
Invariant Discovery Guided by Symbolic Execution
Lingming Zhang∗, Guowei Yang∗, Neha Rungta†, Suzette Person‡, Sarfraz Khurshid∗

∗Department of Electrical and Computer Engineering, University of Texas, Austin
Email: zhanglm@utexas.edu, {gyang,khurshid}@ece.utexas.edu
†NASA Ames Research Center, Email: neha.s.rungta@nasa.gov
‡NASA Langley Research Center, Email: suzette.person@nasa.gov

Abstract—Program invariants are useful for software imple-
mentation, testing, and maintenance activities. However, invari-
ants are difficult to discover, and can take intensive manual
effort to validate. A large body of research has focused on
automated invariant discovery. The most widely used techniques
for invariant discovery (e.g., Daikon) are based on dynamic
test execution traces. Although these techniques can efficiently
generate a large number of invariants for real-world programs,
there are two main issues: (1) they may generate a number
of incorrect or imprecise invariants; and (2) they may miss
correct invariants. In this paper, we describe preliminary work
on iDiscovery, an iterative approach that uses symbolic execution
results to guide the invariant generation process. More precisely,
iDiscovery uses symbolic execution to refute incorrect invariants,
refine imprecise invariants, and characterize new behaviors to
help achieve more accurate invariant discovery.

I. INTRODUCTION

Program invariants are useful for software implementation,
testing, and maintenance activities. For example, they can
be encoded as assertions for runtime checking or regres-
sion test oracles. They can also be used for inference of
state-based behavior models and for specification recovery.
However, invariants are also difficult to discover, and often
require intensive manual effort to validate. A large body
of research has focused on automated invariant discovery,
e.g., Daikon [5]. These tools infer likely invariants based on
dynamic test execution traces. Although these techniques can
efficiently generate a large number of invariants for real-world
programs, there are two main issues: (1) they may generate
a number of incorrect or imprecise invariants; and (2) they
may miss correct invariants. Dynamically inferred invariants
are generated based on observed program executions which
means they may miss relevant invariants if the test suite
used to generate invariants does not cover relevant program
executions. Moreover, there are no formal assurances that the
generated invariants are correct even though these tools only
produce invariants when there is some statistical confidence
that their occurrence is not accidental. Thus, when a large
number of invariants is generated, the process of distinguishing
correct from incorrect invariants – a process that generally
requires human intervention – is time consuming and error
prone.

In this paper, we present preliminary work on iDiscovery,
an approach that uses symbolic execution to help discover
likely invariants. More precisely, iDiscovery treats the invari-
ant discovery process as an iterative process using symbolic

Original Test Suite

SUT with Assertions

Symbolic Execution

Instrument SUT 

Test Cases

Invariant

Discovery

Likely 

Invariants

SUT

Filter

Failed

Assertions

Fig. 1: iDiscovery Overview.

execution results as feed-back to the dynamic invariant discov-
ery process. During each iteration, iDiscovery infers invariants
based on the results of checking the last set of invariants
using symbolic execution. Symbolic execution is used to
invalidate incorrect invariants, refine imprecise invariants, and
characterize new behaviors to help achieve more accurate
invariant discovery. iDiscovery stops when the whole process
reaches a fix point, i.e., no old invariants are deleted and no
new invariants are discovered.

II. APPROACH

Our iDiscovery approach is a feed-back directed technique
that combines dynamic invariant detection with symbolic
execution [1], [9]. Automated techniques for dynamic invariant
detection, e.g., Daikon [5], rely heavily on the quality and
completeness of the input test suite and on internal techniques
to minimize irrelevant invariants. Symbolic execution helps
offset these limitations by systematically checking the code
under analysis, exploring program execution traces that may
not be covered by the input test suite, and generating counter-
examples for invalid invariants. The generated test cases,
including counter-examples for failed assertions and additional
tests exposing new program behaviors, can be used to augment
the test suite used for dynamic invariant detection. The list of
invariants that cause the SUT to fail characterizes invariants
that are likely invalid, and can be used to filter the invariants

1



generated in subsequent iterations of iDiscovery, and to ulti-
mately reduce the number of invalid invariants considerable
in the final set of results. During the generation of various
tests to break existing invariants, some tests may also expose
new program behaviors, and thus help with discovering new
valid invariants. The process stops when a fix point is reached,
e.g., no new invariants are generated and no old invariants are
deleted.

The inputs to iDiscovery, shown in Figure 1 are: 1) the
software under test (SUT), and 2) an initial test suite. The
invariant discovery tool used by iDiscovery is Daikon [5].
Daikon uses the test suite to generate execution traces for
the SUT. For each method in the program, Daikon generates
one set of pre-conditions and one set of post-conditions for
the method as a whole, and one set of post-conditions for
each exit point (return statement) in the method. Each set
of pre-conditions contains one or more constraints on the
program inputs; each set of post-conditions contain one or
more constraints on the return value and final state of the
program under test. We transform the invariants generated by
Daikon to Java assert statements and add the assertions to
the appropriate location in the SUT using a custom application.
To enable compilation and execution of the resulting code,
we introduce fresh variables in the corresponding method.
These variables are used to store the pre-state and the value of
the expression in the return statement at the control point
of interest, and to handle post-state expressions and argk

argument references.
Daikon’s invariant generation relies heavily on the input

test suite and Daikon’s own internal collection of invariants,
thus some of the invariants generated by Daikon may be
invalid or irrelevant [13], [14]. To mitigate this factor, we
use Symbolic PathFinder (SPF) [11] to symbolically execute
the SUT annotated with assertions to check the invariants.
The path conditions computed by SPF are solved to create
test cases to augment the test suite provided to Daikon in
the subsequent iterations. We use both passing test cases
(execution traces that do not violate any of the assertions)
and failing test cases (counter-examples) to augment the test
suite provided to Daikon. Both types of test cases provide
information that enables Daikon to compute more accurate
invariants. We directly feed the execution traces of those
additional failing and passing tests to Daikon. Based on the
high-quality traces, Daikon will automatically filter out the
invalid invariants and augment new valid invariants.

III. PRELIMINARY STUDY

A. Study Setup

We perform the preliminary study on our iDiscovery ap-
proach using two versions of WBS program and three versions
of the Tcas program. The Wheel Brake System (WBS), is a
synchronous reactive component from the automotive domain.
The Java model was implemented based on a Simulink model
derived from the WBS case example [8], and consists of one
class and 231 source lines of code. We applied iDiscovery on
the update method in WBS. This method determines how

much braking pressure to apply based on the environment.
We randomly selected two versions of WBS from the variants
WBS programs created in our previous work [12]. Trafc Anti-
Collision Avoidance System (Tcas) is a system to avoid air
collisions. We randomly selected three versions of Tcas from
the Software Infrastructure Repository (SIR) [4], and manually
converted the code to Java. The translated Java version has
approximately 150 lines of code. Note that we inlined all the
functionalities of Tcas into the alt_sep_test method, and
applied iDiscovery on that method.

For both programs, we used 50 tests from their original test
suites as the initial tests to evaluate iDiscovery. The 50 tests
for WBS was randomly selected from the 1000 random tests
created by our previous work [12]. The 50 tests for Tcas was
randomly selected from its original test suite in SIR, which
consists of 1608 tests.

Table I shows the results for iDiscovery on WBS and Tcas.
The first column lists the artifact name and version. Column
2 lists the number of iterations of iDiscovery applied for
each artifact. Note that we did not feed all the invariants
generated by Daikon to the symbolic execution component,
because some Daikon invariants cannot be directly translated
into Java assertions. Thus, we present the results for both
used and all invariants separately. For each iteration, Columns
3-5 list the number of used pre-conditions from the set of
invariants computed by Daikon, the number of deleted used
pre-invariants compared with the first iteration, and the number
of added used pre-invariants compared to the first iteration.
Similarly, Columns 6-14 present the statistics for the used
pos-invariants, all pre-invariants, and all post-invariants for the
programs under test. Columns 15 and 16 list the instruction
coverage and branch coverage for the tests in each iteration
(including both the total number of instructions/branches and
the coverage ratio). Columns 17 and 18 list the number of
additional tests generated based symbolic execution, and the
generation time for the additional tests1. Note that we did
not show the remaining iterations for the programs when
iDiscovery reaches at the fix point.

B. Results and Discussion

Based on Table I, we have the following findings:
First, except the second version of WBS, the number of

all types of invaraints becomes smaller after each interation
until iDiscovery reaches a fix point. For example, iDiscovery
successfully falsified 84.6% (121 out of the 143) of precon-
dition invariants for all the three versions of Tcas. Manual
inspection shows that all of the deleted (filtered) invariants are
incorrect or imprecise. This demonstrates the effectiveness of
our iDiscovery approach in invalidating incorrect or imprecise
invariants.

Second, except the second version of WBS, iDiscovery
also adds additional invariants for all the types of invariants.
Some added invariants even keep valid after the fix point is

1The symboloc execution time for two versions of WBS is 0, because the
time is too small to be caught by the SPF timer.

2



TABLE I: Initial experimental results for iDiscovery

Subjects Iter. UsedPreInvs UsedPostInvs AllPreInvs AllPostInvs Instr. Branch Symbc- Symbc-
Num Del New Num Del New Num Del New Num Del New Coverage Coverage TestNum Time

1 7 0 0 9 0 0 7 0 0 10 0 0 316(59.18%) 90(48.89%) 9 00:00:00
wbs-v1 2 4 4 1 9 2 2 4 4 1 9 3 2 316(80.06%) 90(68.89%) 25 00:00:00

3 3 4 0 9 2 2 3 4 0 9 3 2 316(80.06%) 90(68.89%) 24 00:00:00
1 4 0 0 8 0 0 4 0 0 8 0 0 316(59.18%) 90(48.89%) 4 00:00:00

wbs-v2 2 4 0 0 8 0 0 4 0 0 8 0 0 316(65.51%) 90(55.56%) 4 00:00:00
3 4 0 0 8 0 0 4 0 0 8 0 0 316(65.51%) 90(55.56%) 4 00:00:00
1 143 0 0 195 0 0 143 0 0 201 0 0 212(98.11%) 72(88.89%) 131 00:37:18

tcas-v1 2 30 117 4 71 131 7 30 117 4 77 131 7 212(98.58%) 72(93.06%) 137 00:03:03
3 24 119 0 62 133 0 24 119 0 68 133 0 212(98.58%) 72(93.06%) 70 00:01:57
4 22 121 0 60 135 0 22 121 0 66 135 0 212(98.58%) 72(93.06%) 68 00:01:41
1 143 0 0 195 0 0 143 0 0 201 0 0 208(98.56%) 70(91.43%) 178 00:59:35

tcas-v2 2 31 117 5 72 131 8 31 117 5 78 131 8 208(98.56%) 70(92.86%) 331 00:08:26
3 24 119 0 62 133 0 24 119 0 68 133 0 208(98.56%) 70(97.14%) 170 00:04:47
4 22 121 0 60 135 0 22 121 0 66 135 0 208(98.56%) 70(97.14%) 168 00:04:11
1 143 0 0 195 0 0 143 0 0 201 0 0 202(96.53%) 68(89.71%) 333 02:10:33

tcas-v3 2 31 117 5 72 131 8 31 117 5 78 131 8 202(98.51%) 68(94.12%) 723 00:17:42
3 24 119 0 62 133 0 24 119 0 68 133 0 202(98.51%) 68(97.06%) 370 00:09:32
4 22 121 0 60 135 0 22 121 0 66 135 0 202(98.51%) 68(97.06%) 368 00:07:59

reached for some program (e.g., the first version of WBS).
Manual inspection show those additional invariants are correct
or more precise than the deleted invariants. This demonstrate
the effectiveness of our iDiscovery approach in finding new
correct or more precise invariants.

Third, iDiscovery reaches a fix point in a relatively few
number of iterations. In addition, both the instruction coverage
and branch coverage grow and reach the peak before the
number of invariants reaches the fix point. For WBS, both the
instruction and branch coverage reaches a peak immediately
after the first iteration. For Tcas, the instruction coverage
reaches a peak of 98.5% after the first iteration, while the
branch coverage sometimes requires one additional iteration
to reach the peak. This demonstrates the stability of our
iDiscovery approach.

IV. RELATED WORK

Daikon pioneered the idea of dynamic detection of likely
invariants and has been used in a number of applications,
ranging from test suite minimization to fault tolerance [5]. The
quality of Daikon’s invariants depends largely on the collection
of invariants in its invariant repository and the user-provided
test suite, and as shown in a couple of recent studies, the
quality can vary [13], [14].

DySy [3] presents the first application of forward symbolic
execution [1], [9] to invariant discovery. Specifically, it uses
symbolic execution over paths that are executed by a given test
suite to compute path conditions of interest, which form a part
of likely invariants generated. DySy does not use integrate with
Daikon or use symbolic execution to validate its invariants.

While several projects [6], [10] have used static verification
tools, e.g., ESC/Java [7] to check the invariants that are
synthesized or dynamically discovered, the checking results
are not used as feedback to further improve the discovery of
invariants as is done in this work.

Xie and Notkin [15] are the first to connect invariant dis-
covery and test input generation via a feedback-loop: generate
tests using Jtest [2] based on the likely invariants discovered

by Daikon, and run Daikon with the tests generated by Jtest.
The feedback-loop is iterated to improve the quality of the
invariants discovered as well as the tests generated. They
do not use symbolic execution to generate tests or validate
Daikon’s output invariants.

REFERENCES

[1] L. A. Clarke. A program testing system. In Proceedings of the 1976
annual conference, ACM ’76, pages 488–491, 1976.

[2] P. Corporation. Jtest manuals version 4.5 october 23 (2002). http://www.
parasoft.com/, 2002.

[3] C. Csallner, N. Tillmann, and Y. Smaragdakis. Dysy: Dynamic symbolic
execution for invariant inference. In ICSE, pages 281–290, 2008.

[4] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact.
Empirical Software Engineering, 10(4):405–435, 2005.

[5] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The daikon system for dynamic detection of
likely invariants. Sci. Comput. Program., 69(1-3):35–45, 2007.

[6] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for
ESC/Java. In FME, pages 500–517, 2001.

[7] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In PLDI, pages 234–245,
2002.

[8] A. Joshi and M. P. Heimdahl. Model-based safety analysis of simulink
models using scade design verifier. In Computer Safety, Reliability, and
Security, pages 122–135. Springer, 2005.

[9] J. C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, 1976.

[10] J. W. Nimmer and M. D. Ernst. Static verification of dynamically
detected program invariants: Integrating Daikon and ESC/Java. In
Proceedings of RV’01, First Workshop on Runtime Verification, Paris,
France, July 23, 2001.

[11] C. S. Păsăreanu and N. Rungta. Symbolic Pathfinder: symbolic execution
of Java bytecode. In ASE, pages 179–180, 2010.

[12] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental
symbolic execution. ACM SIGPLAN Notices, 47(6):504–515, 2012.

[13] N. Polikarpova, I. Ciupa, and B. Meyer. A comparative study of
programmer-written and automatically inferred contracts. In ISSTA,
pages 93–104, 2009.

[14] M. Staats, S. Hong, M. Kim, and G. Rothermel. Understanding user
understanding: Determining correctness of generated program invariants.
In ISSTA, pages 188–198, 2012.

[15] T. Xie and D. Notkin. Mutually enhancing test generation and speci-
fication inference. In In Proc. 3rd International Workshop on Formal
Approaches to Testing of Software, volume 2931 of LNCS, pages 60–69,
2003.

3

http://www.parasoft.com/
http://www.parasoft.com/

	introduction
	approach
	Preliminary Study
	Study Setup
	Results and Discussion

	Related Work
	References

