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Section 1. Introduction 
 

The continuous growth in the demand for air transportation results in an imbalance 
between airspace capacity and traffic demand. The airspace capacity of a region 
depends on the ability of the system to maintain safe separation between aircraft in 
the region. The airspace capacity is severely limited by inclement weather.  FAA has 
a national center called Air Traffic Control System Command Center (ATCSCC) that 
oversees national traffic.  Traffic managers at ARTCC collaborate with dispatchers at 
various Airlines’ Operations Center (AOC) to mitigate the demand-capacity 
imbalance caused by weather. The end result is the implementation of a set of 
Traffic Flow Management (TFM) initiatives such as ground delay programs, reroute 
advisories, flow metering, and ground stops.  

Data Mining is the automated process of analyzing large sets of data and then 
extracting patterns in the data. Data mining tools are capable of predicting 
behaviors and future trends, allowing an organization to benefit from past 
experience in making knowledge-driven decisions.  

In recent years, a number of GDP-related studies using data-mining algorithms have 
appeared in the literature (Klein, 2009).   Since GDP operations are largely 
developed and carried out without accurate decision support tools in current 
operations, techniques for modeling the impact of GDP programs prior to 
operational implementation  have been researched in recent years. In (Smith, 
Sherry, & Donohue, 2008), a decision support capability to predict Aircraft Arrival 
Rates (AAR) and to determine Ground Delay Program (GDP) program rate and 
duration based on Terminal Aerodrome Forecast (TAF) weather forecast data using 
Support Vector Machine (SVM) algorithm, is described.  The uses of Ensemble 
Bagging Decision Tree (BDT), SVM, or Neural Networks (NN) methods to predict the 
airport capacity and GDP parameters with weather and airport data are introduced 
in (Wang,  2011) (Wang & Kulkarni, 2011). Despite the past work in this area, there 
are no published systematic studies seeking to evaluate and predict whether a GDP 
operation is required or not for days having similar weather and airport conditions. 

Data mining algorithms have the potential to develop associations between weather 
patterns and the corresponding ground delay program responses. If successful, they 
can be used to improve and standardize TFM decisions resulting in better 
management of traffic flows on days with reliable weather forecasts. The approach 



here seeks to develop a set of data mining and machine learning models and apply 
them to historical archives of weather observations  and TFM initiatives to 
determine the extent to which the theory can predict and explain the observed 
traffic flow behaviors.   

In this study, the major sources of data that were used include: the National Traffic 
Management Log (NTML) and Aviation System Performance Metrics (ASPM).  The 
data used was from the years 2006 to 2010. The NTML is a unified system 
developed by the FAA that is used to automate coordination, logging and 
communication of traffic management initiatives in the NAS.  For the purpose of this 
initial study, the GDP entries in NTML were used as inputs to the data mining 
algorithms.   

A brief overview of the remainder of the paper is as follows. Section 2 discusses 
ground delay programs.  Section 3 provides a high-level overview of data mining 
techniques that were employed in this study.  Section 4 describes the methodology 
used in the program including metrics and data used in the study.  Section 5 
presents results.  Section 6 is a conclusion. 

Section 2.  Statistics of Ground Delay Programs 
 

The mission of the FAA's traffic management system to balance traffic demand with 
system capacity is achieved through a variety of Traffic Mangement Initiatives (TMI) 
instituted and modified by traffic managers at the regional and national levels. The 
FAA developed the National Traffic Management Log (NTML) to provide a single 
system for automated coordination, logging, and communication of TMIs 
throughout the National Airspace System. Figures below show more detailed GDP 
event statistics from the data. 

 

Figure 1: The ratios of GDP counts and GDP causes for the top 8 US airports 

Figure 1 displays the ratios in percentage between airport GDP counts and the total 
NAS GDP counts for the top 8 airports. Fig.1  shows that the most frequent demand-
capacity imbalances occurred at the airports in the northeast region of the United 



States, such as the three New York-area airports (EWR, LGA, and JFK), Philadelphia 
(PHL), and Boston Logan International Airport (BOS). The major cause of Ground 
Delay Programs is weather as demonstrated in Fig.1.  

The diverse weather subcategory causes are presented in Figure 2. Details of 
weather causes for the top 8 airports are provided in Table 1 and 2. Altogether, 
these data illustrate that the dominated weather causes for GDPs are different at 
different airports. For example, while close to 90% GDPs at SFO are caused by low 
ceilings due to marine stratus, wind accounts for about 50% of GDPs at the three 
New York-area airports, and thunder storms are the major sources of GDP at ATL.  

 

Figure 2: Ratios of the counts between weather subcategories and the total 
weather GDPs 

Airport Weather Equipment Center 
Volume 

Terminal 
Volume 

Runway 
Taxi 

Others 

EWR 92%   4% 3% 1% 
SFO 96%    3% 1% 
LGA 88% 1%  9% 2%  
JFK 78%  1% 17% 2% 2% 

ORD 98% 2%     
PHL 91%   1% 8%  
BOS 95% 2%   2% 1% 
ATL 96% 4%     

 

Table 1: Category Percentage Ratio for the Top 8 airports 

 

 

 

 



Airport Wind Low 
Ceilings 

Low 
Visibility 

Rain Fog Snow/Ice Thunder 
Storms 

EWR 52% 27% 9% 1%  3% 7% 
SFO 8% 88% 3%  1%   
LGA 51% 26% 5% 1%  3% 13% 
JFK 50% 29% 4% 1%  3% 14% 

ORD 29% 25% 8% 6%  14% 15% 
PHL 17% 57% 4% 1% 1% 6% 14% 
BOS 15% 58% 8% 2% 2% 6% 9% 
ATL 5% 37% 9% 1%  3% 45% 

 

Table 2: Weather cause Percentage Ratio for the Top 8 airports 

As Newark international airport is an airport that has a very high number of ground 
delay programs and that contributes significantly to national airspace delays, we 
initially focused this study at this airport.  ASPM is an FAA database containing 
airport specific data, such as throughput and the weather impacting the airport.  
Hourly values of wind speed, visibility, ceiling,  Instrument  Meteorological Conditions 
(IMC), scheduled arrivals and departures from ASPM data were used to compute 
input variables in this study.   
 
IMC impacted traffic and wind impacted traffic are two parameters derived from 
traffic and weather data.    As weather impact on the national airspace depends on 
how many aircraft are impacted by inclement weather, we are using these two 
metrics to capture the impact of weather on traffic.   Wind impacted traffic at an 
airport was defined as the number of arriving or departing aircraft while wind 
speed is over 15 knots.  Similarly, IMC impacted traffic at an airport was defined as 
the number of arriving or departing aircraft while there are IMC conditions.  Figure 
3 below shows histograms of IMC WITI and wind WITI values over a period of five 
years.   

 

  

Figure 3. Histograms of IMC WITI and Wind WITI 
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Daily values of wind WITI and IMC WITI , wind speed, visibility, and ceiling were 
computed as daily average of hourly values.  Values for daily variation in visibility 
and ceiling are computed as difference between daily maximum and daily minimum 
values of visibility and ceiling.  Daily weather and traffic signature was 
characterized with following parameters: wind speed, variation in wind speed, 
visibility, variation in visibility, ceiling, variation in ceiling, Instrument 
Meteorological Conditions (IMC), scheduled arrivals, IMC impacted traffic and wind 
impacted traffic. 

Principle components analysis of these 10 variables found that the most relevant 
variables are IMC impacted traffic and wind impacted traffic.  

Section 3. Data Mining Overview 
In our study, we use three data mining methods: ensemble bagging decision trees 
(BDT), neural networks (NN), and support vector machine (SVM) learning 
algorithms. 

A. Ensemble Bagging Decision Tree: 

Ensemble methods use multiple machine learning models to obtain better 
predictive performance than what any of its individual constituent members can 
produce. Bagging is an ensemble method that uses random resampling of a dataset 
to construct models. In classification scenarios, the random resampling procedure in 
bagging induces some classification margin over the dataset. Additionally, when 
bagging is performed in different feature subspaces, resulting classification margins 
are likely to be diverse, which is essential for an ensemble to be accurate. This 
method takes into account the diversity of classification margins in feature 
subspaces to improve the performance of bagging. First, it studies the average error 
rate of bagging, converts the task into an optimization problem for determining 
some weights for feature subspaces. Then, it assigns the weights to the subspaces 
via a randomized technique in classifier construction. Experimental results 
demonstrate that the ensemble method is robust to classification noise and often 
generates improved predictions than any single classifier.  

B. Neural Networks: 

A feed-forward neural network consists of input, hidden and output layers and 
provides a general framework for representing non-linear functional mapping 
between a set of input variables and a set of output variables. The output from each 
layer is connected to the next layer by modifiable weights represented by links 
between the layers. The weighted outputs from one layer will go through nonlinear 
sigmoid functions to form the input to the neuron in the next layer. A bias unit is 



connected to all neurons except the neurons in the input layer. The back-propagation 
algorithm based on minimizing the output error using a gradient descent method is 
used for training neural networks. For a NN to have good generalization properties 
and to avoid over-fitting, the training data should have 5 to 10 times training cases as 
the weights in NN and it should be statistically representative. 

C. Support Vector Machine (SVM) 

The Support Vector Machine (SVM), a supervised machine learning algorithm, was 
invented by Vapnik et al.  and has been successively extended by a number of other 
researchers. Its robust performance with respect to limited, sparse and noisy data is 
making it widely used in many applications from protein function, and face 
recognition, to text categorization for classification and regression prediction. The 
SVM model has also been utilized in airport capacity classification prediction. 

When used for binary classification, the SVM algorithm separates a given set of two-
class training data by constructing a multidimensional hyper-plane that optimally 
discriminates between the two clusters. Although SVMs were originally proposed to 
solve linear classification problems, they can be applied to non-linear decision 
functions by using the so-called kernel function trick. Adopting this kernel 
technique, SVM can be utilized to automatically realize a non-linear mapping to a 
high dimensional space. The hyper plane in the high dimensional space corresponds 
to a non-linear decision boundary in the input space.  A widely used kernel is the 
Gaussian radial basis function (RBF).  

Section  4. Methodology 
 

In some applications, different operators may take different control actions in the 
presence of similar weather and traffic conditions. Sometimes, the same operator 
may take different control actions in the presence of similar weather conditions.   
The reasons for this may be various. Inconsistency may be owing to differing 
objectives, decision-making styles, or training. The degree of operator decision 
consistency varies in different regions of the state space. It can be useful to 
understand the nature of decision inconsistency.  

Furthermore, the performance of these data mining methods will vary depending on 
the state of the system as specified by the observations. The ability of machine 
learning depends on the consistency of the decision-making process and the 
availability of the training data in the various regions of the input data state space.  
Another factor complicating the analysis is lack of clear criterion driving the control 
actions resulting in different decisions for the same values of the state space. Given 
the variability in the performance of data mining methods, using a single number to 
characterize predictive accuracy is not helpful. The paper discusses how to divide 
data into regions with differing decision consistency and report performance of 



different data mining methods in the different regions of decision consistency.  We 
will also examine if there is variation in the performance of different data mining 
methods. 

Approach 
 

The general approach adopted in this learning automation work involves the 
following steps.  

1 Division of data into regions of differing decision consistency 

2 Comparison of performance of the BDT, NN, and SVM methods in the 
regions of differing decision consistency 

         3. Analysis of sensitivity of results to how data is divided into different regions 

 

Metrics used to compare data mining methods 
 

Commonly used metric for evaluating the performance of a data mining method is 
accuracy which is the proportion of correct predictions. Depending on the situation 
in which the learnt models are used, it maybe preferable to use a different set of 
metrics.   In predictive analytics, a table of confusion (sometimes also called a 
confusion matrix), is a table with two rows and two columns that reports the 
number of false positives, false negatives, true positives, and true negatives. This 
allows more detailed analysis than mere proportion of correct guesses (accuracy). 
Accuracy is not a reliable metric for the real performance of a classifier, because it 
will yield misleading results if the test data set is unbalanced (that is, when the 
number of samples in different classes vary greatly) and does not reflect actual data 
for which a model is used. Also, confusion matrix can be particularly important if 
utility and cost associated with false positives, false negatives, true positives, and 
true negatives differs significantly.  

 

Observation  Prediction  

Y  N  

Y (GDP)  YY  NY  

N  YN  NN  

 



In addition to accuracy, we will use critical success index (CSI) and false alarm ratio 
(FAR) to evaluate performance of different methods. These metrics are defined as 
follows: 

 

• Critical Success Index (CSI)  

– CSI = YY / (YY + NY + YN). 

• False Alarm Ratio (FAR) 

– FAR = YN/(YY + NN) 

Section 5. Results 
 

Regions of differing decision consistency 
 

Difficulty of deciding on control action depends on the region of variable space. For 
example, on clear weather days, most operators would not have any difficulty in 
concluding that there is no need of weather-caused GDP. Similarly, on really bad 
weather day, most operators would conclude that there is a need of weather-caused 
GDP. 

 

Range of values of 
sum of MC WITI 
and Wind WITI 

Probability of GDP 
occurrence 

Decision 
consistency 

Percent of data 

[0, .001) .14 .86 High 24 
[.001, 3) .23 .77 Medium 9 
[3, 11) .38 .62 Low 17 
[11,21) .61 .61 Low 16 
[21,35) .82 .82 Medium 18 
[35, 97) .92 .92 High 16 
 

Table 3: Segmentation of Data into Multiple Regions 

 



 

 

Figure 4: Differing Decision Consistency in Different Regions 
 

 Table 1 shows segmentation of data into 6 regions depending on the basis of sum of 
Wind WITI and MC WITI and probability is computed for corresponding region of 
data. The number shown in the second column of the table is the percent of cases 
with GDPs in the particular region of interest.   Decision consistency refers to 
percent of days when the decision was in agreement with the majority decision for 
the region.    As evident in the table above, this value depends on the region of 
variable space. For example, the first row in the table corresponds to mostly clear 
weather days. In this case, most operators do not have any difficulty in concluding 
that there is no need of weather-caused GDP.  On the other hand, the last row in the 
table corresponds to days with the worst weather. In this case,  92% of  operators 
concluded that there is a need of weather-caused GDP.  If we examine third and 
forth rows in the table, we find that about 60% of operator chose to implement 
GDPs and 40% chose not to.  Operators probably need a decision support system in 
the cases where there seem to be divergence of control actions under the exact same 
conditions.  Given the divergent characteristics of different regions, it would be 
useful to examine the performance of data mining methods in different regions of 
data space.   
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We categorized the six regions as having low, medium or high level of decision 
consistency and then  compared performance of different methods when data has 
these differing levels of decision consistency.  

We found that about 33% of days fall in the category of low decision consistency.  
About 27% fall in the category of moderate decision consistency and about 40% of 
days fall in the category of high decision consistency.  We also find that performance 
of data mining methods is better in the region of high decision consistency and is 
poorer in the region of low decision consistency. 

 

 

Performance of different methods in the regions of differing decision 
consistency 
  

 
Decision Consistency Percent data Algorithm OAR 

(%) 
FAR 
(%) 

CSI 
(*100) 

 
Low (0.62) 

 
33 

NN 66 37 51 
BDT 67 34 52 
SVM 67 31 51 

 
Medium (0.80) 

 
27 

NN 79 15 55 
BDT 78 15 52 
SVM 80 13 56 

 
High (0.88) 

 
40 

NN 88 19 81 
BDT 87 19 80 
SVM 89 19 82 

 
Table 4: Data Mining Method Performance 

Accuracy of these methods varies depending on region of decision consistency. For 
example, neural network had overall accuracy of 88% in the region of high decision 
consistency, an accuracy of 79% in the region of medium decision consistency and 
an accuracy of 66% in the region of low decision consistency.  This is not surprising 
as data mining models can only be as good as the data on which they are trained on. 

Utility of data mining methods may vary in different regions of decision consistency.  
There is probably no need for data mining assistant system in the region of high 
decision consistency.  Data mining methods can be useful in the regions of medium 
and low decision consistency, but their accuracy is the lowest in the region of low 
decision consistency. 

Sensitivity of results to methods of division into regions of decision consistency 
 



Data segmentation method described in the previous section is not the only method 
by which we could divide the data.  In this subsection, we examine the sensitivity of 
our conclusions to the method used to divide the data into different parts. 

Range of values of sum of 
MC WITI and Wind WITI 

Probability of GDP 
occurrence 

Decision 
consistency 

Percent 
of data 

[0, .001) .14 .86 High 24 
[.001, 6) .28 .72 Medium 16 
[6, 11) .41 .59 Low 10 
[11,17) .57 .57 Low 10 
[17,43) .80 .80 Medium 30 
[43, 97] .93 .93 High 10 

 

Table 5: Segmentation of Data with Different Thresholds 

Analogous to previous section, we divide data into six different regions depending 
on the sum of MC WITI and Wind WITI. However, we used different thresholds in 
our case.  Next, we characterized the six regions as having low, medium or high level 
of decision consistency. We found that about 20% of days fall in the category of low 
decision consistency.  About 46% fall in the category of moderate decision 
consistency and about 34% of days fall in the category of high decision consistency.  
The percent of data that is in region of low decision consistency with this 
segmentation differs from that in the previous section. So, percent numbers are 
sensitive to how segmentation is done and how high, medium and low levels of 
decision consistency are defined. Table below  shows the performance of data 
mining methods in the different regions.  Different data mining methods have 
similar performance in different regions. We also find that performance of data 
mining methods is better in the region of high decision consistency and is poorer in 
the region of low decision consistency. For example, Neural network accuracy (OAR) 
is 87% in the region of high data consistency and it drops to 65% in the region of 
low data consistency. 

Decision 
Consistency 

Percent 
data 

Algorithm OAR 
(%) 

FAR 
(%) 

CSI 
(*100) 

 
Low (0.58) 

 
20 

NN 65 39 50 
BDT 68 32 53 
SVM 66 35 51 

 
Medium (0.77) 

 
46 

NN 79 16 55 
BDT 77 17 51 
SVM 79 20 58 

 
High (0.88) 

 
34 

NN 87 28 82 
BDT 87 25 82 
SVM 88 27 84 

 
Table 6: Performance of Data Mining Methods on Second Set of Regions 



Sensitivity of the method of variable set used 
  

Table below shows the performance of different data mining methods when input 
parameters include AAR as well. The purpose of using AAR is two-fold. First of all, 
depending on the purpose of analysis, it is possible that AAR is an input that could 
be used. For example, if the purpose of  the analysis post-operations analysis, AAR 
information is readily available and one may want to use it as a part of analysis. 
Secondly, we may want to check whether general conclusions of this study of valid 
in the presence of different set of variables.   

 
 

Decision 
Consistency 

Algorithm OAR (%) FAR (%) CSI 
(*100) 

 
Low (.58) 

NN 77 27 64 
BDT 76 25 63 
SVM 77 24 63 

 
Medium (.77) 

NN 84 12 64 
BDT 82 12 61 
SVM 83 18 65 

 
High (.88) 

NN 87 24 82 
BDT 88 23 83 
SVM 88 25 84 

 
Table 7: Performance of Data Mining Methods With AAR Included As Input 

Again,  the general conclusions of still valid. Different data mining methods have 
similar performance in different regions. We also find that performance of data 
mining methods is better in the region of high decision consistency and is poorer in 
the region of low decision consistency.   

Section 6. Conclusion 
 

Difficulty of deciding on control action depends on the region of variable space. 
Weather signature on different days can categorize days into days with little 
decision difficulty, days with moderate decision difficulty and days with high 
decision difficulty.  This paper reported performance of different data mining 
methods in the three regions of decision difficulty.  Not surprisingly, data mining 
methods have the best performance in the region of little decision difficulty and 
have the poorest performance in the region of most decision difficulty. In 
applications where data mining methods have differing performance in differing 
regions, it would be more useful to characterize the region specific performance 
instead of characterizing performance by a single parameter. 



Also, there is probably not need for data mining assistant system in the region of 
small consistency.   Therefore, operators may find decision support systems to be 
most useful in the regions of moderate or low decision difficulty.  Also, organizations 
may want to examine decision making processes that are used in these regions to 
see how much subjectivity exists.   Thus, it may be useful to segment data and 
identify the regions of low and moderate decision consistency.   

Finally, we also found that there was not significant variation in the performance of 
different data mining methods for this particular problem.  The fact that different 
mining methods show no significant variation also provide further confidence in the 
results of data mining methods. 
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