 
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IMS, the training and testing procedures 

used, and the results obtained both on 

Shuttle data and on Ares I-X data. The 

section concludes with a summary of the 

results.  

A. Training and Testing Procedures 

For the purpose of training and 

testing IMS, we used historical Space 

Shuttle data into which we inserted 

simulated failures. Although the main 

purpose of using IMS in GDP is to 

detect unknown failures, we tested it by 

using simulations of known failures.  

IMS has a number of tunable input 

parameters. One key parameter that was 

very important to tune was the 

maximum interpolation (max interp) 

parameter. This parameter governs the 

threshold in the learning phase that 

determines if a new data point should be 

placed in the current cluster or used to 

generate a new cluster.  The parameter 

directly influences the number of 

clusters created in the learning phase 

and therefore has a major influence in 

the final anomaly score calculated by 

IMS. As the max interp value increases 

the total number of clusters formed becomes smaller. 

To determine the optimal max interp value and corresponding number of clusters a set of cross validation runs 

was performed on a set of Shuttle VAB and launch pad data, using the Area under the ROC (Receiver Operating 

Characteristic) curve (AUC) as the governing metric for optimization. Cross validation is a technique for estimating 

the accuracy of a machine learning 

algorithm, by training and testing the 

algorithm multiple times, each time 

using different subsets of the available 

data for training and testing, and then 

averaging the results. The ROC curve 

is a plot of true positive rate against 

false positive rate, and can be used to 

help make the tradeoff between these 

two rates. The AUC is loosely a 

measure of accuracy over all possible 

tradeoffs between true positive rate 

and false positive rate. More formally, 

the AUC represents the probability 

that a randomly chosen failure data 

point is more suspect than a randomly 

chosen nominal data point.
6
 An AUC 

of one thus indicates perfect ranking of 

these two randomly selected data 

ponts. 

B. Results on Shuttle Simulations 

Once the cross validation runs 

were complete, the areas under the 

 
Figure 4. ROC Curve for Shuttle data from the VAB. This ROC 

curve was generated using the optimal max interp value from Figure 3. 

 

 
Figure 5. ROC Curve for Shuttle data from the pad. IMS had nearly 

perfect accuracy on the Shuttle pad data. 
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ROC curves were calculated. Figure 3 

shows the maximum, minimum, and 

average AUC over the three-fold cross 

validations and three fault scenarios for 

each max interp value. The optimal 

max interp value that was chosen is 

marked in the plots. The ROC curve 

with the optimal max interp value of 

0.13 can be seen in Figure 4. The AUC 

is only 0.86893, because IMS had 

difficulty detecting one of the three 

simulated failures that were used. The 

increase in IMS score resulting from 

this simulated failure was not much 

larger than the nominal variation in the 

IMS score, so it was not possible to 

select a threshold that would allow 

IMS to detect all of the simulated 

failures without having any false 

alarms. Some failure modes are easily 

detected using IMS’ distance-based 

approach with clustering, while others 

are not. When IMS is used in parallel 

with TEAMS-RT, TEAMS-RT should 

detect all of the failures that are 

modeled in the TEAMS model; the 

advantage of using IMS in addition is 

that it has the potential to detect 

failures that were not modeled, as well 

as anomalies that are not yet failures. 

For the pad, IMS performed much 

better. After optimizing the value of 

max_interp, the ROC curve was 

generated and can be seen in Figure 5.  

Here the AUC is 0.99919, indicating 

that IMS does an excellent job of 

detecting the two simulated failure 

modes at the pad. 

C. Results on Ares I-X 

Once the optimal max interp parameter was determined from the Shuttle data, IMS was trained on 33 

measurements using Shuttle data from seven flights. After building the KB, the Ares I-X data was evaluated against 

it. The resulting IMS scores for the VAB are shown in Figure 6. With the initial set of 33 measurements, 3 periods 

of anomalous behavior were flagged by IMS; they are labeled as three “False Alarms” in Figure 6.  We performed 

an analysis of each “false alarm”; here we present the analysis of False Alarm 1 as an example. We determined that 

False Alarm 1 was primarily caused by two measurements, the TVC rock and tilt actuator positions. The 

contributing IMS scores for these two measurements are plotted in Figure 7. 

False Alarm 1 was caused by a difference between the Space Shuttle and Ares I-X. In recent years, the TVC 

actuator tests performed in the VAB have all been “pinned” tests, meaning that the actuator is physically pinned to 

the nozzle during testing, so that the nozzle moves during the test. The first TVC actuator position test performed in 

the VAB for Ares I-X was an “unpinned” test, meaning that the actuator was detached from the nozzle, and the 

nozzle did not move during the test. Because the actuator was unpinned, it was able to move through a larger range 

of motion that is not possible during pinned testing. IMS therefore saw rock and tilt position values that it had never 

seen in the Shuttle data, which it flagged as anomalies. These anomalies are “false alarms” in the sense that they are 

not failures, but they do illustrate the ability of IMS to detect new data that is different from what it has seen before. 

We performed a similar analysis for the launch pad, where there were fewer anomalies identified by IMS. Like the 

 
Figure 6. Ares I-X Sept 17th VAB Global IMS Score. Periods during 

which IMS detected anomalies that were not failures are labeled as “false 

alarms” 

 

 
Figure 7. Sept 17th VAB Top Contributing IMS Scores For False 

Alarm 1. False Alarm 1 was primarily caused by the TVC rock and tilt 

actuator positions, which moved through a larger range of motion on Ares 

I-X than they did on Shuttle. 
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anomalies detected at the VAB, the 

anomalies detected at the launch pad 

were caused by operational differences 

between Shuttle and Ares I-X. 

D. Summary of IMS results 

The experiments that we ran before 

the Ares I-X launch using historical 

Space Shuttle data with simulated 

failures demonstrated that IMS is able 

to detect most of the simulated failures, 

but not all of them. In particular, it had 

difficulty detecting one of the 

simulated failure modes in the VAB. 

That is not surprising. IMS is not 

trained to detect specific failure modes; 

it detects data that is anomalous 

according to its cluster-based model. 

We expect that many known and 

unknown failure modes will be detected as anomalies by IMS, but it is not guaranteed to detect all possible failure 

modes. The advantage of using IMS together with a model-based diagnosis system such as TEAMS is that it adds 

the potential to detect unknown failure modes and to detect precursors of failures. 

The results of running IMS on Ares I-X data, using a KB that was trained on historical Space Shuttle data, 

confirm our hypothesis that the Ares I-X TVC data is reasonably similar to the Space Shuttle SRB TVC data. Most 

of the time, IMS produced small anomaly scores when run on the Ares I-X data. IMS did detect some “anomalies” 

in the Ares I-X data. These anomalies were “false alarms” in the sense that they were not failures but rather caused 

by operations performed differently for Ares I-X versus Shuttle; hence, they illustrate the ability of IMS to detect 

new data that is different from what has been seen in the past.  

VI. Java Display 

Java Display is an application that is used to display in real time the following information: 

1. An interactive schematic of the HSS and TVC subsystems 

2. Values for sensors present in the HSS and TVC subsystems 

3. Outcome of tests performed by the wrapper code (SHINE) 

4. Diagnostic results of TEAMS at both the component and failure levels 

5. A tally of suspect and bad components both at the component and failure levels 

6. The IMS score 

A screen shot of the Java Display is shown in Figure 8. 

The two scrollable text areas on the right hand side display information pertaining to TEAMS diagnoses and 

SHINE wrapper code test results. On the top right hand corner of the display are fields that display the IMS score 

and the current time. A large part of the Java Display is dedicated to a schematic representation of the HSS and TVC 

subsystems. The schematic representation is hierarchical and the user is provided with the ability to click on a 

particular subsystem to view details at a component level. The subsystem schematics also display in real time the 

associated sensor values. Each component of the schematic is colored with an outline depending on the outcome of 

the diagnosis from TEAMS. In particular, good, suspect and bad components are colored green, yellow and red 

respectively. 

VII. Computational Performance of the Prototype 

The prototype performed very well from a computational perspective. During development and testing, we ran 

the prototype on a Dell Precision M4400 laptop with an Intel Core 2 Quad Q9300 CPU running at 2.53 GHz and 4 

GB of DRAM, running Windows XP 32-bit. Table 1 shows the memory and CPU usage of each of the processes 

within the prototype, when running on the laptop with historical Space Shuttle data and a simulated fault 

(“Hydraulic pump over-temperature failure”) fed into it at simulated real-time (25 Hz).  The CPU usage numbers 

indicate what percentage of the quad-core CPU was used. So, for example, a process that used all of the CPU time 

on one core would be listed as 25%. 

 
Figure 8. GDP Java Display screen shot. The schematic has been 

blurred to protect confidentiality. 
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Table 1: GDP memory and CPU usage 

Process CPU DRAM 

TEAMS (includes TEAMS-RT, the SHINE rules, the C test logic, and the data 

interface code) 
8% 12 MB 

IMS (including its data interface code) 1% 11 MB 

Java display (including JVM) 1% 29 MB 

Data playback software 18% 56 MB 

Plotting tool 1% 12 MB 

Windows XP Operating System 5% 410 MB 

Total 34% 530 MB 

 

In summary, the prototype could be run on a single laptop PC using only a small fraction of the available CPU 

and memory. It could have easily run on a PC with half as many cores and half as much memory. It used a 

substantial size model (with 893 failure modes), and ran at 25 Hz. We expect that future NASA ground diagnostic 

applications will receive data at a much lower rate (possibly 1 Hz), but will model dozens of systems (compared 

with the two systems modeled in our prototype). 

VIII. Verification, Validation, and Certification 

Ares I-X GDP is a prototype. It was not certified, and as such its outputs cannot be used to make operational 

decisions. The team did, however, seek to develop the tool in such a way that it could be certified. The three tools 

that were integrated (TEAMS-RT, IMS, and SHINE) were selected based in large part on their potential to be 

certified. These three tools were judged to be easier to certify than competing tools because of their past usage in 

relevant applications and because of their relative simplicity. Decisions regarding how the vehicle and ground 

models would be integrated were also made based in part on ease of certification. The team wrote a draft verification 

and validation plan that describes how we would have verified, validated, and certified the prototype if it had been 

deployed as operational software. 

In lieu of a formal verification and validation process, the team performed informal testing of the prototype and 

its components. Much of testing used historical Shuttle data into which we inserted simulated failures. In addition, 

the team performed testing of the interface code by running large quantities of historical Shuttle data through the 

different pieces of interface code and verifying that the data that came out of each interface matched the data that 

went into each interface. Before deploying the prototype to Hangar AE at KSC, the team performed integrated 

testing of the entire prototype (including TEAMS-RT, SHINE, IMS, and the Java display) using historical data from 

several Shuttle flights. Shortly after the initial power-up of Ares I-X in the VAB, the prototype was tested using 

recorded Ares I-X data from the initial power-up. Finally, after the prototype was installed in Hangar AE, it was 

tested using live Ares I-X data from the VAB. 

IX. Lessons Learned 

We learned many lessons from our experience of developing and deploying the prototype. We expect that these 

lessons will be useful to future NASA efforts to build automated diagnostic systems, and may also be useful to 

people beyond NASA. The most important lessons are summarized in this section. 

A. Need for the system to provide system mode and event information 

TEAMS-RT requires mode and event information as part of its inputs (since certain failure modes can only occur 

in certain system modes). The system modes that we needed were the major system modes of the vehicle, 

specifically VAB or pad (and were easy to infer). The events and subevents were generally indications of what test 

was being performed or what step within a test was being performed. These were often more difficult to infer. If the 

system gets into the wrong mode or event, it is unlikely to ever recover automatically. When GDP got into the 

wrong mode or event, we stopped the software, manually set the mode and event, and then restarted it. 

The Space Shuttle and Ares I-X both provided us with inadequate system mode and event information. Because 

of that, we needed to develop complex SHINE rules to infer the system mode and events from the sensor data and 

the command stream. That caused five problems: 

1) The development of these SHINE rules was very labor intensive, which resulted in increased costs. 
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2) The complexity of these SHINE rules increased the risk that an error in the SHINE rules would result in a 

false alarm. (And in fact, we did have false alarms caused by errors in these SHINE rules during the Ares I-

X pre-launch period. We have since fixed all of the errors of which we are aware.) 

3) We faced the risk that if any of the data on which these SHINE rules depended was missing or incorrect, the 

prototype would infer the system mode or event incorrectly, resulting in false alarms. 

4) Certain failure modes could be mistakenly interpreted as mode changes, resulting in both missed detections 

and false alarms. For example, suppose an event that needs to be detected is a valve being closed manually 

by a person turning a knob. Suppose that the SHINE rules use a pressure sensor downstream of the valve to 

detect when the valve has been closed. If there is a system failure that results in a decrease in pressure, such 

as a leak, then the SHINE rules will mistakenly conclude that the valve has been closed. 

5) There were some events that we determined could not be detected using the available sensor data and 

command stream. We therefore had to remove from our scope the failure modes that depended on these 

events. 

We believe it is very important for future launch vehicles, such as Ares I, to transmit system mode and event 

information to the diagnostic software. 

B. Cost of developing wrapper code 

In addition to developing the TEAMS models and the IMS KBs, the GDP team also needed to develop “wrapper 

code.” The wrapper code consists of: 

1) The interface code that gets live data and feeds it to TEAMS-RT, the SHINE rules, and IMS 

2) The system mode and event identification code 

3) The “pass/fail” test logic. 

The cost of developing the “wrapper” code was higher than we had expected it to be. We estimate that the cost 

of developing the wrapper code was comparable to the cost of developing the TEAMS models. We expect that the 

relative cost of developing wrapper code will be lower in the future, for two reasons: 

1) We hope that future systems will provide better mode and event information, reducing the cost of developing 

system mode and event identification code (see Lesson A). 

2) A significant part of the cost of developing the wrapper code was the cost of developing the interface code. 

This interface code is not specific to the systems we modeled. Since we only modeled two systems (TVC and 

HSS), we were only able to amortize this cost over these two systems. We expect that future diagnostic 

systems will model more systems, and will therefore be able to amortize the cost of the interface code over 

more systems. 

C. Utility of using rule-based systems for wrapper code 

The use of SHINE in development of the wrapper code had several upsides but also many downsides. Once the 

basic syntax of coding in SHINE was understood, the SHINE framework allowed for very fast development of rules 

for event mode detection. After the rules were compiled into C code, the forward-chaining aspect of SHINE greatly 

simplified what would otherwise have been a complicated series of nested-if statements. Unfortunately there were a 

number of problems as well that may have been avoided if SHINE had not been used, or if it had been used in a 

more limited context. The biggest downside turned out to be the difficulty of debugging the SHINE rules. This could 

have been improved upon in a number of ways: 

1) Begin testing SHINE rules on smaller datasets. 

2) Break the SHINE code into smaller, more manageable “chunks”. 

3) An Integrated Development Environment (IDE) for SHINE could potentially have helped to debug the rules 

prior to testing on real data. It could have enhanced the visibility of what rules are associated and triggered 

by certain variables, and also helped to spot potential “infinite loops”. 

4) Move all TEAMS tests outside of SHINE. While SHINE was fully capable of evaluating TEAMS test logic, 

most of these tests were more easily coded and managed using table lookups. 

 

Overall, SHINE proved to be a useful but cumbersome tool. If future work were to be done in this area, SHINE 

could certainly help but it is recommended to be used in some combination with straightforward C/C++ 

programming to minimize complexity. In general, the things that can easily be done in C or C++, such as table 

lookups for threshold values, should be done in C or C++. SHINE rules should only be used for tasks that naturally 

fit the rule-based paradigm, such as some of the more complex event identification rules. 
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D. TEAMS modeling lessons learned 

The process of modeling the TVC and HSS in TEAMS and integrating the two models has resulted in several 

lessons learned.  First, our experience highlights the need for a comprehensive Interface Control Document (ICD) 

for each subsystem that is modeled in TEAMS-Designer.  Without an ICD that is agreed upon prior to the start of 

the modeling tasks, the model designer will likely spend many hours modifying the models to allow the proper 

propagation of information between interacting subsystems. 

Second, the testability analysis of the individual models revealed the disparity between the usefulness of the fault 

isolation for different types of subsystems.  There is better fault isolation in the TVC model than the HSS as a result 

of how the subsystems have been designed and are operated. (Flight systems generally have more instrumentation 

than ground systems, resulting in better fault isolation.) In the future, criteria related to the degree of automation in 

the system along with instrumentation placement may aid in deciding which subsystems should be modeled for the 

greatest benefit to an automated fault detection and isolation application.  

Finally, the model integration process between the TVC and HSS demonstrated the need for a common approach 

regarding the use of functions and test points.  There are several strategies for naming and using functions in the 

context of local and global failure propagation, bidirectional flow, switches, and function mapping.  A set of 

modeling conventions for TEAMS has been developed which addresses common look and feel considerations for 

the model, but the conventions have so far left function naming and usage to the discretion of the modeler.  In the 

future, a standard convention for the usage of functions and test points should be developed, and all ground and 

vehicle models intended to be used in an integrated fashion to perform fault isolation should be required to follow 

the new convention. 

E. Appropriate roles of model-based diagnosis and anomaly detection 

Each tool should be leveraged to promote its strengths rather than re-adapting the tool to solve a problem that is 

outside of its domain of relevance. Model-based systems such as TEAMS work very well for detecting and 

diagnosing the known failures that have been modeled. As we mentioned in the Introduction, we believe that the 

value of including a one-class anomaly detection algorithm such as IMS alongside a model-based diagnosis system 

such as TEAMS in a diagnostic system is that the anomaly detection system has the potential to detect anomalies 

that cannot be detected by the model-based diagnosis system, either because they are unknown failures and therefore 

unmodeled, or because they are not failures. Furthermore, IMS may detect known failures in advance of the time 

that TEAMS would detect them, and in general IMS requires less modeling effort than TEAMS (although it does 

require a sufficient quantity of historical and/or simulated training data). But anomaly detection methods such as 

IMS are not well suited for detecting some types of failures. As we mentioned in the IMS section, we used 

simulations of known failure modes to test IMS. For some of these simulated failures, we expended a lot of effort in 

tuning IMS to get IMS to detect the simulated failures.
7
 This tuning process included reducing the set of 

measurements that were used to train IMS. 

With IMS, we know that its strengths lie in a great potential to detect faults that are unknown or that otherwise 

have not been modeled and to detect anomalies that are precursors of faults before a model-based system detects the 

fault. We believe that it would be better to rely on TEAMS to detect certain known failure modes, rather than tuning 

IMS to detect them. Reducing the set of measurements that are used to train IMS did allow IMS to successfully 

detect the simulated failures, but it reduced IMS’ potential to detect other unknown failures. 

F. Metrics 

We had a lot of discussions about the appropriate metrics for measuring the accuracy of diagnosis and anomaly 

detection. We considered different ways of defining false positives and false negatives in both cases. We ended up 

using the Area under the ROC curve (AUC) to measure the performance of IMS and enumerating the false alarms to 

assess the performance of TEAMS. Any future operational deployment of diagnostic technology will require careful 

consideration of metrics. 

X. Conclusion 

Automated pre-launch diagnostics can help increase safety, reduce cost, and reduce launch delays. The Ares I-X 

Ground Diagnostic Prototype helped to demonstrate and mature automated fault detection and diagnostic software 

that can be used in future missions. GDP successfully demonstrated the feasibility of integrating three very different 

fault detection and diagnostic methods, and of integrating diagnosis of the vehicle with diagnosis of the ground 

systems. 
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Although the prototype had a small number of false alarms in TEAMS, we believe that an operational system 

could have avoided these false alarms by having mode identification provided by the system, and by having a formal 

verification and validation process. As an anomaly detection system, IMS can be expected to have some false alarms 

(since not all anomalies are failures), but we expect that the number of false alarms will decrease over time as more 

data becomes available for training IMS. 
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