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Abstract—This is a progress report on an effort in which our
goal is to demonstrate the effectiveness of automated data mining
and planning for the daily management of Earth Science mis-
sions. Currently, data mining and machine learning technologies
are being used by scientists at research labs for validatingEarth
science models. However, few if any of these advanced techniques
are currently being integrated into daily mission operations.
Consequently, there are significant gaps in the knowledge that
can be derived from the models and data that are used each
day for guiding mission activities. The result can be sub-optimal
observation plans, lack of useful data, and wasteful use of
resources. Recent advances in data mining, machine learning,
and planning make it feasible to migrate these technologiesinto
the daily mission planning cycle. We describe the design of a
closed loop system for data acquisition, processing, and flight
planning that integrates the results of machine learning into the
flight planning process.

I. I NTRODUCTION

Machine learning has been integrated with planning systems
in order to automatically extract knowledge from one problem
to apply to future problems, thereby improving the perfor-
mance of the planning system. More specifically, knowledge
about the domain, search control strategies, or solution quality,
can often be refined or extended from the ”experience” of
planning.

The work described in this paper fits into the overall idea
of ”learning to improve planning” but with an emphasis that
distinguishes it from the goals of other efforts. Specifically,
the ”experience” that improves the planning is gained from
(data acquired as the result of) theexecutionof previously
generated plans, rather than the experience of planning (i.e.
the search for a plan) itself. The application here is daily
mission flight planning from the identification of useful or
interesting observation targets, for an in-situ sensor mounted
on an airborne observatory (a modified DC-8). Typically,
targets are interesting if they reveal discrepancies or anomalies
in predictive models used by Earth scientists to study processes
related to things like climate change or pollution. Further
observations of such targets will quantify the errors in thepre-
dictive models in order to improve their predictive accuracy or
more generally fill gaps in the knowledge about the process of
interest. Interesting observation targets become goals used by a
flight planner to generate the next day’s observation activities.
Furthermore, because the process under investigation (e.g. a
hurricane or pollution plume) may be changing regularly (e.g.,

daily or seasonally), acycleof planning, observation, analysis
of data acquired from observation, and model revision and
prediction, occurs continuously throughout the course of an
observation campaign(typically lasting weeks). Finally, to be
fully effective as a mission operations tool, it is necessary to
have an effective way to visualize both the data being analyzed
and the plans being generated.

This paper presents an early prototype of a system for
integrating planning, learning and visualization capabilities for
use by human mission planners to improve the daily operations
of what are calledmixed observationmissions, i.e., missions
that combine observations from a number of heterogeneous
ground, airborne, or space-borne sensors. The next section
offers a detailed example of a target mission and an overview
of the integrated system. There follow sections on the learning,
planning and visualization capabilities required.

II. A PPLICATION AND SYSTEM ARCHITECTURE

NASA and other international space agencies launch and
operate Earth observing systems for collecting remote sensing
measurements to support scientists in the pursuit of goals re-
lated to understanding changes to the Earth’s ecosystem. These
data are combined with data collected fromin-situ sensors
mounted on airborne or ground platforms. Many scientific
goals require the combination of data acquired from different
sensors. For example, to expand the temporal and spatial scale
of airborne measurements, measurements from remote sensors
are obtained simultaneously with in-situ sensors.

An example of such a mixed platform observation mission
was INTEX-B [1], conducted from March 1 to April 30, 2006.
INTEX-B was the second part of a two-phase experiment that
aimed to understand the transport and transformation of gases
and aerosols on transcontinental and intercontinental scales
and assess their impact on air quality and climate. INTEX-B
science goals include quantification of the outflow of pollu-
tants and aerosols from North America over the Atlantic to
Europe; an improvement of our understanding of the chemical
and physical evolution of these constituents; and an assessment
of the impact of pollution transported from mega-cities such as
Mexico City. High-priority measurements included long-lived
greenhouse gases, ozone and its precursors, and aerosols and
their precursors.

Day-to-day DC-8 flight planning on INTEX-B involved
generating a flight plan as a set of flight legs between way-
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points. Plan generation was partly automated using various
flight planning tools that assist the human user by accounting
for flight dynamics of the DC-8, requirements imposed by the
instrument to obtain accurate readings, and other constraints.
Selection of waypoints was guided by forecasts generated
from a set of models of different spatial scales. Near-real-
time observations from a number of satellite instruments were
used to guide the selection of and to identify specific regions of
interest for in-situ sampling. Integration of aircraft andsatellite
measurements to address the mission objectives requires vali-
dation flights directed at establishing the consistency between
the two data sets.

The focus of automation in the context of mixed observation
missions such as INTEX is to improve the ability toassimilate
the different data sources in order to generate waypoints; and
secondly, to automate thesearchfor high quality plans, where
quality is related to the ability to resolve model anomalies
or accomplish other mission goals. The idea is that improved
data assimilation will result in a better understanding of the
space of high quality flight plans, a space which can be then
explored more effectively by automated planning methods.

The semi-closed system integrating machine learning as part
of data assimilation with flight planning into a daily mission
planning system is illustrated in Figure 1. The closed loop
system involves four components:

1) Data archives, process models, and instruments for pro-
ducing data or forecast products (commonly referred to
as a ”sensor web”);

2) A data assimilation assistantfor generating planning
goals (waypoints) given data and forecast products;

3) A flight planning assistantfor generating flight plans
given goals; and

4) A visualization toolfor displaying the data and plans to
the human flight planner.

Fig. 1. The daily mission flight planning cycle, integratingdata assimilation,
visualization and flight planning.

For example, the process model called the Model of OZone
And Related chemical Tracers (MOZART) [2] produces Car-
bon Monoxide (CO) distribution predictions for a specified

region. These observations are assimilated with satelliteob-
servations of CO from remote sensors over the same region,
such as Aurora and Ionospheric Remote Sensing (AIRS) and
Measurements of Pollution in the Troposphere (MOPITT)
sensors, as well as observations of dust, aerosols and clouds
from the Moderate Resolution Imaging Spectroradiometer
(MODIS). These data and models are organized and archived.
Data mining produces waypoints, which are expressed as a 3D
location vector,〈latitude, longitude, altitude〉 and a value
indicating priority. These waypoints are identified as interest-
ing locations for conducting future CO measurements, either
for finding and characterizing differences between models and
observations, or for filling in gaps in data. The waypoints are
fed into the planner as goals. Flight plans are generated and
displayed to the human planner using the visualization tool.
Measurements are taken, and the cycle is repeated, usually on
a daily basis.

The remaining sections focus on the learning, planning, and
visualization challenges that arise in this application.

III. L EARNING PROBLEM

As indicated above, the data assimilation assistant gener-
ates waypoints for planning. The waypoints are intended to
represent locations where the data is most ”interesting.” For
example, ”interesting” could mean that instruments intended
to measure the same quantity yield significantly different
measurements, or that process models yield predictions signifi-
cantly different from supposedly corresponding measurements,
or mathematical relationships expected to hold between vari-
ous models and measurements do not hold. So far, we have
mainly experimented with the second metric—differences be-
tween model predictions and measurements—and will report
on these in the limited space that we have. We have done some
preliminary investigations into the third metric—mathematical
relationships between models and various measurements—
however, we need to experiment further with selecting the
right subsets of data over the right time periods and adjusting
appropriate tuning parameters to obtain a reasonable set of
waypoints.

We compared the MOZART prediction of CO with two
satellite measurements of CO returned by AIRS and MOPITT
remote sensors. The MOZART predictions were placed in
a regular coarse grid (with each grid cell covering 0.7059
degrees latitude by 0.7031 degrees longitude). The AIRS
and MOPITT instruments take their measurements in swaths
because of the satellites’ orbits around the Earth (the swaths
can be compared to a ribbon being wrapped around a sphere).
Therefore, the measurements end up in data products as
many measurements at various points within a swath. We
then selected the points in all three datasets that fell within
the region of interest—between 12 and 32 degrees north
latitude and between 80 and 105 degrees west longitude—
which is Mexico and the surrounding area. Altitude-wise, we
selected the portions of AIRS and MOPITT that fell within
the range present in MOZART— from the Earth surface to
approximately 43 kilometers. We ended up retaining 131474
AIRS measurements and 14250 MOPITT measurements.
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For each of these AIRS and MOPITT measurements, we
then found the closest MOZART point and calculated the dif-
ference between the CO measurement and the MOZART CO
prediction in units of parts per billion. We then converted the
resulting 131474 AIRS-MOZART differences into priorities
on a scale of 1 to 10 for input into the planner by simply
linearly scaling the absolute differences into this range.We
retained the 50 points with highest priorities such that the
points were a minimum of 58 kilometers (approximately 10
minutes of DC-8 flight time) apart. We did this because the in-
strument had the constraint that it needed at least 10 minutes of
measurement time around a waypoint in order to obtain a clear
measurement. Planning for multiple waypoints that are close
to one another while still satisfying the time constraint would
have required a flight plan with excessive turns. We selected
the 50 points simply by first selecting the highest priority
waypoint, removing all the waypoints less than 58 kilometers
away from this highest-priority point, selecting the remaining
waypoint of highest priority, removing all the waypoints less
than 58 kilometers away from this waypoint, etc., until we
obtained 50 points. We separately repeated this process of
selecting 50 waypoints from the 14250 MOPITT-MOZART
differences. We restricted ourselves to 50 waypoints to limit
the planner’s execution time. If we had only retained the
constraint on minimum distance between waypoints, we would
have had 302 AIRS-MOZART waypoints and 91 MOPITT-
MOZART waypoints.

One could argue that the Flight and Activity Planning
Assistant (FAPA) should perform the selection of waypoints
based on the minimum distance between waypoints, since this
is an instrument-related constraint. This way, there wouldbe
a clear division of responsibility with the Data Assimilation
Assistant (DAA) processing data, and the FAPA dealing with
flight and instrument-related constraints. Our decision here
was based purely on efficiency—because the waypoint se-
lection function is distinct from the planning algorithm, and
the DAA produces the waypoints and has them in memory,
selecting the appropriate waypoints here is faster.

We also experimented with standard unsupervised learn-
ing methods for clustering (K-means [3] and kernel clus-
tering [4]) and anomaly detection (one-class Support Vector
Machines [5]). Clustering methods organize the data into
clusters that represent data with similar properties (e.g., partic-
ular ranges in which different measurements fall or particular
mathematical relationships between measurements). Data that
are part of very small clusters or are far from all the clusters
represent possible anomalies. Anomaly detection methods
construct a model of the training data, which is typically
assumed to be normal. These methods are then executed on
new data, and data that do not fit the model’s definition of
normality are flagged as anomalous. For example, one-class
Support Vector Machines (SVMs) are given training inputs
z1, z2, . . . , zn, as well as an expected fraction of training
points that are anomalous. One-class SVMs find a nonlinear
model that identifies up to that fraction of training points as
anomalous and separates them from the normal points. When
a one-class SVM is given a new pointz, it returns a valuey
that is positive ifz is part of the normal regime identified in

the training data and negative ifz is thought to be abnormal.
The farther awayy is from zero, the “more normal/abnormal”
z is.

However, assessing the points returned by these methods
to determine if they represent true anomalies is more difficult
than assessing the points with high differences as we have
mainly done so far. The differences are measured in units fa-
miliar to domain experts (parts per billion), whereas distances
from cluster centroids (for clustering methods) and distances
from hyperplanes (for one-class SVMs) do not have clear
interpretable semantics. The domain expert may have to di-
rectly examine the points flagged by these more sophisticated
methods in the hope of being able to figure out the nature of
the anomalies that the methods have flagged. This has limited
our experimentation with clustering and anomaly detection
methods so far. Additionally, we need to experiment with
different subsets of data products covering different periods of
time and with tuning parameter adjustment in order to yield a
reasonably large set of waypoints. In spite of these difficulties,
this work is ongoing because of these methods’ ability to
characterize anomalous relationships between variables even
though the variables themselves may be in the correct range.
We expect that these methods will find waypoints not found
using methods typically used by domain scientists.

IV. PLANNING PROBLEM

There are two kinds of inputs to the flight planner: mission
goals and waypoints. Mission goals arise from models, from
a phenomenon or event of interest, or from other sensing
resources. The goal might be to validate predictions made
by a model, to characterize or classify the composition of
dynamic process like a pollution plume, or validate observa-
tions made by a remote sensing instrument. The waypoints
are 3D specifications of locations that support one or more
of the goals, generated from the data assimilation assistant
just described. Goals or waypoints are assigned priorities
indicating importance.

The output of the flight planner is a flight plan, which is
a closed path comprised of a set of segments, or flight legs,
connecting waypoints. A path is also associated with temporal
information (start time of each leg, and duration). Each leg
follows a pattern: direct ascent, direct descent, level, orspiral
(ascent or descent). The best path is the one the planner has
determined most likely to satisfy the most goals, based on the
specified priorities.

There are four kinds of constraints on solutions generated
by the planner.

1) Instrument Constraints.Instruments must be set up
before they can take measurements. This means two
things: the aircraft must assume a certain flight pattern,
and it must remain in this pattern for a specified duration
of time.

2) Aircraft Constraints.The DC-8 has flight requirements
related to its navigational capabilities for safe flying.

3) Path Constraints.Flight paths must satisfy certain lo-
gistical constraints, such as starting and end at the same
location. Another important constraint of this type is the
avoidance of Special Use Airspace (SUA).
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4) Mission Goal Constraints.Certain flight segments are
required by the goals of the missions themselves. Typ-
ically these goals involve inter-comparison of data ac-
quired by different sensors. For example, as noted, on
INTEX, the data acquired by the in-situ sensor on
the DC-8 was often compared to remote sensing data
acquired for the same region at the same time, so the
DC-8 was required to fly along the same track as that
flown by the remote sensor.

The core computational problem being solved by flight
planning can be viewed as theorienteering problem(OP)
[6]. Formally, given a set of waypoints,W = {x1...xn}
each with an assigned prioritywi, 1 ≤ i ≤ n, a binary cost
function C : W × W → N , a designated start pointx0 with
w0 = 0, and a temporal boundB, find a sequence (schedule)
s = 〈xs1

, ..., xsk
〉, sj ∈ {0, . . . , n}, k ≤ n+1, that maximizes

Σj=1...kwsj
, subject to the following constraints:

1) s1 = sk = 0 (the plan must start and end at the
designated start pointx0),

2) i 6= j → si 6= sj (eachxj ∈ W occurs at most once in
s),

3) Σi=2...kC(xsi−1
, xsi

) ≤ B.

Notice that in this version there is an assumption of ”over-
subscription”: it is not necessary, and may not be possible,to
service all the customers, and indeed a best route might not
include all of them.

A constructive approach to flight planning was used, where
each decision point involves selection of the next goal to add to
a partial schedule. A greedy stochastic approach to extending
a partial solution is employed, where each feasible waypoint
candidatexi is heuristically evaluated in terms of theexpected
value vi of adding a leg terminating atxi to the partial
plan. The heuristic value biases the random selection process
in favor of that candidate, similar to the HBSS technique
employed in [7]. The purpose of injecting non-determinism
into the solver is to be able to generate multiple solutions for
comparative evaluation by the human planners.

We definevi = wi/[C(xsj
, xi) + pj,i], wherexsj

was the
last waypoint added to the schedule, andpj,i is a penalty
for SUA intrusion. A candidatexi is feasible for a partial
schedule〈xs1

, . . . , xsj
〉 if the sequence〈xs1

, . . . , xsj
, xi, xs1

〉
satisfies the bound constraint (3), i.e., if the aircraft can
return to the airport immediately after flying to the waypoint
without violating (3). The algorithm probabilistically selects
the candidate (based on the expected values) to extend a plan,
until either the list of available candidates is empty, or none of
the remaining candidates is feasible with respect to the current
plan.

The flight planning algorithm can be described as follows:

Flight Planner
While there are observations left to schedule

1. Greedily select next observation to schedule:
For each unscheduled observation

Evaluate cost of adding the observation to
the schedule, including the need to avoid SUAs.

2. Add enabling leg
Check altitude constraints

Find path to avoid SUA incursions, if necessary
Check to ensure resulting schedule does not violate
flight duration constraints.

3. Add observation leg (same steps as in 2.)
Add a flight leg to return to origin.
return plan

For each waypoint in the input to the problem, the planner
computes the expected valuevi, described above, and (non-
deterministically) greedily selects the observation withthe
highest such value. Anenabling legis added to the plan, which
is the shortest path to get to the observation point. The leg must
not violate altitude, duration, or SUA incursion constraints. An
observation legis then added to the plan, corresponding to the
time of the measurement at the desired location. The same tests
for feasibility are made as those made when the enabling leg
is added. The planner algorithm is re-run to generate as many
plans as desired.

For normal problem sizes of 50 candidate waypoints, a
single plan can be generated in roughly three minutes, so it is
feasible to generate many plans for comparison. Most of the
hard computational effort arises from SUA avoidance. For this,
we employed traditional obstacle avoidance techniques based
on visibility graphs. SUA avoidance is discussed in detail in
[8].

V. V ISUALIZATION

The goal of the visualization component is to provide a three
dimensional and interactive spatial context of the mission. This
context allows the human flight planner to view and validate
the results of automated methods and provides a means to
explore and examine flight plans with ”what if” scenarios. To
meet this goal this component has a number of objectives:

1) represent the relevant data and analysis results within a
single geo-registered framework,

2) provide interactive techniques for viewpoint designation,
data interrogation, and scene management,

3) provide multi-scale representation with varying levelsof
detail, and

4) deliver everything to the mission flight planners via an
easy-to-learn interface.

Current practice requires comparing many different maps,
plots, and other documents at different resolutions and pro-
jections. Mission scientists must look at these documents
separately and make time-consuming conversions between
them. Making all resources available in a single geo-registered
frame allows for timely spatial comparison and aggregation
of data, as well as validation and exploration of automated
learning and planning results.

Resources used for the INTEX mission include a base map
of the Gulf of Mexico, coordinates for special use air space
regions, satellite ground track coordinates, 42 atmospheric
layers of predicted CO concentration, candidate waypoints
from the learning process, and the flight plan from the planning
process. The visual frame rapidly becomes cluttered when all
of the relevant mission resources are included. Some objects
obscure others and some objects become lost in the crowded
scene. Interactive scene management (hide/show capabilities)
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and viewpoint designation provides the capability of changing
views of the same scene and designating what parts of the
scene are to be displayed. These features are critical in viewing
and understanding the spatial relationships between resources.

Important objects in the mission context maintain a num-
ber of attributes (for example, waypoints have altitude and
priority) that affect the outcome of the learning and planning
processes and as such are of interest to flight planners. Access
to these attributes in an interactive and spatial manner is very
useful for understanding the results of these processes.

As is common with mixed observation missions, interesting
features are found at varying scales. Overall flight plans and
model predictions are viewed in relation to a small scale map
and flight legs are viewed at a larger scale. Zooming and
multiple levels of detail are useful for viewing a multi-scale
context.

Two visualization tools were used for this work. Mercator,
a geo-visualization software application under development
at NASA Ames Research Center, was used to create the
visualizations of the data and learning and planning results.
Google Earth was used to deliver these visualizations for
examination. Mercator imported the data of various formats,
created visualization objects, and exported them to KML files
which Google Earth could then display. Google Earth is a well-
known interactive software application for viewing maps ofthe
Earth that is free and easily available from the Google website.
It provides the scene management, multi-scale display, and
multiple viewpoint designation needed for viewing the spatial
context created by Mercator.

A visualization of the Gulf of Mexico was created using a
digital elevation model obtained from the Jet Propulsion Lab’s
OnEarth web map server. This visualization was used in Mer-
cator to provide a reference frame for the other visualizations.
Google Earth also provided a base map.

The visualization of the special use air spaces consisted of
a set of extruded polygons with a ceiling and floor. Some of
these polygons were concave and required tessellation. These
objects were made transparent for visibility of the surrounding
terrain and output as model files.

The MOZART model’s prediction of CO was visualized as
a set of surfaces at varying altitudes. CO concentration was
indicated by transparency. Relatively opaque areas have higher
concentrations.

The satellite ground track was represented by a polygon
draped along the width of the track over the base map. This
polygon represents the actual width of the satellite track.

Waypoints were indicated by an icon placed at the waypoint
location and the priority attribute was indicated by icon size.
Waypoints can be interrogated for attributes.

The flight plan was depicted with a set of icons representing
the waypoints and lines connecting the waypoints. The lines
were tessellated to conform to the contour of the earth.

The visualizations were exported to KML formatted files for
input into Google Earth. Each file contained a data set or result.
As can be seen in figure 2, users can view a combination of
candidate waypoints, SUAs, and the flight plan geo-registered
with the base map. Additionally, shown in figure 3, users
can drill down and view a flight leg at a greater level of

detail. Figures 4 and 5 show the predicted CO visualization in
Mercator and Google Earth respectively. Users can select one
of the 42 levels with a slider. A plume of higher concentration
over Mexico City is visible as a bright spot.

Fig. 2. Google Earth with SUAs (magenta), satellite ground track (red),
MOPITT/MOZART difference waypoint candidates (green diamonds), and
flight plan (white).

Fig. 3. Detail of flight plan showing a spiral leg and attributes for a waypoint.

VI. CURRENT STATUS AND CONCLUSION

This paper has described a work in progress. The bulk
of the effort to date has been on the testing and validation
of the component learning, planning, and visualization tools.
Integrated testing and validation of plans generated from the
assimilation of real INTEX data has only just commenced.
Consequently, it is difficult at this point to rigorously assess the
utility of this approach. Preliminary feedback from scientists
has indicated that

• The visualization capability is of immediate benefit be-
cause it enables scientists to compare many different
maps, plots, and other documents at different resolutions
and projections.
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Fig. 4. View of MOZART CO prediction at level 27 with 100X vertical
exaggeration in Mercator.

Fig. 5. View of MOZART CO prediction in Google Earth.

• The data assimilation component is also of immediate
benefit because it, combined with the visualization tool,
enables quicker identification of discrepancies between
model predictions and observations. It needs to be ex-
tended to account for more measurement targets, process
models, and satellite data.

• The flight planning component is of potential benefit, not
so much as a fully automated process, but in a mixed
initiative setting to assist human planners in creating
optimal plans, as well as to compare alternative plan
scenarios. The greedy nature of the planner leads it to
sometimes bypass lower priority waypoints that it should
cover because they are “along the way,” but it nevertheless
achieves the goal of covering high-priority waypoints
while satisfying flight time and other constraints.

This paper has described an infusion of Artificial Intelli-
gence (AI) technology into decision support tools for remote
sensing missions for Earth science. The innovative use of
machine learning and data assimilation to improve mission
observation planning will increase the amount of useful data
products for improving the predictive capabilities of Earth
science models, thus improving human understanding of Earth
processes. From a technology standpoint, the use of ob-

servation and forecast data in the formulation of planning
goals represents a more robust representation of the world
in which the plans will be executed, which will improve the
ability of planning systems to converge on plans with high
scientific value. Finally, the integration of data from models
and measurements with planning for atmospheric studies such
as INTEX requires a robust three dimensional and interactive
spatial context of the mission.
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