Propel: Tools and Methods for Practical Software Model Checking

Massoud Mansouri-Samani

Peter Mehlitz

Computer Sciences Corporation

NASA Ames Research Center

massoud@email.arc.nasa.gov
pcmehlitz@email.arc.nasa.gov

Lawrence Markosian

Owen O’Malley

QSS Group

NASA Ames Research Center

zaven@email.arc.nasa.gov owen@email.arc.nasa.gov
Dale Martin

Lantz Moore

Clifton Labs, Inc.

dmartin@cliftonlabs.com
lmoore@cliftonlabs.com
John Penix

Computational Sciences Division

NASA Ames Research Center

john.penix@nasa.gov

Willem Visser

Reseach Institute for Advanced Computer Science

NASA Ames Research Center

wvisser@email.arc.nasa.gov

Abstract

This paper describes the development of practical model checking tools for verification of multithreaded Java and C++ software. Our strategy is to develop and evaluate both a design methodology that enables the application of model checking technology and a model checking toolset. The design concept, Design for Verification (D4V), is an adaptation of existing “best design practices” toward the explicit goal of enhancing verifiability by improving modularity and decreasing “accidental” complexity. We believe that D4V can enhance a variety of V&V approaches; we are developing the concept in the context of model checking. The model checking toolset builds upon Java PathFinder, and explicit-stat model checker for Java, by adding extensions to support C++. This work involves building a translator from C++ to Java, productizing JPF, and evaluating the toolset in the context of D4V. Throughout development, we are evaluating Propel capabilities on NASA mission applications.
1. Introduction

The design concept that we are developing is Design for Verification (D4V). This is an adaption of existing “best design practices” that has the desired side-effect of enhancing verifiability by improving modularity and decreasing “accidental” complexity. D4V, we believe, enhances the applicability of a variety of V&V approaches; we are developing the concept in the context of model checking.

The model checking toolset, Propel, is based on extending JPF to handle C++. Our principal tasks in developing the toolset are to build a translator from C++ to Java, productize JPF, and evaluate the toolset in the context of D4V. Through all these tasks we are testing Propel capabilities on customer applications.

2. Design for Verification

Real applications typically exceed the capabilities of today's V&V tools in terms of size and complexity. As a result, these applications often need to be manually translated into tool-specific models—an expensive process that comes with a potential for introducing fidelity problems. This effectively renders V&V a one-time effort inconsistent with the evolutionary nature of large-scale system development.

As part of Propel, we are creating a methodology that explicitly adds V&V goals to the design phase. Our purpose is to turn V&V into a development co-process by mapping key system properties to dedicated, separately checkable design components. This is achieved mainly by using domain-specific design pattern systems, where each pattern instance has its own set of tool-supported usage checks and guarantees. These, in turn, are used to identify suitable pattern candidates based on the system specification.

The whole application design is centered around three concepts: Extension Points (base classes with overridable methods, delegation objects/types), Conceptual Branch Points (potentially blocking operations), and Check Points (consistent states that require verification in terms of reachability and evaluation).

The methodology can be seen as an adaption of existing “best design practices”, with the desired side-effect of improving modularity and decreasing “accidental” complexity.

The initial target defect classes for Propel are deadlocks and race conditions, with additional properties including temporal logic properties to be identified from Design for Verification concept development.

3. Translating C++ to Java

To leverage the existing JPF model checker, we are building an automated translator from C++ to Java. The much simpler and better-defined semantics of Java lend themselves to be model-checked more easily and correctly. We considered defining a new virtual machine to support C++, rather than using Java VM in JPF, but by using the standard JVMs we can use the large collection of tools that support Java manipulation and verification.

Naturally, the tradeoff is that some parts of C++, such as multiple inheritance and the loose type model, are difficult to represent in Java. Therefore, the translated system is more complex than the original system. Part of the ongoing research is focused on understanding and minimizing the impact of this translation overhead on verification.

The translator is implemented with an Edison Design Group-based C++ parser, which we extended to create an XML-based abstract syntax tree (AST). Various tree-based transformations to replace the non-Java-like parts of C++ with Java equivalents are then applied to the AST and, finally, Java code is published from the AST.

4. JPF Productization

To evaluate the capability of model-checking technology on real applications, the tools themselves must be robust and scalable. Therefore, we are putting significant effort into extending JPF for faithfulness to real JVMs; refactoring the system to improve maintainability, extensibility and testability; and implementing performance enhancements to reduce the number of states stored, the size of the state representation, and execution time.

For example, we have implemented a mechanism to abstract components of a target system so that they can be partly executed in the underlying JVM instead of entirely in the JPF JVM. This is especially important for implementing system library abstractions that try to minimize the relevant state space of the verified system. It also supports extensibility of JPF by greatly simplifying the process of adding support for system libraries that are required for real applications.

We are also enhancing usability and are planning to integrate JPF with development environments. We have identified and are addressing engineering risks and their mitigations, and we have identified research issues as well. Examples of engineering or research issues include: rendering the JPF output in a way that supports traceability and debugging; model checking applications that have large or complex environments that cannot be modeled adequately in JPF; and handling concurrency libraries that are too low-level to model in JPF.

In addition to the tasks described above, we need to address technical marketing questions such as how model checking is best integrated with other V&V approaches, and how significantly the limitations on our approach (or more generally on model checking) affect the set of suitable applications of interest to NASA. Thus an important activity for us is characterizing the relevant attributes of suitable applications (those that increase risk or enhance applicability of our tools), obtaining NASA mission applications (both C++ and Java), analyzing these applications, and testing our tools with them. We are in the process of developing collaborations with NASA missions to provide early feedback using the productized JPF on their Java applications and to use their Java and C++ applications to focus our product development.

We are also interested in exploring the question of return on investment of applying model checking, but we have encountered difficulty finding data to support a baseline ROI estimate.

References

[1] W. Visser, K. Havelund, G. Brat, S. Park. Model Checking Programs. Proceedings of the 15th International Conference on Automated Software Engineering (ASE), Grenoble, France, September 2000.

