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Abstract—In previous studies, a variety of unsupervised anom- continued achievement of ISHM (Integrated System Health
aly detection techniques for anomaly detection were applied to Management) goals.

SSME (Space Shuttle Main Engine) data. The observed results Furthermore, this dataset can act as a baseline for the

indicated that the identification of certain anomalies were specific d | t of algorith lated to fut Hi f
to the algorithmic method under consideration. This is the reason evelopment or algorithms related to tuture generations o

why one of the follow-on goals of these previous investigations Spaceflight, i.e. the Ares | and Ares I-X launch [29]. The
was to build an architecture to support the best capabilities of methods investigated and developed from this dataset are
all algorithms. We appeal to that goal here by investigating a also certainly more generally applicable to a broader class of
cascade, serial architecture for the best performing and most IVHM (Integrated Vehicle Health Management) application
suitable candidates from previous studies. latf o | Id be th licati f derived
As a precursor to a formal ROC (Receiver Operating Char- plat o_rms. ne_examp e Wc_’u e the application ot derive

acteristic) curve analysis for validation of resulting anomaly techniques to civil aeronautics platforms, and more fundamen-
detection algorithms, our primary focus here is to investigate tally to aeronautics research. As such, even though the dataset
the model fidelity as measured by variants of the AIC (Akaike is application-specific, our intent is to demonstrate the utility
Information Criterion) for state-space based models. We show o oy findings from a much broader perspective.

that placing constraints on a state-space model during or after the One of our primary goals in this paper is to introduce the
training of the model introduces a modest level of suboptimality. ur pri Yy : IS paper | : u

Furthermore, we compare the fidelity of all candidate models hotion of model fidelity, a topic previously lacking in other
including those embodying the cascade, serial architecture. We analyses. The suite of algorithms under consideration for our

make recommendations on the most suitable candidates for purposes here is a smaller subset of ones used in previous
application to subsequent anomaly detection studies as measumdanalyses. Many of the algorithms used previously were fairly
by AIC-based criteria. .
mature and had been successfully deployed onboard critical
application platforms. Others operated at lower TRL (technol-
ogy readiness level), but are nonetheless viable candidates for
This paper is a continuation of two previous studies [1&onsideration. The more mature algorithms are IMS (Inductive
- [19], in which various unsupervised anomaly detectioMonitoring System) [13], GritBot, and Orca [1], [28]. The
algorithms were applied to SSME data. The SSME (Spanesearch-stage algorithms are SVM (Support Vector Machines)
Shuttle Main Engine) is a complex re-usable liquid propulsid@], various implementations of the GMM (Gaussian Mixture
system, and is outfitted with a comprehensive array of sensiedel), and an LDS (Linear Dynamic System).
(vibration, facility, and controller measurements). There are First we will establish the requirements making an algorithm
three SSME’s and two SRB’s (Solid Rocket Boosters) used #osuitable candidate for inclusion in the serial architecture in
support the launch of the space shuttle for ongoing missioBec. Il. An appropriate selection is made based upon these
prior to its retirement. Although the shuttle is due to be retire@quirements. We will then provide a detailed discussion of

I. INTRODUCTION

in 2010, the investigation of anomaly detection algorithne state-space model framework in Sec. Ill. This section
applied to this SSME dataset can be justified for a varietyill also cover various initialization and learning strategies
of reasons. under consideration in Sec. IlI-A. The model likelihood and

The acquisition of authentic operational and supporting truits relationship to the Kalman filter updates is detailed in Sec.
data from which to perform rigorous statistical analyses I8-B, and the method for assessing model fidelity is covered
a rare commodity from the perspective of propulsion fdn Sec. IlI-C. Finally, we will present the results in Sec. IV
space applications due to their design for high reliabilitand provide concluding remarks in Sec. V.
and relatively low failure rates. While the SSME dataset
described herein does not by any means represent a consistent,
comprehensive dataset from which to generate a statisticallyThe requirements that would make an algorithm a viable
significant analysis, there are certainly ways to interpret agdndidate for our purposes here are provided in the following
analyze the data in a manner that may serve to supplist.

Il. REQUIREMENTS



TABLE II w(t)

TRAINING/VALIDATION BREAKDOWN
Training Validation I i
Data Sources Nominal Nominal Potential Anomalies u(t) i
STS-77 (#1)| STS-103 (#2) STS-77 (#2) " P > ;
Fliaht Data STS-78 (#1)| STS-103 (#3) STS-91 (#1) !
9 STS-78 (#2)| STS-106 (1) STS-03 (#1) ;
STS-78 (#3)| STS-106 (#2) STS-93 (73) ;
A10851 A10852 A10853 y(t) + !
Test Stand Datg—x5755 A20750 A20619 e —v(t)

Fig. 1. Closed-Loop Control System Block Diagram

1) The method is conducive to temporal analysis (i.e.

a likelihood, probability, or other relevant score-based ) h f inina the inh
metric can be generated for each point in time to allow Requirement 2 addresses the need for retaining the inherent

for the construction of an ROC curve and subsequeﬂYnamiC structure of the data as well as any potential failure
design of an alarm system) or anomalous signatures. In order to construct a model that

2) The method provides an informative composite norjls- dynamically informative we require that the training data is

zero score for a multivariate time series dataset thad.'fsigned a composite score that is non-zero for all time points.
is available during the training phase, and will retaif[he data must also not be randomized in order to preserve its

inherent dynamic structure dynamic integrity. This dynamic integrity is important in order

3) The scores can be compared to some relevant preEﬂe_ensure development of a model that can learn hidden causal

termined threshold, whether derived statistically, experr‘—EIationShipS during training.

imentally, or is inherent to the algorithm itself. By Finally, requirement 3 addresses the target anomaly detec-
constructing a candidate level-crossing event involvinf§Pn @lgorithm based upon use of the state-space models that
the output of a linear dynamic state-space system andV§ Will investigate in subsequent studies. The incorporation

relevant failure threshold, we can mitigate false alarnf§ @ predefined threshold into the design of a state-space

by invoking the principle of optimal alarm as suggestef@sed alarm system is particularly useful due to the inherent
in [22]. capability to mitigate false alarms, as discussed in [22] and

[17]. Therefore, we will use a state-space formulation by

The first of these requirements, Req. 1 addresses the laléfault, under the assumption that the structure of the model
of sufficient data per flight cycle that has been categorizégia linear dynamic system driven by Gaussian noise, and has
as containing anomalies, faults, or failures. This dearth afunivariate output.
anomalous truth data inhibits the ability to generate an ROCOne of the primary justifications for requirement 3 is related
curve with any reasonable level of statistical significance the introduction of an architecture to support the best
However, using the same dataset we can address this laclkcapbabilities of all algorithms. A cascade, serial architecture
data by constructing an ROC curve based upon a tempoaal shown in Fig. 2 promotes synergism among the best per-
labelling of the truth data in lieu of per flight cycle. The timdorming and most suitable candidates from previous studies.
and severity of each anomaly corresponding to our datasefThe idea behind using control system error as the sole
is shown in Table I. Additionally, the descriptions of thendicator for anomaly detection (shown in Fig. 1ed#)) lies in
anomalies and their functional categorizations are providedthe fact that the SSME throttle control system was most likely

Due to the availability of the temporal information for alldesigned with both reference command following and distur-
anomalies, we can construct a statistically significant ROZ&Nce rejection in mind. As such, when large disturbances
curve based upon each time point rather than each flightluence the plantP, to the extent that the control system
cycle. Table Il contains the corresponding meta-data for eaé®nnot reject them expediently, this may be indicative of a
documented anomaly. This table identifies the datasets significant event which is cause for diagnostic investigation.
interest and categorizes them according to their source. Theyn previous studies, it was found that alarm systems devel-
are also categorized according to which flights are used to tr@ped on this concept performed moderately well for specific
models in this study, and which will be used for validatiotiypes of anomalies, both in terms of accuracy and time to
in a subsequent study to be presented in a sequel paper. G&tection. Another reason for using control system error as
validation data is partitioned into flights that contain anomaligbe sole indicator for anomaly detection was the possibility
and those that are nominal. As determined in [19], two of tH# constructing an optimal alarm system based upon a linear
flights that were originally categorized as nominal requiredynamic system trained by the control system error. As such,
reclassification due to mild anomalies that had not previoudl§e principles of optimal alarm can be invoked in order to
been labelled as such. This is evident in the anomalous flightgigate false alarms.
that have been listed with the time and severity of eachHowever, it was found in [19] that when considering the
anomaly shown in Table I. control system error as the basis for training a univariate



TABLE |
CHARACTERIZATION OF FAILURES

Failure Data Failure Type Time of Anomaly Severity
STS-77 (#2) | Anomalous Spike in Sensor Reading (Controller)  74.42 sec Mild
STS-91 (#1) Sensor Failure (Controller) 32.76 sec Mild
A10852 Mixture Ratio Change (Controller) 210 sec Mild
STS-103 (#3) Max Noise Failure (Vibration) 38.1 sec Mild
STS-93 (#1) Controller Failure (Controller) 11.38 sec Moderate
STS-93 (#3) Fuel Leak and Controller Failure (Controller) 11.62 sec Moderate to Severe
A20619 Knife Edge Seal Crack (Vibration) 119 sec Moderate to Severe
A10853 Turbine Blade Failure (Vibration) 130 sec Severe
linear dynamic system, the performance was poor for co Control Learning
troller failures. This was due to the total loss of power t System Tinear
Error

the controller, resulting in sensor readings of zero for bo Dynamic |

N TS )

commanded and actual throttle. Because control system el System
is defined as the difference between commanded and ac o L
throttle, as shown in Fig. 1, a very clearly anomalous conditig Training
can be mistaken for an otherwise nominal value of zero. TH ¢, Anomaly
provides further evidence for the use of an architecture t Score
will detect anomalies of all types by incorporating multiple
methods.
It was also found in the same study [19] that overa S%affof;f;e
accuracy and time to detect for SVM and Orca were bett Orca, SVM
than for most other algorithms on average. As such, the id Multivariate
behind the proposed cascade serial architecture shown in | Time series Learning
2 is to allow for a data reduction that will incorporate the
characteristics of the algorithms with the best performance. Fig. 2. Serial Architecture

Although Fig. 2 illustrates parallel branches, the serial
portion of the architecture involves the lower branch in which
a composite anomaly score is generated. After significant preeet the requisite criteria. Essentially, SVM and Orca act to
processing is performed in order characterize nominal behaxansform the training data from a multivariate to a univariate
ior, the anomaly score should contain no pathologically highme series of the type required by LDS for training, via data
values. This anomaly score can then be used as training dat@uction resulting in an anomaly score. It is therefore possible
for the linear dynamic system. The upper branch corresporitiat other techniques such as unreleased future versions of
to the control system error, which uses a much smaller fractiblS, or even PCA (principle components analysis) could also
of the feature space than the lower branch (as indicated by tieeused for this data reduction.
thicker line for the lower branch). Independent linear dynamic The reason why standard algorithms may be used inter-
system models are generated from each branch for comparisbangeably with other types of static maps that are fundamen-
only, and the common training data set is shown as the soutally transformations and/or data reduction techniques is due
for both methods solely for convenience. to the fact that the training dataset itself is used both during

There are reasons other than pure performance documertedlearning and monitoring phases. The LDS algorithm should
in the previous study cited earlier [19] for eliminating certaimot be subject to “inheriting” undesirable characteristics of the
algorithms as candidates for the serial architecture. Théparent” algorithm delivering its anomaly score as training
reasons are mainly related to inadmissability due to the ladkta (i.e. SVM or Orca). This is due to the fact that no
of meeting the three requirements that have been set fodkecisions made by the parent algorithm are incorporated into
All of the candidate algorithms with the exception of LDI.DS validation. As such, the anomaly score should be viewed
can learn a model based upon a multivariate time series.darely as a transformation of the training data.
fact, the SVM algorithm can even generate a composite scoré’rior to assignment of an anomaly score by these algo-
that can be compared to a relevant predetermined threshiatdms, the multivariate time series data is preprocessed by
that is inherent to its theoretical construction (the margin toscoring and using a method called stationarization. Station-
the hyperplane as measured by Euclidean distance). Howeegization is a technique that has previously been used for
none of these techniques other than LDS can independe8$ME data analysis by Park et al. [25]. Stationarization is
apply the principles of optimal alarm based upon a predefinaded in tandem with z-scoring to remove the effect of non-
level-crossing event. stationarities that arise in the resulting anomaly score as a

This cascade serial architecture (Fig. 2) is an attempt tesult of varying operational modes, which may otherwise
utilize the best characteristics of algorithmic candidates thigger spurious alarms. Z-scoring conditions the data so as



to eliminate any bias introduced by inconsistencies in mea- Histogram of Control System Error
Using a 1 sec settling time

surement units for various parameters. 0.25
The datastream for either branch of the serial architecture

should appear identical, as shown in Fig. 2. This can be 0.2

enabled by ensuring that the qualitative characteristics of the

relative frequency histogram of data for the input to the LDS 0.15¢

learning block appear Gaussian. Alternative Gaussian trans-
formation methods such as the one described in [3] are viable
candidates for future study. However, for the purpose of this
study, we will consider just the two candidate preprocessing
methods previously described, under a number of different
settling time scenarios to be discussed shortly.

Unfortunately, for the SVM algorithm, the stationarization
step may eliminate the inherent capability of the composite':ig- 3. Empirical Distribution of Control System Error Training Data
score to demonstrate a qualitative representation of the specific
parameter with the most egregious behavior. The composite
anomaly score is inherently a distance-based metric, i.e the di§riods of steady-state behavior for the purposes of this and
tance from the monitored point to the hyperplane acting as tReevious studies. Transient periods may be investigated for all
decision boundary. However, if only z-scoring is performedubject algorithms in future work.
the inherent non-stationarity in the anomaly score will enable It was found that in a completely qualitative sense, the best
all operational regimes visited to present as a multimodggttling times to allow for the best Gaussian fit to the SVM and
distribution. Such a distribution is clearly not amenable t@rca anomaly scores were 5 sec and 8 sec, respectively. These
the univariate Gaussian representation required for training $&ftling times were found by investigating values ranging from
LDS. 1 sec to 10 sec. We will use more thorough gquantitative

For Orca, the Composite score is also a distance-bagBgans with which to assess the fit of the model and its
metric, however there is very little difference between theaussian assumptions to the corresponding score-based data in
qualitative nature of the distributions when using both Bubsequent sections. It is interesting to note that the histograms
scoring and stationarizing as opposed to just using z-scoridganomaly scores for both SVM and Orca appear skewed,
for preprocessing. Due to the nature of the manner in whi@id are skewed in opposite directions to each other. This is
the distance calculations are performed, the distributions dR@st likely due to the manner in which the distance-based
also very skewed to the left. Neither distribution for the SvNmetrics were defined. Furthermore, for the SVM algorithm
or Orca scores will be centered at zero. For either distributiée Gaussian radial basis function (RBF) is used as the kernel
to possess a non-zero mean does not present an issue, bedReJator. In future studies, we will attempt to exploit this fact
all of the methods to be described use a zero mean withd@tachieve a better qualitative fit of the data to the model, in
loss of generality, and are used for mathematical conveniengédition to methods such as the one described in [3].

Fig. 3 shows the relative frequency histogram of the control Of the more mature algorithms, GritBot is a commercially
system error data resulting in the realization of a learnéwailable decision tree based algorithm. GritBot does not
model shown to the right of the LDS block shown on toprovide a score for each monitored data point, but instead
of Fig. 2. This is qualitatively a good fit to the Gaussiaprovides a list of the top anomalous scores that are ranked
model, as supported by the superimposed fit of the Gauss#gording to their statistical significance. As such, it is not
curve plotted as a function of relevant measured statistics. Taeuitable candidate for real-time monitoring and implemen-
empirical mean and variance prior to training are functions &dtion. IMS is an unsupervised machine learning algorithm
LDS model parameters, and corresponds to the curve shoilvat uses clustering to form a nominal region represented by
in red, while the curve shown in cyan is the fit after traininghe union of a finite number of hyper-rectangular clusters. By
In Fig. 3 the distinction between these two curves is barefigfinition, IMS assigns a score of zero to all monitored points
discernable, as they are nearly identical. that fall within this nominal region. As such, the nominal

Fig. 4 shows the relative frequency histogram for the anortfaining data cannot be used to train an LDS model since they
aly scores of both SVM (top) and Orca (bottom). It is apparemtll all have zero values by default.
that these methods do not provide as good a fit to the dataThe GMM was the poorest performer in the JANNAF study
under the Gaussian distribution assumption as shown for tinem the perspective of accuracy. However, when implemented
case of Fig. 3 for control system error. As such, one possibility its most exhaustive variant (one GMM per parameter), the
which was explored was to increase the number of poirtimme to detect was on average on par with Orca. The GMM
removed due to transient behavior by allowing for an increaiea simple technique to fit multimodal Gaussian distributions
in the length of the recovery period following major throttlingo data under an IID assumption. Because the GMM is geared
transients. 1 sec was documented as the settling time allowWed isolation of anomalies in this particular implementation,
for and used in previous studies [18],[19]. We only consid¢here is inherently no viable data reduction technique that
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model fidelity directly, both quantitatively and qualitatively.

SVM Anomaly Score using a 5 sec settling time . : -
Ultimately, any such model will also affect its subsequent

60 L . . . .
application to this anomaly detection algorithm. We will fully
s0} ] discuss the technical details of model fidelity in the subsequent
section.
40}
301 [1l. M ETHODOLOGY
20f
We will investigate both quantitative and qualitative aspects
10f of model fidelity, as discussed by [2] and [26], respectively.
. Our objective here is to apply reasonable judgements and
% 0.05 metrics with which to assess and ultimately choose the model
) ) ) o that best describes the data. Variants of the serial architecture
Hlstogralg of Composite Orca Scores using 8 sec settling time shown in Fig. 2 will be explored. Our underlying assumption
1gX10 . : : . is that we can fit measured or transformed data to a model
Lol represented by a linear dynamic system driven by Gaussian
' noise. The state-space formulation is shown in Eqgns. 1-2.
L.4f
1.2}
I 1 X1 = Axp +wg 1)
0.8 ] ye = Cxp+u (2
0.6 '
0.4} 1 where
0.2}
0 . = . . . W ~ N(07 Q)
2 0 2 4 6 8 10
. 104 Vi ~ N(O7 R)
xo ~ N(ux,Po)
Fig. 4. Empirical Distribution of SVM and Orca composite anomaly scores
Hx = E[Xk]
T
TABLE Il Py = Ef(xo— pix)(x0 — px)" ]
REQUIREMENTS MET BY ALGORITHMIC CANDIDATES
Requirement | Orca | IMS | SVM | GritBot | GMM | LDS The state of the systenx; < R"_evolves ag:cording to
1 Yes | Yes | Yes No Yes | Yes these equations, and often characterizes some internal physical
2 Yes | No* | Yes No No® | No° characteristic of the system, beginning at tithe= 0, with
s No | No | No No No | Yes valuex via state matrixA. The scalar output of the system
aZero-scores for nominal IMS training data applicable only for current IS g|v<_an by yk_ € R, and gvolyes through output mgtr@.
working version of IMS, may change in future versions Both input noise ¥), which influences the state trajectory,
bNo composite score available for best performing variant and measurement noisey,§ which influences the output
“Does not process multivariate time series datasets are introduced in order to allow for a more realistic model.

The noise is modelled stochastically via a standard Gaussian

distribution with means and covariances specified abpye.
would result in a single, composite numerical score. For theiSethe mean of the state trajectory, alt is the initial
reasons, it will not be considered as a viable candidate. Tastate covariance. Therefore the parameters to be learned are
Il summarizes the algorithms discussed thus far and whispecified below, as the parametér These parameters are
requirements are met by each. It is therefore clear that by us@igo shown in Fig. 5, which specify them in relation to the
Orca or SVM in tandem with LDS, all of our requirementgrobabilistic graphical modeling paradigm which may be used
are fully covered. for machine learning purposes.

With the proposed architecture in mind, we return to our
primary focus, which is to assess model fidelity for both
branches of the algorithmic setup shown in Fig. 2. In order to
make a valid argument for the practical use of any anomaly
detection algorithms that result from the application of the Let | - | represent the number of elements that comprise a
architecture in Fig. 2, we will need to address the issue parameter of), for example

0= (:uX7P07AaCaQaR) (3)



Fig. 5. Linear Dynamic System

parameterize more elaborate control system architectures that
include PI controllers, use state feedback, or use even more

x| = n sophisticated techniques from control theory. Furthermore,
Al = »? enforcing these constraints during learning implicitly reduces
IC| = n the dimension of the parameter space.
Q = n? We can estimate the natural frequency by making an as-
5 sumption ofe(t) to be represented by a zero-mean stationary
|I|)]3: - " Gaussian random process. In this case, we can use Rice’s
= 1

formula for the level-upcrossing rate [15] [27], as shown in

gn. 10, to compute the natural frequeney, = 2¢. This
ormula can be derived very easily [20], and is used in similar
studies [8][9][21].

Therefore, a formula for the total number of parameters
be learned is shown in Eqgn. 4.

0] = Ipex| + [Po| + [A] +[C| + Q| +|R| = 3n® +2n+1 (4) A { 0 1 } -
The notation for the equations is shown as in [17] for © —wy; —20wn
simplicity and generality. However, if we consider the special r. - { 0 ] )
case of control system error as the outpyt, the notation ¢ w2
becomes trickier to bookkeep, as was performed in [18]. Cc = [1 0] Q)
Furthermore, the details on discretization of the continuous- N Oc _i(Lzse)?
time LDS and initialization using basic assumptions are also as Ve = gt (10)

presented in [18]. A brief summary is provided here, as these -
details relate to one of various initialization/learning strategies 1€ number of zero-upcrossings,”, of L = 0 by the

we will investigate. sample data, and th@"?-order statisticsy., and o, can all
The state dynamics of an open-loop plaRt, as shown in €asily be obtained in order to fing, by using Rice’s formula.
Fig. 1 can be expressed by equations'5-6 During the learning procedure for the linear dynamic system,

the EM algorithm is used to find the parameters shown in
Fig. 5. Details of this procedure are provided in Ghahramani

x(t) = Acx(t) + Beu(t) + Tew(t) (5) and Hinton [11] as well as Digalakis et. al. [7], and it is
y(t) = Cex(t) +v(t) (6) implemented using Murphy’s BNT (Bayes’ Net Toolbox) [24].
where A. Initialization and Learning Strategies
wt) ~ N(0,Q.) One method of initialization/learning is to sét= 1 and

“clamp” w,, during training. Initial values folA. andT'. can
() ~ N(O,Re) then be derived as a function ¢fandw,. Cc = [ 1 0 |
The controllable canonical form shown in Eqns. 7-9 is usd®l also fixed during learning, an& is initialized by making
to allow for a mapping to intuitive canonical parameters: th random guess at the SNR (signal to noise ratio), so that
natural frequencyy,,, and the damping ratia;,. Constraining R = S}T\?R-
ourselves to this basic canonical form is not only intuitively
appealing, but it may also allow for us to ultimately appeal

T _ T
to the control research community. State-space models of A X +XssA, = I‘;FC (11)
this form offer the building blocks, however primitive, to Q. = oe — Re (12)
CeX,Ccl

1Al coefficients are subscripted by for “continuous” in order to disam- . h . | h d
biguate between this and the unsubscripted discrete analogue shown in EqndJSINg  these assumptions, we apply the steady-state

1-2. continuous-time Lyapunov equation (w/ soluti,) in order



to find an adequate initialization fa®., as is performed in explicit function of desired parameters (the intuitive canonical
[20],[21], and shown in Egns. 11-12. We then discretize gbarameters such as SNR,, and ¢, and potentially even
parameters using the sampling inter¥alusing the procedure control gains).

outlined in [21], allowing us to form Eqns. 1 - 2 (details The only other research that addresses a similar control
omitted for clarity). Furthermore, we use the solution dheoretic approach to using probabilistic graphical modeling
the discrete algebraic Lyapunov equation (Egn. 13) as anDeventer et al. [6] and Deventer [5], whose work will
initialization for Py, and initialize u, = 0, After learning, also be considered for comparison in future studies. However,
we can then back out the learned value of the damping raiio Deventer’'s work, controller design is part of the research

¢ and the signal to noise ratio. problem. We will assume that the controller has already been
designed and attempt to learn its dynamical structure and that
P, =P, = AP, AT +Q (13) of the plant. All of these methods will be investigated in future
studies.

Another initialization/learning technique involves the same Furthermore, all of the initialization and learning strategies
initialization strategy, but relaxation of the “clamping” of,  discussed thus far consider only the control system error as the
during training. In this way the value af, can also be learned primary data source. If we alternatively use the transformation
in addition to the damping ratig, and the signal to noise of the Orca or SVM score as the data source, we may use a
ratio. However, we still enforce the canonical form constraifontext free initialization strategy such as factor analysis, so
throughout the learning process. Finally, we will investigatgs not to cast the data in a particular domain (i.e. intuitive
a constraint-free Iearning process, aIthough the initializati@anonicaj parameters for control system error)_ We may also
strategy remains identical to the two previous cases, ajf all restrictions during training, and have more flexibility
enforcement of the canonical form constraint is applied aft@fith the order of the model. As such, we will consider model
the learning process. orders ranging fromn = 2 to n = 10 for the Orca and

For comparison, two alternative initialization strategies wivM scores, in addition to models trained by using the control
be tested as well, one of them which is least desirable of adi;stem error as a data source.
that being a semi-random approach. Here we will randomll_;’/ o ) _
initialize A, C, and Q, using Egn. 13 again to fin@,. In B- Model Likelihood and Kalman Filter Equations
order to ensure tha® is a Hermitian matrix, we apply the As of yet, we have not discussed the metric with which
following transformation:Q%QT. Finally, we make a random we will ascertain model fidelity. As a precursor, let us discuss
guess at the SNR (signal to noise ratio) in order to chdese the log-likelihood function of our model which is maximized
and initialize u, = 0, as before. during each iteration of the M-step. The likelihood of the data

Factor analysis is the final alternate initialization strateggiven our model parameters can be expressed as follows:
to be tested. To use an analogy from within the probabilistic

graphical modeling paradigm, factor analysis is to LDS (or T
Kalman filter) as the GMM is to the HMM (Hidden Markov ~ p(yo,...,yr|0) = H/\/’(sk;O7CPk|k,1CT + R)(14)
Model) [14]. That is, the main assumption shared by the k=0

GMM and factor analysis is the lack of causal conditional
dependencies among the hidden variables. In the GMM/HMM
domain the hidden variables are discrete/multimonial randomwhereT" is the total number of observed samples, apdh
variables, and in the factor analysis/linear dynamic syste[ﬁﬂn. 15 is the white noise innovation process. Other definitions
domain the hidden variables all have continuous Gaussiaf¢ provided below.

distributions. As such, the same machinery for learning the pa-
rameters (the EM algorithm) is used for factor analysis, which

II>

€k Yk — Uk|k—1 (15)

; . 4 T = FE ye e Uk
provides us with an informed set of initialization parameters, ¥ [exlyo, - ]
. . . A ~ ~ T
and has been performed in relevant machine learning venues P, = E[(xx — Xgpk) (Xe — Xijk) Y05 - - - Ukl
[12]. Table IV summarizes and assigns case numbers to aIIF
urthermore,

initialization and learning strategies discussed thus far and to
be investigated in the subsequent section. Gee = Cxyp (16)
We will also quantify the levels of suboptimality introduced

. SN . X1k = AXpk (7)
by using these various initialization schemes in the subsequent A
section. We enforce the constraints during learning, or after Fiiie = PrapC'(CPrpCT +R)™ (18)
learning so that the model structure will adhere to the canon- Piop = APk‘kAT +Q (19)
ical form. A more technically sound approach to initialization
y PP Priikrr = Pryp — Frg1wCPryp (20)

may be to apply a random perturbation technique of the kind
often seen in algorithms such as stochastic local search [23]Eqn. 18 represents the dynamically updated Kalman gain,
A more technically sound approach to learning would be #nd combining the two equations 19 and 20, we may obtain
derive a modified M-step so that the parametric updates aretha following:



TABLE IV
INITIALIZATION AND LEARNING STRATEGIES FORCONTROL SYSTEM ERROR

Case Label | Training Constraints | Parameter Clamping Initialization Type
Case #1 Canonical Natural Frequency | Data-Driven, Canonical
Case #2 Canonical None Data-Driven, Canonical
Case #3 None None Data-Driven, Canonical
Case #4 None None Semi-Random
Case #5 None None Factor Analysis

C. Akaike Information Criterion

Piiip = APy AT — AFy,_ CPy AT +Q (21) An expression for the log-likelihood function follows easily
_ ) from [10], shown in Eqn. 26. The more general expression is
Thus far, all equations have been introduced under tEﬁJved in [16], and the expression shown in Eqn. 26 is derived

assumption that is zero mean process, without loss Oy ysing the assumptions and notation introduced thus far, in
generality. This was allowed for the sake of mathematicglygition to Eqn. 25.

convenience. We must make a distinction between the control
system error and the SVM or Orca composite anomaly scores o 2 CP.1CT + R (25)
providing the basis for the training dataset. The control system
error is close enough to a zero mean process qualitatively

and quantitatively to allow for the mathematical representation T T
introduced thus far to be used (cf. Fig. 3). However, whenlog p(yo, ..., yr|0) = 5 log2m — > log o + (exon)?
using the SVM or Orca composite anomaly scores as the k=0

basis for the dataset, the zero-mean assumption clearly fails, . L (2(_3)_
as evidenced in Fig. 4. As such, we will briefly highlight how Hovv_eve_r, It s we_II known that even th_OUQh th_'s IS implicitly
to use the current mathematical formulation without loss &€ CPiective function of the MLE (Maximum Likelihood Es-

generality. There are a number of ways to handle data wittf31&tion) problem performed iteratively during the M-step of
non-zero mean, however in our case we will add a term to tl ,EM leamning algorithrf) we cannot use th!S as an unbiased
state and output equations as shown in Eqns. 22- 23. indicator for the assessment of model fidelity [30]. The form

of the log-likelihood function itself would otherwise seem to

indicate some measure of how well the déta, . .., yr) fit

Xpp1 = Axp 4+ Bug +wy (22) the model §). The “log” part of the log-likelihood function is

ye = Cxp+ v (23) introduced for mathematical convenience and has no bearing

on the result of the MLE problem since it is a monotonic

where operator.

B — { 1 } The bias stems from the fact that the learned model para-

O(n—1)x1 meters that comprisé are used to obtain the value for the

up = uss, Vkel,...,T log-likelihood. Intuitively, any metric used to assess how well
_ Hy the data fit the model should not contain any parameters used
C(I,-A)"'B to train that model. The bias introduced can also be derived

We assumeu; € R is a scalar whose steady-state valuwith more mathematical rigor, using a more precise definition.
can easily be determined by the use of Eqn. 22, Bnis However, we will forgo those derivations here and speak about
chosen to be a fixed coefficient out of convenience. This [§as in a more qualitative sense.
practical becausB is not updated during the learning process, This bias can be accounted for by using the Akaike infor-
and as such does not require clamping which might otherwig&tion criterion (AIC), which is based upon the Kullback-
introduce suboptimality., is empirically determined from the Leibler (KL) divergence. The KL divergence is a measure of
training data set, and is used for validation as well. Propagatifitf distance between the modeled distribution and the true
this extra term through the Kalman filter will result in thedistribution. Therefore, the AIC is often used to guide model

updates shown in Eqn. 24 selection due to its inherent capability to assess the fit of the
data to the model based upon the number of model parameters.
Xpp1jp = Ay, + Buy (24) As such, it can be use for the assessment of model fidelity.

) ) - The biased term shown in Eqn. 27 acts as a proxy for the
Alternatively, we could have introduced an additive constaapecise definition of KL divergence. The AIC adjusts for the
to Eqn. 23 in order to account for the non-zero mean. However,
the formulation shown above allows us to appeal to supervise@More precisely, the expected complete log-likelihood function is the

Iearning problems or dynamic systems which may actua jective function under consideration for MLE, in place of the log-likelihood
fdnction. This involves the use of sufficient statistics represented as the

.requ"e the Pse of an driving input that changes with time, @?pected value of the hidden variablBg, |, andx;; computed during the
is the case in control theory. E-step.



TABLE V

inherent bias by adding a bias correction term as shown in AIC RESULTS
Eqn. 28, which is an approximation of tleepectedlifference
between the KL divergence and the computed bias term. The _ _ AIC _
AIC defined in Eqn. 29 is the sum of the biased term and the [|-=25 Label ] Inital Final | Adjusted | Validation
: nEqn. Case #1 | 27432 | 27349 | 27349 57805
bias correction term, wher@, represents the parameters of Case #2 | 1046211 | 27084 | 27084 57743
the true model. Case #3 | 27432 | 26954 | 27341 57444
Case #4 | 43421 | 26957 | 30522 57301
Case #5 | 27440 | 26954 | 28478 57198
T(yo,---,yr,0) = —2logp(yo,...,yr|0) (27)
Tlo) ~ 200 28) e model order in thi is restrictedite- 2 in order t
e model order in this case is restrictednte= 2 in order to
AlC - %(yoa'~-7yT70)+7;:(90) (29)

allow for adherence to canonical form.

We will explore the use of a method recently introduced by Thorough testing was performed on the quantitative and
[2] which is a variant of the AIC explicitly derived for state-computational differences between the AIC and AICi metrics.
space models, denoted AICi. The AICi criteria is a revised aridwas found that the resulting AICi metric values were on par
improved approximation to the bias correction term, whicwith the AIC values, but at an added computational burden
is robust for small sample settings. It also tends to repat 1615:1 when usingl/ = 10 as the number of training
less deviation from the true model when the trained modelasd test cases to use for the ensemble average shown in
overparameterized. Because the bias correction term represéiggs. 30. Case # 1 was used for testing purposes, and on
the expecteddifference between the KL (Kullback-Leibler)average the AICi values were fractions of a percent different
divergence and the computed biased term, we can estimatidin the values listed on the first row in Table V for AIC.
via Monte Carlo simulation. We can therefore replace Eqn. Zhis may inherently be due to the modest dimension of the
with Egn. 30 which uses an ensemble average of this expecpetameter spacen(= 2 = |0| = 17), and due to the
difference by using a convenient sampling distribution. fact that the approximation for the AIC criterion is sufficient

The sampling distributiory;,, ~ A/(0,1) is used to generate due to the large sample siz& (= 6507). Furthermore, the
M distinct T-sample training cases, antf independently same canonical parameters resulted when using both methods,
sampled additional’-sample test cases. Essentially, there aomrresponding to the first row of Table VI. As such, unless
2M sets of data generated. The fifgt sets of data are usedotherwise stated, we will apply the AIC metric for our measure
as training data to generate corresponding sets of new moadkmodel fidelity.
parameters, and the secofnd sets of data are used as test |n Table V, we see that the lowest AIC values are the
cases. The constant coefficiel(j), shown indexed byj learned models (in the “final” column) for Cases #3 and #5.
corresponds to theg’” model generated by thg'" set of This corresponds to unconstrained learning, using data-driven
training data.Py;(j) and & ,_1(j) correspond to the” canonical initialization and factor analysis-based initialization,
set of test data using thg" model. respectively. Intuitively, this result makes sense due to the

freedom from constraints, and the use informative initialization
Mo schemes. The final AIC score for Case #4 in which the less

T.(60) =~ T+ i Z ( trace(P,;l}C(j)) + ... (80) informative semi-random initialization was used does not yield

=0 a much different result than Cases #3 and #5. However, it does

T appear that the AIC score for Case #4 prior to training was
ZXak—l(j)CT(j)Pk|}€(j)C(j)§(kk—l(j)> well above the other cases, with the notable exception of Case
k=0 #2.

Because the AIC and AICi criteria both provide a measure Case #2 requires adherence to the canonical form during
of disparity between the true and fitted model, we would likéaining, however neither of the canonical parameters are
to minimize either metric to as low a value as possible. [flamped, as opposed to Case #1 in which onjywas required
the next section we will evaluate both the quantitative ari@ be clamped. As such, the same initialization strategy used
computational differences between using both methods &g Case #1 failed due to non-convergence of the learning
use the method that demonstrates the best performance Witecess. Therefore an alternate set of parameters as shown
respect to these requirements. As such, we will also provilfe the corresponding row in Table VI was used. Table VI
an interpretation of the results for the chosen metric using also illustrates that the damping ratio and natural frequency
initialization and learning strategies discussed thus far, and ##ues are often pathological (i.e. Cases #4 and #5). However,

both training and validation sets shown in Table II. realizations of the resulting linear dynamic system suffice to
gualitatively represent the training data for the control system
IV. RESULTS error. At any rate, a coarse grid search was used to find

We begin the presentation of our results for the case tie parameters corresponding to Case #2, which yielded a
which we train on control system error. It is used both fagguccessfully convergent learning regime.
training and validation based upon the data shown in Table Il.The initial AIC score shown in Table V for Case #3 was



TABLE VI
CANONICAL PARAMETER RESULTS

Natural Frequency (w,) | Damping Ratio ({) | Signal-to-Noise Ratio (SNR)
Case Label | Initial Final Initial Final Initial Final
Case #1 34.06 34.06 1 0.614 100 72.2
Case #2 34.06 94.79 0.001 1.48 10000 128.34
Case #3 34.06 37.38 1 2.04 100 59.2
Case #4 34.06 0.005 1 21769 100 57.78
Case #5 34.06 0.073 1 216 1.56 42.02

hence understandably very high due to the extreme paramettata, in addition to control system error for comparison. The
settings required for convergence. However, the final Alf@sults will be presented graphically as a function of model
score obtained after the learning process were on the saonder.

order of magnitude as for the remaining cases. The finalwe conclude this section with a discussion of the results
AIC scores were higher for Cases #1 and #2 that imposggt the cases related to the use of the serial architecture.
constraints during learning, and understandably highest {9fe of the most ubiquitous observations in this part of the
Case #1, in which the natural frequency parameter, was jnyestigation is that the learning phase often fails, due to matrix
clamped. singularities that arise when using model orders above various
Table V also lists the AIC scores for canonical adjustmentisresholds for different techniques. This occurs even when
that occur after training, in the fourth column labelled “Adusing factor analysis for initialization, which is a far superior
justed.” For Cases #1 and #2, in which the constraints watethod than randomization. Using the “data-driven canonical”
applied throughout the learning process, the AIC score cleadpgproach to initialization is valid only for a model order of
does not change. However, for the remaining Cases #3 - #3 & 2 for the framework chosen in this paper. However, it is
modest level of suboptimality is introduced, as evidenced lgrtainly possible to augment the state-space in canonical form
the higher AIC scores. Intuitively, even though no constraints allow for a more generic parametric representation that is
were placed on the form of the parameters during trainingss intuitively appealing. Alternatively, we may even explore
in Case #3, an adjustment to enforce the canonical constrah@ use of a linearized physics-based model that is defined
introduces less suboptimality than the other Cases # 4 anda#5a function of physical parameters for the prior distribution
since they were not initialized in canonical form. (i.e. initialization). Hence, we can implicitly integrate physics-
Therefore, it is clear that if a strong requirement for theased and data-driven methods in a Bayesian context, while
restriction to canonical form exists, the best method to us&gmenting our model order in an informative manner.
is Case #2. This case actually enforces the canonical formusing control system error and SVM anomaly scores for the
during training, but does not clamp any of the parametefsgaining data, the learning phase failed to converge for model
However, if there is no strong requirement for adherence ¢dders ofn = 4 or higher, and for model orders of = 3
the canonical form, the cases that do not enforce constraiptshigher when using Orca anomaly scores for the training
during training, specifically Case # 3 and #5, which do nefata. This may imply overparametrization, or a fundamental
use random initialization demonstrate superior performanceédentification of the maximum specified model order, which is
The final column in Table V show the AIC score for thenot known apriori. However, in order to provide a sanity check
validation data as applied to either the final or “adjustedin these results, we may use the AICi criterion in addition to
model, whichever has the lowest AIC score. As might bifae AIC criterion. This is done in order to account for the fact
expected, the validation scores are much higher than tihet the AIC criterion often yields a biased lower score for
learned AIC scores due to the fact that more than half ofodels that are overparameterized due to higher model orders.
the validation data contain anomalies (cf. Table I). Howevdrdowever, the model learning part of the procedure outlined in
it is evident that the AIC score decreases as the case numiggociation with Eqn. 30 failed. This was due again to matrix
increases. singularities that arose when using higher model orders. For
Case #1 is the most restricted, in which both clampiri§e lowest model orders that did converge, the AICi criteria did
and constraints are enforced during learning, leading to th@rve to corroborate that the AIC criteria was fairly unbiased
highest reported validation score. Case #2 does not cla@fdl accurate. Again, on average the AICi values were fractions
parameters during learning, although the canonical constra@hta percent different from the AIC values.
is enforced, resulting in a slightly lower reported AIC score Even though certain models cannot be successfully trained
for the validation data. The remaining cases are constraint-fifiee all model orders, we may still investigate their fidelity. Both
during the learning process, with Case #5 demonstrating tinaining and validation data can be used to generate AIC scores
most favorable AIC score for the validation data. As suclthat are shown as function of model order. The model based
we will use factor analysis as the default initialization methodpon the initialization using factor analysis can easily be used
to study the serial architecture. This involves using the SVk& compute the AIC for both training and validation data. The
and Orca composite anomaly scores as training and validati@sults are shown in Figs. 6 - 8, for all three cases illustrated
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harder to discern for the training AIC score due to an outlier at
n = 7, however, there is a general upward trend which meets
with intuition. Furthermore, as previously alluded to, the AIC
score is shown for the models with lower orders £ 2, 3)

that successfully completed the training phase.

In comparing these results to those shown in Fig. 7, we first
draw the reader’s attention to the discrepancies between the
scales of both Fig.6 and 7. In general, the AIC scores are much
more extreme for the SVM-based AIC scores shown in Fig.
7 than in the control system error-based AIC scores shown in
Fig. 6. The AIC score for the training data in Fig. 7 rises from a
very small, even negative AIC score, to one that is much higher
than in Fig. 6 for higher models order. This exaggerated rise
in AIC with model order speaks to the idiosyncracies of fitting
an overparameterized LDS model to the SVM score. A similar
characteristic is evident for the validation data, however, for
lower model orders the AIC score is a much higher positive
value than was found for the training data. In fact, foe 2,
the AIC scores based on the validation SVM data was on
par with the validation control system error data, indicating a
similar fit. In this case it may be more prudent to choose the
SVM model using the serial architecture due to the limitation
of using control system error cited earlier.

The results of using Orca in the serial architecture are shown
in Fig. 8. Due to the drastic difference between the scales of
the AIC scores for training and validation data, the data labels
are segregated and shown opposite of each other (training in
the left in blue, and validation on the right in green). It is clear
that the AIC scores exhibited here are orders of magnitude
greater than for either of the previous cases shown in Figs.
6-7. Neither exhibits the expected monotonic increase in AIC
with model order. All of these observations are consistent with

in the serial architecture. Where possible, the AIC score #3€ fact that the model is not fit well to the data. As such, we
also shown for models with lower orders that successfulfiRn certainly look more at this issue in future work using the

completed the training phase.
As seen in Fig. 6, the validation AIC score is nearly doubf@PProach. o

that of the training AIC score for all model orders shown, as 1he lowest validation AIC score out of all models tested

might be expected. Also, there is a slight rise in both training§@s for the SVM composite anomaly score, when using a

and validation AIC scores with model order. This may bB'0del order ofa = 3, having a value 0 3473. As such, this
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Fig. 8. AIC Result for Orca

strategies outlined previously that are shared with the SVM

should certainly be a candidate for application to subsequent
anomaly detection studies. This should be preceded by a more
thorough examination of the subtleties for any potential bias
of the reported AIC score by using AICi for corroboration if
possible. Furthermore, remedies to the matrix singularity issue
need to be investigated in more depth, as well as other issues
introduced earlier. One such example is to exploit the fact that
the SVM score is a distance-based metric in order to achieve
a better qualitative fit of the data to the model.

V. CONCLUSIONS

In this paper, we have examined the model fidelity of
several competing data transformation technigues as measured
by the AIC (Akaike information criterion). When using control
system error as the sole source of data, we have found that
the use of canonical constraints during training decreases
model fidelity. However, if the canonical constraint is deemed



compulsory, no clamping should be used in order to achieu®]
the lowest AIC score. Furthermore, when using the canonical
constraint in future studies, suboptimality may be avoid

by deriving a modified M-step during learning. Lifting the
canonical requirement implies constraint free learning, and tH€!
use of either data-driven initialization or initialization baseg 3
upon factor analysis yields the best model fidelity.

We have also found that the SVM composite anomal A
score yields the lowest validation AIC score, as is su
a candidate for future study for application to subsequens]
anomaly detection studies. Part of this study should include
the investigation of matrix singularities that appear durin%
learning when initialized by factor analysis. This may bg7]
remedied by using more principled initialization techniques
such as stochastic local search.

Finally, by using the serial architecture in lieu of the contrghs]
system error alone, we are implicitly reducing the entire
feature space into a univariate signal while retaining salieft
operational signatures. This is potentially a far more effective
approach than using only a small fraction of the feature space
by using the control system error alone. As such we may
potentially allow for many more anomalies to be detected [§30]
using this paradigm.
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