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Abstract—In previous studies, a variety of unsupervised anom-
aly detection techniques for anomaly detection were applied to
SSME (Space Shuttle Main Engine) data. The observed results
indicated that the identification of certain anomalies were specific
to the algorithmic method under consideration. This is the reason
why one of the follow-on goals of these previous investigations
was to build an architecture to support the best capabilities of
all algorithms. We appeal to that goal here by investigating a
cascade, serial architecture for the best performing and most
suitable candidates from previous studies.

As a precursor to a formal ROC (Receiver Operating Char-
acteristic) curve analysis for validation of resulting anomaly
detection algorithms, our primary focus here is to investigate
the model fidelity as measured by variants of the AIC (Akaike
Information Criterion) for state-space based models. We show
that placing constraints on a state-space model during or after the
training of the model introduces a modest level of suboptimality.
Furthermore, we compare the fidelity of all candidate models
including those embodying the cascade, serial architecture. We
make recommendations on the most suitable candidates for
application to subsequent anomaly detection studies as measured
by AIC-based criteria.

I. I NTRODUCTION

This paper is a continuation of two previous studies [18]
- [19], in which various unsupervised anomaly detection
algorithms were applied to SSME data. The SSME (Space
Shuttle Main Engine) is a complex re-usable liquid propulsion
system, and is outfitted with a comprehensive array of sensors
(vibration, facility, and controller measurements). There are
three SSME’s and two SRB’s (Solid Rocket Boosters) used to
support the launch of the space shuttle for ongoing missions
prior to its retirement. Although the shuttle is due to be retired
in 2010, the investigation of anomaly detection algorithms
applied to this SSME dataset can be justified for a variety
of reasons.

The acquisition of authentic operational and supporting truth
data from which to perform rigorous statistical analyses is
a rare commodity from the perspective of propulsion for
space applications due to their design for high reliability
and relatively low failure rates. While the SSME dataset
described herein does not by any means represent a consistent,
comprehensive dataset from which to generate a statistically
significant analysis, there are certainly ways to interpret and
analyze the data in a manner that may serve to support

continued achievement of ISHM (Integrated System Health
Management) goals.

Furthermore, this dataset can act as a baseline for the
development of algorithms related to future generations of
spaceflight, i.e. the Ares I and Ares I-X launch [29]. The
methods investigated and developed from this dataset are
also certainly more generally applicable to a broader class of
IVHM (Integrated Vehicle Health Management) application
platforms. One example would be the application of derived
techniques to civil aeronautics platforms, and more fundamen-
tally to aeronautics research. As such, even though the dataset
is application-specific, our intent is to demonstrate the utility
of our findings from a much broader perspective.

One of our primary goals in this paper is to introduce the
notion of model fidelity, a topic previously lacking in other
analyses. The suite of algorithms under consideration for our
purposes here is a smaller subset of ones used in previous
analyses. Many of the algorithms used previously were fairly
mature and had been successfully deployed onboard critical
application platforms. Others operated at lower TRL (technol-
ogy readiness level), but are nonetheless viable candidates for
consideration. The more mature algorithms are IMS (Inductive
Monitoring System) [13], GritBot, and Orca [1], [28]. The
research-stage algorithms are SVM (Support Vector Machines)
[4], various implementations of the GMM (Gaussian Mixture
Model), and an LDS (Linear Dynamic System).

First we will establish the requirements making an algorithm
a suitable candidate for inclusion in the serial architecture in
Sec. II. An appropriate selection is made based upon these
requirements. We will then provide a detailed discussion of
the state-space model framework in Sec. III. This section
will also cover various initialization and learning strategies
under consideration in Sec. III-A. The model likelihood and
its relationship to the Kalman filter updates is detailed in Sec.
III-B, and the method for assessing model fidelity is covered
in Sec. III-C. Finally, we will present the results in Sec. IV
and provide concluding remarks in Sec. V.

II. REQUIREMENTS

The requirements that would make an algorithm a viable
candidate for our purposes here are provided in the following
list.



TABLE II
TRAINING /VALIDATION BREAKDOWN

Data Sources
Training Validation
Nominal Nominal Potential Anomalies

Flight Data

STS-77 (#1) STS-103 (#2) STS-77 (#2)
STS-78 (#1) STS-103 (#3) STS-91 (#1)
STS-78 (#2) STS-106 (#1) STS-93 (#1)
STS-78 (#3) STS-106 (#2) STS-93 (#3)

Test Stand Data
A10851 A10852 A10853
A20726 A20750 A20619

1) The method is conducive to temporal analysis (i.e.
a likelihood, probability, or other relevant score-based
metric can be generated for each point in time to allow
for the construction of an ROC curve and subsequent
design of an alarm system).

2) The method provides an informative composite non-
zero score for a multivariate time series dataset that
is available during the training phase, and will retain
inherent dynamic structure.

3) The scores can be compared to some relevant prede-
termined threshold, whether derived statistically, exper-
imentally, or is inherent to the algorithm itself. By
constructing a candidate level-crossing event involving
the output of a linear dynamic state-space system and a
relevant failure threshold, we can mitigate false alarms
by invoking the principle of optimal alarm as suggested
in [22].

The first of these requirements, Req. 1 addresses the lack
of sufficient data per flight cycle that has been categorized
as containing anomalies, faults, or failures. This dearth of
anomalous truth data inhibits the ability to generate an ROC
curve with any reasonable level of statistical significance.
However, using the same dataset we can address this lack of
data by constructing an ROC curve based upon a temporal
labelling of the truth data in lieu of per flight cycle. The time
and severity of each anomaly corresponding to our dataset
is shown in Table I. Additionally, the descriptions of the
anomalies and their functional categorizations are provided.

Due to the availability of the temporal information for all
anomalies, we can construct a statistically significant ROC
curve based upon each time point rather than each flight
cycle. Table II contains the corresponding meta-data for each
documented anomaly. This table identifies the datasets of
interest and categorizes them according to their source. They
are also categorized according to which flights are used to train
models in this study, and which will be used for validation
in a subsequent study to be presented in a sequel paper. The
validation data is partitioned into flights that contain anomalies
and those that are nominal. As determined in [19], two of the
flights that were originally categorized as nominal required
reclassification due to mild anomalies that had not previously
been labelled as such. This is evident in the anomalous flights
that have been listed with the time and severity of each
anomaly shown in Table I.

Fig. 1. Closed-Loop Control System Block Diagram

Requirement 2 addresses the need for retaining the inherent
dynamic structure of the data as well as any potential failure
or anomalous signatures. In order to construct a model that
is dynamically informative we require that the training data is
assigned a composite score that is non-zero for all time points.
The data must also not be randomized in order to preserve its
dynamic integrity. This dynamic integrity is important in order
to ensure development of a model that can learn hidden causal
relationships during training.

Finally, requirement 3 addresses the target anomaly detec-
tion algorithm based upon use of the state-space models that
we will investigate in subsequent studies. The incorporation
of a predefined threshold into the design of a state-space
based alarm system is particularly useful due to the inherent
capability to mitigate false alarms, as discussed in [22] and
[17]. Therefore, we will use a state-space formulation by
default, under the assumption that the structure of the model
is a linear dynamic system driven by Gaussian noise, and has
a univariate output.

One of the primary justifications for requirement 3 is related
to the introduction of an architecture to support the best
capabilities of all algorithms. A cascade, serial architecture
as shown in Fig. 2 promotes synergism among the best per-
forming and most suitable candidates from previous studies.

The idea behind using control system error as the sole
indicator for anomaly detection (shown in Fig. 1 ase(t)) lies in
the fact that the SSME throttle control system was most likely
designed with both reference command following and distur-
bance rejection in mind. As such, when large disturbances
influence the plant,P, to the extent that the control system
cannot reject them expediently, this may be indicative of a
significant event which is cause for diagnostic investigation.

In previous studies, it was found that alarm systems devel-
oped on this concept performed moderately well for specific
types of anomalies, both in terms of accuracy and time to
detection. Another reason for using control system error as
the sole indicator for anomaly detection was the possibility
of constructing an optimal alarm system based upon a linear
dynamic system trained by the control system error. As such,
the principles of optimal alarm can be invoked in order to
mitigate false alarms.

However, it was found in [19] that when considering the
control system error as the basis for training a univariate



TABLE I
CHARACTERIZATION OF FAILURES

Failure Data Failure Type Time of Anomaly Severity
STS-77 (#2) Anomalous Spike in Sensor Reading (Controller) 74.42 sec Mild
STS-91 (#1) Sensor Failure (Controller) 32.76 sec Mild

A10852 Mixture Ratio Change (Controller) 210 sec Mild
STS-103 (#3) Max Noise Failure (Vibration) 38.1 sec Mild
STS-93 (#1) Controller Failure (Controller) 11.38 sec Moderate
STS-93 (#3) Fuel Leak and Controller Failure (Controller) 11.62 sec Moderate to Severe

A20619 Knife Edge Seal Crack (Vibration) 119 sec Moderate to Severe
A10853 Turbine Blade Failure (Vibration) 130 sec Severe

linear dynamic system, the performance was poor for con-
troller failures. This was due to the total loss of power to
the controller, resulting in sensor readings of zero for both
commanded and actual throttle. Because control system error
is defined as the difference between commanded and actual
throttle, as shown in Fig. 1, a very clearly anomalous condition
can be mistaken for an otherwise nominal value of zero. This
provides further evidence for the use of an architecture that
will detect anomalies of all types by incorporating multiple
methods.

It was also found in the same study [19] that overall
accuracy and time to detect for SVM and Orca were better
than for most other algorithms on average. As such, the idea
behind the proposed cascade serial architecture shown in Fig.
2 is to allow for a data reduction that will incorporate the
characteristics of the algorithms with the best performance.

Although Fig. 2 illustrates parallel branches, the serial
portion of the architecture involves the lower branch in which
a composite anomaly score is generated. After significant pre-
processing is performed in order characterize nominal behav-
ior, the anomaly score should contain no pathologically high
values. This anomaly score can then be used as training data
for the linear dynamic system. The upper branch corresponds
to the control system error, which uses a much smaller fraction
of the feature space than the lower branch (as indicated by the
thicker line for the lower branch). Independent linear dynamic
system models are generated from each branch for comparison
only, and the common training data set is shown as the source
for both methods solely for convenience.

There are reasons other than pure performance documented
in the previous study cited earlier [19] for eliminating certain
algorithms as candidates for the serial architecture. These
reasons are mainly related to inadmissability due to the lack
of meeting the three requirements that have been set forth.
All of the candidate algorithms with the exception of LDS
can learn a model based upon a multivariate time series. In
fact, the SVM algorithm can even generate a composite score
that can be compared to a relevant predetermined threshold
that is inherent to its theoretical construction (the margin to
the hyperplane as measured by Euclidean distance). However,
none of these techniques other than LDS can independently
apply the principles of optimal alarm based upon a predefined
level-crossing event.

This cascade serial architecture (Fig. 2) is an attempt to
utilize the best characteristics of algorithmic candidates that

Fig. 2. Serial Architecture

meet the requisite criteria. Essentially, SVM and Orca act to
transform the training data from a multivariate to a univariate
time series of the type required by LDS for training, via data
reduction resulting in an anomaly score. It is therefore possible
that other techniques such as unreleased future versions of
IMS, or even PCA (principle components analysis) could also
be used for this data reduction.

The reason why standard algorithms may be used inter-
changeably with other types of static maps that are fundamen-
tally transformations and/or data reduction techniques is due
to the fact that the training dataset itself is used both during
the learning and monitoring phases. The LDS algorithm should
not be subject to “inheriting” undesirable characteristics of the
“parent” algorithm delivering its anomaly score as training
data (i.e. SVM or Orca). This is due to the fact that no
decisions made by the parent algorithm are incorporated into
LDS validation. As such, the anomaly score should be viewed
purely as a transformation of the training data.

Prior to assignment of an anomaly score by these algo-
rithms, the multivariate time series data is preprocessed by
z-scoring and using a method called stationarization. Station-
arization is a technique that has previously been used for
SSME data analysis by Park et al. [25]. Stationarization is
used in tandem with z-scoring to remove the effect of non-
stationarities that arise in the resulting anomaly score as a
result of varying operational modes, which may otherwise
trigger spurious alarms. Z-scoring conditions the data so as



to eliminate any bias introduced by inconsistencies in mea-
surement units for various parameters.

The datastream for either branch of the serial architecture
should appear identical, as shown in Fig. 2. This can be
enabled by ensuring that the qualitative characteristics of the
relative frequency histogram of data for the input to the LDS
learning block appear Gaussian. Alternative Gaussian trans-
formation methods such as the one described in [3] are viable
candidates for future study. However, for the purpose of this
study, we will consider just the two candidate preprocessing
methods previously described, under a number of different
settling time scenarios to be discussed shortly.

Unfortunately, for the SVM algorithm, the stationarization
step may eliminate the inherent capability of the composite
score to demonstrate a qualitative representation of the specific
parameter with the most egregious behavior. The composite
anomaly score is inherently a distance-based metric, i.e the dis-
tance from the monitored point to the hyperplane acting as the
decision boundary. However, if only z-scoring is performed,
the inherent non-stationarity in the anomaly score will enable
all operational regimes visited to present as a multimodal
distribution. Such a distribution is clearly not amenable to
the univariate Gaussian representation required for training an
LDS.

For Orca, the composite score is also a distance-based
metric, however there is very little difference between the
qualitative nature of the distributions when using both z-
scoring and stationarizing as opposed to just using z-scoring
for preprocessing. Due to the nature of the manner in which
the distance calculations are performed, the distributions are
also very skewed to the left. Neither distribution for the SVM
or Orca scores will be centered at zero. For either distribution
to possess a non-zero mean does not present an issue, because
all of the methods to be described use a zero mean without
loss of generality, and are used for mathematical convenience.

Fig. 3 shows the relative frequency histogram of the control
system error data resulting in the realization of a learned
model shown to the right of the LDS block shown on top
of Fig. 2. This is qualitatively a good fit to the Gaussian
model, as supported by the superimposed fit of the Gaussian
curve plotted as a function of relevant measured statistics. The
empirical mean and variance prior to training are functions of
LDS model parameters, and corresponds to the curve shown
in red, while the curve shown in cyan is the fit after training.
In Fig. 3 the distinction between these two curves is barely
discernable, as they are nearly identical.

Fig. 4 shows the relative frequency histogram for the anom-
aly scores of both SVM (top) and Orca (bottom). It is apparent
that these methods do not provide as good a fit to the data
under the Gaussian distribution assumption as shown for the
case of Fig. 3 for control system error. As such, one possibility
which was explored was to increase the number of points
removed due to transient behavior by allowing for an increase
in the length of the recovery period following major throttling
transients. 1 sec was documented as the settling time allowed
for and used in previous studies [18],[19]. We only consider

Fig. 3. Empirical Distribution of Control System Error Training Data

periods of steady-state behavior for the purposes of this and
previous studies. Transient periods may be investigated for all
subject algorithms in future work.

It was found that in a completely qualitative sense, the best
settling times to allow for the best Gaussian fit to the SVM and
Orca anomaly scores were 5 sec and 8 sec, respectively. These
settling times were found by investigating values ranging from
1 sec to 10 sec. We will use more thorough quantitative
means with which to assess the fit of the model and its
Gaussian assumptions to the corresponding score-based data in
subsequent sections. It is interesting to note that the histograms
of anomaly scores for both SVM and Orca appear skewed,
and are skewed in opposite directions to each other. This is
most likely due to the manner in which the distance-based
metrics were defined. Furthermore, for the SVM algorithm
the Gaussian radial basis function (RBF) is used as the kernel
operator. In future studies, we will attempt to exploit this fact
to achieve a better qualitative fit of the data to the model, in
addition to methods such as the one described in [3].

Of the more mature algorithms, GritBot is a commercially
available decision tree based algorithm. GritBot does not
provide a score for each monitored data point, but instead
provides a list of the top anomalous scores that are ranked
according to their statistical significance. As such, it is not
a suitable candidate for real-time monitoring and implemen-
tation. IMS is an unsupervised machine learning algorithm
that uses clustering to form a nominal region represented by
the union of a finite number of hyper-rectangular clusters. By
definition, IMS assigns a score of zero to all monitored points
that fall within this nominal region. As such, the nominal
training data cannot be used to train an LDS model since they
will all have zero values by default.

The GMM was the poorest performer in the JANNAF study
from the perspective of accuracy. However, when implemented
in its most exhaustive variant (one GMM per parameter), the
time to detect was on average on par with Orca. The GMM
is a simple technique to fit multimodal Gaussian distributions
to data under an IID assumption. Because the GMM is geared
for isolation of anomalies in this particular implementation,
there is inherently no viable data reduction technique that



Fig. 4. Empirical Distribution of SVM and Orca composite anomaly scores

TABLE III
REQUIREMENTS MET BYALGORITHMIC CANDIDATES

Requirement Orca IMS SVM GritBot GMM LDS
1 Yes Yes Yes No Yes Yes
2 Yes Noa Yes No Nob Noc

3 No No No No No Yes

aZero-scores for nominal IMS training data applicable only for current
working version of IMS, may change in future versions

bNo composite score available for best performing variant
cDoes not process multivariate time series datasets

would result in a single, composite numerical score. For these
reasons, it will not be considered as a viable candidate. Table
III summarizes the algorithms discussed thus far and which
requirements are met by each. It is therefore clear that by using
Orca or SVM in tandem with LDS, all of our requirements
are fully covered.

With the proposed architecture in mind, we return to our
primary focus, which is to assess model fidelity for both
branches of the algorithmic setup shown in Fig. 2. In order to
make a valid argument for the practical use of any anomaly
detection algorithms that result from the application of the
architecture in Fig. 2, we will need to address the issue of

model fidelity directly, both quantitatively and qualitatively.
Ultimately, any such model will also affect its subsequent
application to this anomaly detection algorithm. We will fully
discuss the technical details of model fidelity in the subsequent
section.

III. M ETHODOLOGY

We will investigate both quantitative and qualitative aspects
of model fidelity, as discussed by [2] and [26], respectively.
Our objective here is to apply reasonable judgements and
metrics with which to assess and ultimately choose the model
that best describes the data. Variants of the serial architecture
shown in Fig. 2 will be explored. Our underlying assumption
is that we can fit measured or transformed data to a model
represented by a linear dynamic system driven by Gaussian
noise. The state-space formulation is shown in Eqns. 1-2.

xk+1 = Axk + wk (1)

yk = Cxk + vk (2)

where

wk ∼ N (0,Q)
vk ∼ N (0, R)
x0 ∼ N (µx,P0)
µx = E[xk]
P0 = E[(x0 − µx)(x0 − µx)T ]

The state of the system,xk ∈ Rn evolves according to
these equations, and often characterizes some internal physical
characteristic of the system, beginning at timek = 0, with
valuex0 via state matrixA. The scalar output of the system
is given by yk ∈ R, and evolves through output matrixC.
Both input noise (wk), which influences the state trajectory,
and measurement noise, (vk) which influences the output
are introduced in order to allow for a more realistic model.
The noise is modelled stochastically via a standard Gaussian
distribution with means and covariances specified above.µx

is the mean of the state trajectory, andP0 is the initial
state covariance. Therefore the parameters to be learned are
specified below, as the parameterθ. These parameters are
also shown in Fig. 5, which specify them in relation to the
probabilistic graphical modeling paradigm which may be used
for machine learning purposes.

θ = (µx,P0,A,C,Q, R) (3)

Let | · | represent the number of elements that comprise a
parameter ofθ, for example



Fig. 5. Linear Dynamic System

|µx| = n

|A| = n2

|C| = n

|Q| = n2

|P0| = n2

|R| = 1

Therefore, a formula for the total number of parameters to
be learned is shown in Eqn. 4.

|θ| = |µx|+ |P0|+ |A|+ |C|+ |Q|+ |R| = 3n2 +2n+1 (4)

The notation for the equations is shown as in [17] for
simplicity and generality. However, if we consider the special
case of control system error as the output,yk, the notation
becomes trickier to bookkeep, as was performed in [18].
Furthermore, the details on discretization of the continuous-
time LDS and initialization using basic assumptions are also as
presented in [18]. A brief summary is provided here, as these
details relate to one of various initialization/learning strategies
we will investigate.

The state dynamics of an open-loop plant,P, as shown in
Fig. 1 can be expressed by equations 5-61

ẋ(t) = Acx(t) + Bcu(t) + Γcw(t) (5)

y(t) = Ccx(t) + v(t) (6)

where

w(t) ∼ N (0, Qc)
v(t) ∼ N (0, Rc)

The controllable canonical form shown in Eqns. 7-9 is used
to allow for a mapping to intuitive canonical parameters: the
natural frequency,ωn, and the damping ratio,ζ. Constraining
ourselves to this basic canonical form is not only intuitively
appealing, but it may also allow for us to ultimately appeal
to the control research community. State-space models of
this form offer the building blocks, however primitive, to

1All coefficients are subscripted byc for “continuous” in order to disam-
biguate between this and the unsubscripted discrete analogue shown in Eqns.
1-2.

parameterize more elaborate control system architectures that
include PI controllers, use state feedback, or use even more
sophisticated techniques from control theory. Furthermore,
enforcing these constraints during learning implicitly reduces
the dimension of the parameter space.

We can estimate the natural frequency by making an as-
sumption ofe(t) to be represented by a zero-mean stationary
Gaussian random process. In this case, we can use Rice’s
formula for the level-upcrossing rate [15] [27], as shown in
Eqn. 10, to compute the natural frequency,ωn = σė

σe
. This

formula can be derived very easily [20], and is used in similar
studies [8][9][21].

Ac =
[

0 1
−ω2

n −2ζωn

]
(7)

Γc =
[

0
ω2

n

]
(8)

Cc =
[

1 0
]

(9)

ν+
e =

σė

2πσe
e−

1
2 (L−µe

σe
)2

(10)

The number of zero-upcrossings,ν+
e , of L = 0 by the

sample data, and the2nd-order statistics:µe, andσe can all
easily be obtained in order to findωn by using Rice’s formula.
During the learning procedure for the linear dynamic system,
the EM algorithm is used to find the parameters shown in
Fig. 5. Details of this procedure are provided in Ghahramani
and Hinton [11] as well as Digalakis et. al. [7], and it is
implemented using Murphy’s BNT (Bayes’ Net Toolbox) [24].

A. Initialization and Learning Strategies

One method of initialization/learning is to setζ = 1 and
“clamp” ωn during training. Initial values forAc andΓc can
then be derived as a function ofζ and ωn. Cc =

[
1 0

]
is also fixed during learning, andR is initialized by making
a random guess at the SNR (signal to noise ratio), so that
R = σ2

e

SNR .

AcXss + XssAT
c = −ΓcΓT

c (11)

Qc =
σ2

e −Rc

CcXssCc
T

(12)

Using these assumptions, we apply the steady-state
continuous-time Lyapunov equation (w/ solutionXss) in order



to find an adequate initialization forQc, as is performed in
[20],[21], and shown in Eqns. 11-12. We then discretize all
parameters using the sampling intervalTs using the procedure
outlined in [21], allowing us to form Eqns. 1 - 2 (details
omitted for clarity). Furthermore, we use the solution of
the discrete algebraic Lyapunov equation (Eqn. 13) as an
initialization for P0, and initialize µx = 0, After learning,
we can then back out the learned value of the damping ratio
ζ and the signal to noise ratio.

P0 = Pss = APssAT + Q (13)

Another initialization/learning technique involves the same
initialization strategy, but relaxation of the “clamping” ofωn

during training. In this way the value ofωn can also be learned
in addition to the damping ratioζ, and the signal to noise
ratio. However, we still enforce the canonical form constraint
throughout the learning process. Finally, we will investigate
a constraint-free learning process, although the initialization
strategy remains identical to the two previous cases, and
enforcement of the canonical form constraint is applied after
the learning process.

For comparison, two alternative initialization strategies will
be tested as well, one of them which is least desirable of all,
that being a semi-random approach. Here we will randomly
initialize A, C, and Q, using Eqn. 13 again to findP0. In
order to ensure thatQ is a Hermitian matrix, we apply the
following transformation:Q+QT

2 . Finally, we make a random
guess at the SNR (signal to noise ratio) in order to chooseR,
and initializeµx = 0, as before.

Factor analysis is the final alternate initialization strategy
to be tested. To use an analogy from within the probabilistic
graphical modeling paradigm, factor analysis is to LDS (or
Kalman filter) as the GMM is to the HMM (Hidden Markov
Model) [14]. That is, the main assumption shared by the
GMM and factor analysis is the lack of causal conditional
dependencies among the hidden variables. In the GMM/HMM
domain the hidden variables are discrete/multimonial random
variables, and in the factor analysis/linear dynamic system
domain the hidden variables all have continuous Gaussian
distributions. As such, the same machinery for learning the pa-
rameters (the EM algorithm) is used for factor analysis, which
provides us with an informed set of initialization parameters,
and has been performed in relevant machine learning venues
[12]. Table IV summarizes and assigns case numbers to all
initialization and learning strategies discussed thus far and to
be investigated in the subsequent section.

We will also quantify the levels of suboptimality introduced
by using these various initialization schemes in the subsequent
section. We enforce the constraints during learning, or after
learning so that the model structure will adhere to the canon-
ical form. A more technically sound approach to initialization
may be to apply a random perturbation technique of the kind
often seen in algorithms such as stochastic local search [23].
A more technically sound approach to learning would be to
derive a modified M-step so that the parametric updates are an

explicit function of desired parameters (the intuitive canonical
parameters such as SNR,ωn, and ζ, and potentially even
control gains).

The only other research that addresses a similar control
theoretic approach to using probabilistic graphical modeling
is Deventer et al. [6] and Deventer [5], whose work will
also be considered for comparison in future studies. However,
in Deventer’s work, controller design is part of the research
problem. We will assume that the controller has already been
designed and attempt to learn its dynamical structure and that
of the plant. All of these methods will be investigated in future
studies.

Furthermore, all of the initialization and learning strategies
discussed thus far consider only the control system error as the
primary data source. If we alternatively use the transformation
of the Orca or SVM score as the data source, we may use a
context free initialization strategy such as factor analysis, so
as not to cast the data in a particular domain (i.e. intuitive
canonical parameters for control system error). We may also
lift all restrictions during training, and have more flexibility
with the order of the model. As such, we will consider model
orders ranging fromn = 2 to n = 10 for the Orca and
SVM scores, in addition to models trained by using the control
system error as a data source.

B. Model Likelihood and Kalman Filter Equations

As of yet, we have not discussed the metric with which
we will ascertain model fidelity. As a precursor, let us discuss
the log-likelihood function of our model which is maximized
during each iteration of the M-step. The likelihood of the data
given our model parameters can be expressed as follows:

p(y0, . . . , yT |θ) =
T∏

k=0

N (εk; 0,CPk|k−1CT + R)(14)

εk
4
= yk − ŷk|k−1 (15)

whereT is the total number of observed samples, andεk in
Eqn. 15 is the white noise innovation process. Other definitions
are provided below.

x̂k|k
4
= E[xk|y0, . . . , yk]

Pk|k
4
= E[(xk − x̂k|k)(xk − x̂k|k)T |y0, . . . , yk]

Furthermore,

ŷk|k = Cx̂k|k (16)

x̂k+1|k = Ax̂k|k (17)

Fk+1|k
4
= Pk+1|kCT (CPk+1|kCT + R)−1 (18)

Pk+1|k = APk|kAT + Q (19)

Pk+1|k+1 = Pk+1|k − Fk+1|kCPk+1|k (20)

Eqn. 18 represents the dynamically updated Kalman gain,
and combining the two equations 19 and 20, we may obtain
the following:



TABLE IV
INITIALIZATION AND LEARNING STRATEGIES FORCONTROL SYSTEM ERROR

Case Label Training Constraints Parameter Clamping Initialization Type
Case #1 Canonical Natural Frequency Data-Driven, Canonical
Case #2 Canonical None Data-Driven, Canonical
Case #3 None None Data-Driven, Canonical
Case #4 None None Semi-Random
Case #5 None None Factor Analysis

Pk+1|k = APk|k−1AT −AFk|k−1CPk|k−1AT + Q (21)

Thus far, all equations have been introduced under the
assumption thatyk is zero mean process, without loss of
generality. This was allowed for the sake of mathematical
convenience. We must make a distinction between the control
system error and the SVM or Orca composite anomaly scores
providing the basis for the training dataset. The control system
error is close enough to a zero mean process qualitatively
and quantitatively to allow for the mathematical representation
introduced thus far to be used (cf. Fig. 3). However, when
using the SVM or Orca composite anomaly scores as the
basis for the dataset, the zero-mean assumption clearly fails,
as evidenced in Fig. 4. As such, we will briefly highlight how
to use the current mathematical formulation without loss of
generality. There are a number of ways to handle data with a
non-zero mean, however in our case we will add a term to the
state and output equations as shown in Eqns. 22- 23.

xk+1 = Axk + Buk + wk (22)

yk = Cxk + vk (23)

where

B =
[

1
0(n−1)×1

]
uk = uss, ∀k ∈ 1, . . . , T

=
µy

C(In −A)−1B

We assumeuk ∈ R is a scalar whose steady-state value
can easily be determined by the use of Eqn. 22, andB is
chosen to be a fixed coefficient out of convenience. This is
practical becauseB is not updated during the learning process,
and as such does not require clamping which might otherwise
introduce suboptimality.µy is empirically determined from the
training data set, and is used for validation as well. Propagating
this extra term through the Kalman filter will result in the
updates shown in Eqn. 24

x̂k+1|k = Ax̂k|k + Buk (24)

Alternatively, we could have introduced an additive constant
to Eqn. 23 in order to account for the non-zero mean. However,
the formulation shown above allows us to appeal to supervised
learning problems or dynamic systems which may actually
require the use of an driving input that changes with time, as
is the case in control theory.

C. Akaike Information Criterion

An expression for the log-likelihood function follows easily
from [10], shown in Eqn. 26. The more general expression is
proved in [16], and the expression shown in Eqn. 26 is derived
by using the assumptions and notation introduced thus far, in
addition to Eqn. 25.

σk
4
= CPk|k−1CT + R (25)

log p(y0, . . . , yT |θ) = −T

2
log 2π −

T∑
k=0

log σ2
k + (εkσk)2

(26)
However, it is well known that even though this is implicitly

the objective function of the MLE (Maximum Likelihood Es-
timation) problem performed iteratively during the M-step of
the EM learning algorithm2, we cannot use this as an unbiased
indicator for the assessment of model fidelity [30]. The form
of the log-likelihood function itself would otherwise seem to
indicate some measure of how well the data(y0, . . . , yT ) fit
the model (θ). The “log” part of the log-likelihood function is
introduced for mathematical convenience and has no bearing
on the result of the MLE problem since it is a monotonic
operator.

The bias stems from the fact that the learned model para-
meters that compriseθ are used to obtain the value for the
log-likelihood. Intuitively, any metric used to assess how well
the data fit the model should not contain any parameters used
to train that model. The bias introduced can also be derived
with more mathematical rigor, using a more precise definition.
However, we will forgo those derivations here and speak about
bias in a more qualitative sense.

This bias can be accounted for by using the Akaike infor-
mation criterion (AIC), which is based upon the Kullback-
Leibler (KL) divergence. The KL divergence is a measure of
the distance between the modeled distribution and the true
distribution. Therefore, the AIC is often used to guide model
selection due to its inherent capability to assess the fit of the
data to the model based upon the number of model parameters.
As such, it can be use for the assessment of model fidelity.

The biased term shown in Eqn. 27 acts as a proxy for the
precise definition of KL divergence. The AIC adjusts for the

2More precisely, the expected complete log-likelihood function is the
objective function under consideration for MLE, in place of the log-likelihood
function. This involves the use of sufficient statistics represented as the
expected value of the hidden variablesPk|k and x̂k|k computed during the
E-step.



inherent bias by adding a bias correction term as shown in
Eqn. 28, which is an approximation of theexpecteddifference
between the KL divergence and the computed bias term. The
AIC defined in Eqn. 29 is the sum of the biased term and the
bias correction term, whereθ0 represents the parameters of
the true model.

Tb(y0, . . . , yT , θ) = −2 log p(y0, . . . , yT |θ) (27)

Tc(θ0) ≈ 2|θ| (28)

AIC = Tb(y0, . . . , yT , θ) + Tc(θ0) (29)

We will explore the use of a method recently introduced by
[2] which is a variant of the AIC explicitly derived for state-
space models, denoted AICi. The AICi criteria is a revised and
improved approximation to the bias correction term, which
is robust for small sample settings. It also tends to report
less deviation from the true model when the trained model is
overparameterized. Because the bias correction term represents
the expecteddifference between the KL (Kullback-Leibler)
divergence and the computed biased term, we can estimate it
via Monte Carlo simulation. We can therefore replace Eqn. 28
with Eqn. 30 which uses an ensemble average of this expected
difference by using a convenient sampling distribution.

The sampling distribution,yk ∼ N (0, 1) is used to generate
M distinct T -sample training cases, andM independently
sampled additionalT -sample test cases. Essentially, there are
2M sets of data generated. The firstM sets of data are used
as training data to generate corresponding sets of new model
parameters, and the secondM sets of data are used as test
cases. The constant coefficient,C(j), shown indexed byj
corresponds to thejth model generated by thejth set of
training data.Pk|k(j) and x̂k|k−1(j) correspond to thejth

set of test data using thejth model.

Tc(θ0) ≈ −T +
1
M

M∑
j=1

(
T∑

k=0

trace
(
P−1

k|k(j)
)

+ . . . (30)

T∑
k=0

x̂T
k|k−1(j)C

T (j)P−1
k|k(j)C(j)x̂k|k−1(j)

)
Because the AIC and AICi criteria both provide a measure

of disparity between the true and fitted model, we would like
to minimize either metric to as low a value as possible. In
the next section we will evaluate both the quantitative and
computational differences between using both methods and
use the method that demonstrates the best performance with
respect to these requirements. As such, we will also provide
an interpretation of the results for the chosen metric using all
initialization and learning strategies discussed thus far, and for
both training and validation sets shown in Table II.

IV. RESULTS

We begin the presentation of our results for the case in
which we train on control system error. It is used both for
training and validation based upon the data shown in Table II.

TABLE V
AIC RESULTS

Case Label
AIC

Initial Final Adjusted Validation
Case #1 27432 27349 27349 57805
Case #2 1046211 27084 27084 57743
Case #3 27432 26954 27341 57444
Case #4 43421 26957 30522 57301
Case #5 27440 26954 28478 57198

The model order in this case is restricted ton = 2 in order to
allow for adherence to canonical form.

Thorough testing was performed on the quantitative and
computational differences between the AIC and AICi metrics.
It was found that the resulting AICi metric values were on par
with the AIC values, but at an added computational burden
of 1615:1 when usingM = 10 as the number of training
and test cases to use for the ensemble average shown in
Eqn. 30. Case # 1 was used for testing purposes, and on
average the AICi values were fractions of a percent different
from the values listed on the first row in Table V for AIC.
This may inherently be due to the modest dimension of the
parameter space (n = 2 ⇒ |θ| = 17), and due to the
fact that the approximation for the AIC criterion is sufficient
due to the large sample size (T = 6507). Furthermore, the
same canonical parameters resulted when using both methods,
corresponding to the first row of Table VI. As such, unless
otherwise stated, we will apply the AIC metric for our measure
of model fidelity.

In Table V, we see that the lowest AIC values are the
learned models (in the “final” column) for Cases #3 and #5.
This corresponds to unconstrained learning, using data-driven
canonical initialization and factor analysis-based initialization,
respectively. Intuitively, this result makes sense due to the
freedom from constraints, and the use informative initialization
schemes. The final AIC score for Case #4 in which the less
informative semi-random initialization was used does not yield
a much different result than Cases #3 and #5. However, it does
appear that the AIC score for Case #4 prior to training was
well above the other cases, with the notable exception of Case
#2.

Case #2 requires adherence to the canonical form during
training, however neither of the canonical parameters are
clamped, as opposed to Case #1 in which onlyωn was required
to be clamped. As such, the same initialization strategy used
for Case #1 failed due to non-convergence of the learning
process. Therefore an alternate set of parameters as shown
in the corresponding row in Table VI was used. Table VI
also illustrates that the damping ratio and natural frequency
values are often pathological (i.e. Cases #4 and #5). However,
realizations of the resulting linear dynamic system suffice to
qualitatively represent the training data for the control system
error. At any rate, a coarse grid search was used to find
the parameters corresponding to Case #2, which yielded a
successfully convergent learning regime.

The initial AIC score shown in Table V for Case #3 was



TABLE VI
CANONICAL PARAMETER RESULTS

Case Label
Natural Frequency (ωn) Damping Ratio (ζ) Signal-to-Noise Ratio (SNR)
Initial Final Initial Final Initial Final

Case #1 34.06 34.06 1 0.614 100 72.2
Case #2 34.06 94.79 0.001 1.48 10000 128.34
Case #3 34.06 37.38 1 2.04 100 59.2
Case #4 34.06 0.005 1 21769 100 57.78
Case #5 34.06 0.073 1 216 1.56 42.02

hence understandably very high due to the extreme parametric
settings required for convergence. However, the final AIC
score obtained after the learning process were on the same
order of magnitude as for the remaining cases. The final
AIC scores were higher for Cases #1 and #2 that imposed
constraints during learning, and understandably highest for
Case #1, in which the natural frequency parameter,ωn, was
clamped.

Table V also lists the AIC scores for canonical adjustments
that occur after training, in the fourth column labelled “Ad-
justed.” For Cases #1 and #2, in which the constraints were
applied throughout the learning process, the AIC score clearly
does not change. However, for the remaining Cases #3 - #5, a
modest level of suboptimality is introduced, as evidenced by
the higher AIC scores. Intuitively, even though no constraints
were placed on the form of the parameters during training
in Case #3, an adjustment to enforce the canonical constraint
introduces less suboptimality than the other Cases # 4 and #5
since they were not initialized in canonical form.

Therefore, it is clear that if a strong requirement for the
restriction to canonical form exists, the best method to use
is Case #2. This case actually enforces the canonical form
during training, but does not clamp any of the parameters.
However, if there is no strong requirement for adherence to
the canonical form, the cases that do not enforce constraints
during training, specifically Case # 3 and #5, which do not
use random initialization demonstrate superior performance.

The final column in Table V show the AIC score for the
validation data as applied to either the final or “adjusted”
model, whichever has the lowest AIC score. As might be
expected, the validation scores are much higher than the
learned AIC scores due to the fact that more than half of
the validation data contain anomalies (cf. Table I). However,
it is evident that the AIC score decreases as the case number
increases.

Case #1 is the most restricted, in which both clamping
and constraints are enforced during learning, leading to the
highest reported validation score. Case #2 does not clamp
parameters during learning, although the canonical constraint
is enforced, resulting in a slightly lower reported AIC score
for the validation data. The remaining cases are constraint-free
during the learning process, with Case #5 demonstrating the
most favorable AIC score for the validation data. As such,
we will use factor analysis as the default initialization method
to study the serial architecture. This involves using the SVM
and Orca composite anomaly scores as training and validation

data, in addition to control system error for comparison. The
results will be presented graphically as a function of model
order.

We conclude this section with a discussion of the results
for the cases related to the use of the serial architecture.
One of the most ubiquitous observations in this part of the
investigation is that the learning phase often fails, due to matrix
singularities that arise when using model orders above various
thresholds for different techniques. This occurs even when
using factor analysis for initialization, which is a far superior
method than randomization. Using the “data-driven canonical”
approach to initialization is valid only for a model order of
n = 2 for the framework chosen in this paper. However, it is
certainly possible to augment the state-space in canonical form
to allow for a more generic parametric representation that is
less intuitively appealing. Alternatively, we may even explore
the use of a linearized physics-based model that is defined
as a function of physical parameters for the prior distribution
(i.e. initialization). Hence, we can implicitly integrate physics-
based and data-driven methods in a Bayesian context, while
augmenting our model order in an informative manner.

Using control system error and SVM anomaly scores for the
training data, the learning phase failed to converge for model
orders ofn = 4 or higher, and for model orders ofn = 3
or higher when using Orca anomaly scores for the training
data. This may imply overparametrization, or a fundamental
identification of the maximum specified model order, which is
not known apriori. However, in order to provide a sanity check
on these results, we may use the AICi criterion in addition to
the AIC criterion. This is done in order to account for the fact
that the AIC criterion often yields a biased lower score for
models that are overparameterized due to higher model orders.
However, the model learning part of the procedure outlined in
association with Eqn. 30 failed. This was due again to matrix
singularities that arose when using higher model orders. For
the lowest model orders that did converge, the AICi criteria did
serve to corroborate that the AIC criteria was fairly unbiased
and accurate. Again, on average the AICi values were fractions
of a percent different from the AIC values.

Even though certain models cannot be successfully trained
for all model orders, we may still investigate their fidelity. Both
training and validation data can be used to generate AIC scores
that are shown as function of model order. The model based
upon the initialization using factor analysis can easily be used
to compute the AIC for both training and validation data. The
results are shown in Figs. 6 - 8, for all three cases illustrated



Fig. 6. AIC Result for Control System Error

Fig. 7. AIC Result for SVM

in the serial architecture. Where possible, the AIC score is
also shown for models with lower orders that successfully
completed the training phase.

As seen in Fig. 6, the validation AIC score is nearly double
that of the training AIC score for all model orders shown, as
might be expected. Also, there is a slight rise in both training
and validation AIC scores with model order. This may be

Fig. 8. AIC Result for Orca

harder to discern for the training AIC score due to an outlier at
n = 7, however, there is a general upward trend which meets
with intuition. Furthermore, as previously alluded to, the AIC
score is shown for the models with lower orders (n = 2, 3)
that successfully completed the training phase.

In comparing these results to those shown in Fig. 7, we first
draw the reader’s attention to the discrepancies between the
scales of both Fig.6 and 7. In general, the AIC scores are much
more extreme for the SVM-based AIC scores shown in Fig.
7 than in the control system error-based AIC scores shown in
Fig. 6. The AIC score for the training data in Fig. 7 rises from a
very small, even negative AIC score, to one that is much higher
than in Fig. 6 for higher models order. This exaggerated rise
in AIC with model order speaks to the idiosyncracies of fitting
an overparameterized LDS model to the SVM score. A similar
characteristic is evident for the validation data, however, for
lower model orders the AIC score is a much higher positive
value than was found for the training data. In fact, forn = 2,
the AIC scores based on the validation SVM data was on
par with the validation control system error data, indicating a
similar fit. In this case it may be more prudent to choose the
SVM model using the serial architecture due to the limitation
of using control system error cited earlier.

The results of using Orca in the serial architecture are shown
in Fig. 8. Due to the drastic difference between the scales of
the AIC scores for training and validation data, the data labels
are segregated and shown opposite of each other (training in
the left in blue, and validation on the right in green). It is clear
that the AIC scores exhibited here are orders of magnitude
greater than for either of the previous cases shown in Figs.
6-7. Neither exhibits the expected monotonic increase in AIC
with model order. All of these observations are consistent with
the fact that the model is not fit well to the data. As such, we
can certainly look more at this issue in future work using the
strategies outlined previously that are shared with the SVM
approach.

The lowest validation AIC score out of all models tested
was for the SVM composite anomaly score, when using a
model order ofn = 3, having a value of13473. As such, this
should certainly be a candidate for application to subsequent
anomaly detection studies. This should be preceded by a more
thorough examination of the subtleties for any potential bias
of the reported AIC score by using AICi for corroboration if
possible. Furthermore, remedies to the matrix singularity issue
need to be investigated in more depth, as well as other issues
introduced earlier. One such example is to exploit the fact that
the SVM score is a distance-based metric in order to achieve
a better qualitative fit of the data to the model.

V. CONCLUSIONS

In this paper, we have examined the model fidelity of
several competing data transformation techniques as measured
by the AIC (Akaike information criterion). When using control
system error as the sole source of data, we have found that
the use of canonical constraints during training decreases
model fidelity. However, if the canonical constraint is deemed



compulsory, no clamping should be used in order to achieve
the lowest AIC score. Furthermore, when using the canonical
constraint in future studies, suboptimality may be avoided
by deriving a modified M-step during learning. Lifting the
canonical requirement implies constraint free learning, and the
use of either data-driven initialization or initialization based
upon factor analysis yields the best model fidelity.

We have also found that the SVM composite anomaly
score yields the lowest validation AIC score, as is such
a candidate for future study for application to subsequent
anomaly detection studies. Part of this study should include
the investigation of matrix singularities that appear during
learning when initialized by factor analysis. This may be
remedied by using more principled initialization techniques
such as stochastic local search.

Finally, by using the serial architecture in lieu of the control
system error alone, we are implicitly reducing the entire
feature space into a univariate signal while retaining salient
operational signatures. This is potentially a far more effective
approach than using only a small fraction of the feature space
by using the control system error alone. As such we may
potentially allow for many more anomalies to be detected by
using this paradigm.
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