NASA Ames Research Center — QSS Group, Inc.

Mission Simulation Facility Documentation

Generating HLA based communication classes

from a UML description

Lorenzo Fluckiger

January 2002

Contents

1 Introduction 2

2 Mappings 3
2.1 OVEIVIEW . . . o o e e e e e e e e e e e e 3
2.2 ObjectClasses. e e e e e 4
2.3 ObjectInstances. e 6
2.4 Interaction CIasSES v o e e e e 7
25 Messages. e 8
2.6 Classes Details. e e e 9

3 The tool; uml2hla 10
3.1 ConCepl. e e e e 11
3.2 Installation e e e e e e e e e 12
3.3 Usage. e e e e 12

4 Problems and Limitations 14

Document updated on May 15, 2003

1 Introduction

This document describes a method using the Unified Modeling Language (UML) notation to represent com-
munication entities in an object-oriented way, and how to map these entities to an HLA impleméntation
Communication entities are the concepts representing objects or messages shared or exchanged by the par-
ticipants in a simulation (the federates). An example of one entity couldMediale The federates could
change the properties of this vehicle (esptWeight) and send messages to it (egjartEngine).
These conceptual entities are represented by UML classes. Then implementation classes based on the HLA
communication layer are extracted from these source classes.

In addition to the proposed method and mappings, a tool is provided to automate the process. This tool
comes in the form of an Addin for Rational Rose UML modeling tool.

Motivation

The classical approach to design a simulation based on the High Level Architecture (HLA) starts with the
description of the simulation using the Object Model Template (OMT) file format. Then each federate has
to represent this information locally in its Local Run-Time-Infrastructure Component (LRC) and manage
the HLA objects and HLA interactions existing in the federation. This process flow makes the code reflect
directly the HLA philosophy rather than the designer view of what a simulation should be. In addition,
writing the LRC could be very time-consuming and laborious without the help of some additional layer
between the Run-Time-Infrastructure (RTI) layer and the application code.

The proposed approach starts with a UML description of the communication entities (as classes) needed
in a simulation, and derives from them a set of implementation classes based on HLA. Sextitive fol-
lowing page presents the mappings between these conceptual classes and their implementation counterpart.
Section3 on pagell presents the tool developed to automate this process. These mapping and the tool rely
on the Federate ToolKit, which provides a layer on top of HLA.

The advantages of the proposed method are:

1. Provides a rigorous process to map communication entities to the HLA scheme.

2. Allows changes to the communication implementation independently from the communication con-
cepts: only the code generator script will have to be adapted to the new requirements of the imple-
mentation, and all the needed classes will follow.

3. Creates independence between the communication concepts needed and their underlying implementa-
tion: if a communication layer other than HLA should be used, only the code generation script needs
to be rewritted.

4. Drastically speeds up the process of generating code to implement the communication entities: a
simple click will generate code for all the needed objects.

5. Removes the risk of human error in the code and facilitates the debugging process since all the gener-
ated classes are guaranteed to follow the same scheme.

1The reader of this document should be familiar with OO, UML, HLA and the FTK
2This is assuming that a communication layer is available at a pretty high level

The FTK

The Federate ToolKit (FTK) has been designed to ease the creation of the LRC of each federate by providing
generic objects and interactions classes with all the associated services needed to participate in a federation.
The FTK relies mainly on four classes which capture the corresponding HLA concepts:

HLAODbjectClass represents the HLA concept of Object Class, its attributes and inheritance relationships.

HLAInteractionClass represents the HLA concept of Interaction Class, its parameters and inheritance
relationships.

HLAODbjectinstance represents an instance of an HLA object (which could have been created or discov-
ered by a federate).

HLAInteractionMessage represents a message sent or received in a HLA federation.
These base classes work closely with two important classes:

RFI, the Run-Time-Infrastructure — Federate Interface, which manages all the object/interaction classes,
objects and instances

FTKFederateAmbassador provides all the services that can be provided in a generic way by a Federate
Ambassador

2 Mappings

The simulation designer describes the different communication entities needed in the simulation. These
concepts are captured by UML classes. Each class is composed of attributes and operations. The inheritance
relationship is allowed between clasidsrom this UML description, a new set of classes will be derived to
implement these communication needs with the HLA mechanism.

2.1 Overview

To explain the proposed mappings between the concept description and the HLA implementation, we will
follow a simple example composed of the two classes shown in Figumehe following page. This example
shows a simulation composed \ééssel s andSailboat s, the latter inheriting all the properties of the
former. TheVessel class has two attributes: tlspeed and theheading of the vessel. The sailing

boat has one additional attribute: heel ing. The implementation classes derived from this description
will provide the access methods to these attribuspe€dGet , speedSet , etc). TheVessel class has

two operationsdropAnchor , which takes two parameters amgighAnchors with no parameter. The
Sailboat class provides an additional metha@tSail , which takes only one parameter.

The general scheme is that each source class will be mapped to one HLA Object Class to handle the
attributes of the source class, and that each operation of the source class will be mapped to one HLA
Interaction Class.

For each source class, the set of derived classes is composed as follows:

3Multiple inheritance is not allowed since there is no mechanism to support this concept in HLA

Vessel

&sspeed : msf:REAL_F
&sheading : msf:INTEGER

%dropAnchor(anchor : msf::STRING, chainLength : msf::REAL_F)
#weighAnchors()

A\
/\

Sailboat
&sheel : msf:INTEGER

#setSail(sail : msf:INTEGER)

Figure 1:Source classes describing the communications objects needed in a simulation.

e one class to represent the HLA object class concept (based dtith@bjectClass of FTK)

e One class to represent the the actual instance of theses objects (baseHbA@gectinstance
of FTK)

e one class to represent the HLA interaction class coficept

e one class to represent the HLA interaction class concept for each operation of the source class (based
on theHLAInteractionClass of FTK)

e one class to represent the actual message of the interaction class sent to or received by a federate
(based on thélLAlnteractionMessage of FTK)

In the case of the example, the two initial concept classes will be mapped to 12 implementation classes
as shown in Figur2 on the next page. The relationship between the classes will be discussed individually
in the following sections.

2.2 Object Classes

The concept of HLA Object Classes is captured by classes inheriting froriLiA®bjectClass class of
the FTK package. Each conceptual source class is mapped to one and only one speti#i2bgect-
Class , which maintains information about each class (name, handle), its inheritance relationship (name of
parent) and each of its attributes (name, handle, publish, subscribe). Biguggaget shows the details of
the object classes derived from the example source classes.

Each specialized object class inherits directly fromieAObjectClass . The inheritance relation-
ship from the source classes (which is also present in the OMT description of a federation) is expressed
with the PARENTattribute of the class. Source classes which have no superclass, will inherit from the
'ObjectRoot’ HLA class: this is expressed with the initialization of BE¥®RENTattribute toHLAObject-
Class::BASE_NAME .

4This class will not be implemented with a message and is simply here to regroup all the operations of the source class under one
unique HLA interaction class.

abessay|resIasieoq|res

abessaysioyouyybIap[aSSan

abessa|NIo0youydoig|assan

(L) uM00L BreIBPaS WOL)
abessaNpoylsiN

((1L) 1100 SresspaS woly) E—
abessayuonaeIaiuY1H

uonoRIBIUISIOYIUYYBISANSSSOA

uofoeIsiu|leSIasieoq|les

uonoesaulIoyduydoiq|assan

uonoeIBUIROq|IeS

uonoeIalu|[eSSaA

——

aoueISUROq|IES

90UB)SU[|3SSBA

ndsse|ouonorIaul #

((1L4) I¥I00L syeIapa4 wol)
sse|QuonIeISIUIVIH

sse|olqoreoqires

sse|olqolesseA

((31.L4) MMI00 L BYeIBpa- wWwoly)
9ouelsuIvalqovIH

ldsse|01slqo #

((31.L4) MMI00 L BYeIBpa- Wwoly)
SsB|0109[q0V TH

Figure 2:The set of classes used to implement the desired concept with the HLA mechanism (the blue

classes are not generated but come from the FTK package).

For each attribute of the source class — which corresponds to an HLA attribute in the simulation —
one attribute is created in the implementation class. The value of the generated attribute is the name of
the attribute of the source class and its name is its value in all capital letters. This scheme maintains the
information from the OMT in the LRC. The federate developer can then use in his program a reference to
any attribute using its name. For example:

ftk::HANDLE h = objclass->getAttributeHandle(VesselObjClass::SPEED);

HLAODbjectClass
(from Federate ToolKit (FTK))

VesselObjClass \

$CLASS : const char* = "Vessel"
$PARENT : const char* = HLAObjectClass::BASE_NAME \

&SPEED : const char* = "speed"
$HEADING : const char* = "heading" \\

§Vesse|0bjCIass() \

VesselObjClass() \
<<virtual>> ~VesselObjClass()

SailboatObjClass

&CLASS : const char* = "Sailboat"
$PARENT : const char* = "Vessel"
HEEL : const char* = "heel"

§Sailboat0bjCIass()

SailboatObjClass()
<<virtual>> ~SailboatObjClass()

Figure 3:0bject Classes.

2.3 Object Instances

The local representations of HLA objects inside a federate (LRC) are instances of a class inheriting from
HLAODbjectinstance . The inheritance between the HLA object classes is directly reflected by the same
inheritance in thédLAObjectinstance classes as shown by Figid®n the next page. This allows sub-
classes to inherit all the operations of their super-classes. For example, the smtldGet of the class
Vessellnstance will be available for any object of the claSailboatinstance . Specialized object
instance classes which are derived from source classes without superclass will inherit directly from the base
HLAODbjectInstance class which provides all the necessary services to produce, discover, update and
reflect these HLA objects.

Each object instance class has private attributes to store data about the particular instance in the simula-
tion. The type of the attribute reflects the type defined in the source class. Methods to access these attribute
(Set andGet) are also present.

HLAODbjectinstance
(from Federate ToolKit (FTK)) Vessellnstance
f@_speed : msf::REAL_F
%@_heading : msf:INTEGER

%Vvesselinstance()
#Vessellnstance()
#Vessellnstance()
%<<virtual>> ~Vessellnstance()
%setAttributeData()
$getAttributeData()
$<<const>> speedGet()
¥speedSet()
%<<const>> headingGet()
®headingSet()
*messageReceived() Sailboatinstance

$<<virtual>> dropAnchor() e heel : msf:INTEGER
:dropAnchor() -

%Sailboatinstance()
F¥Sailboatinstance()

#Sailboatinstance()

®<<virtual>> ~Sailboatinstance()

%setAttributeData()

%®getAttributeData()

¥<<const>> heelGet()

¥heelSet()

messageReceived()

Figure 4:0bject Instances.

2.4 Interaction Classes

The concept of HLA Interaction is captured by classes inheriting fromHbAlInteractionClass
class of the FTK package. Each conceptual source class is mapped to one and only one specialized
HLAInteractionClass which maintains information about each interaction class (hame, handle, pub-
lish/subscribe), its inheritance relationship (name of parent) and each of its parameters (name, handle).
Figure5 on the following page shows the details of the interaction classes derived from the example source
classes.

Each specialized interaction class inherits directly fromHhéInteractionClass . The inheri-
tance relationship from the source classes (which is also present in the OMT description of a federation)
is expressed with thPARENTattribute of the class. For each source class, an interaction class with no
parameter is created. This empty interaction has for its paren? dlzesdlethodinteraction class.
This latter class from the FTK package provides one additional parameter to all its subclasses: the handle
of the destination objet This enables the regrouping of all the interactions representing operations of the
source class under the same interaction class. No message of this grouping class will be sent or received in
the simulation.

For each parameter of an operation in the source class — which corresponds to an HLA parameter in

This PARENT relationship is inheritance in the HLA scheme, but not in the implementation classes.

SHLA does not support the concept of operations acting on the object they belongs to. This is mimicked with a HLA interaction
with its first parameter describing the target object of this message.

the simulation — one attribute is created in the implementation class. The value of the generated attribute
is the name of the parameter of the source class and its name is its value in all capital letters. This scheme
maintains the information from the OMT in the LRC. The federate developer can then use in his program a
reference to any parameter using its name. For example:

ftk.:HANDLE h = interaction->getParameterHandle(Vessellnteraction::ANCHOR);

HLAInteractionClass
(from Federate ToolKit (FTK))

VesselWeighAnchorsinteraction

@CLASS : const char* = "VesselWeighAnchors"
$PARENT : const char* = "Vessellnteraction"”

Vessellnteraction /// 0 Sailboatinteraction
$CLASS : const char* = "Vesselinteraction” [] $CLASS : const char* = "Sailboatlnteraction”
$PARENT : const char* = "Method nteraction” / \ ¢PARENT : const char* = "Methodinteraction"
/ | .]
Vessellnteraction() / s Sailboatinteraction()
Vessellnteraction() / Sailboatinteraction() .
<<virtual>> ~Vesselinteraction() / <<virtual>> ~Sailboatinteraction()

SailboatSetSaillnteraction

$CLASS : const char* = "SailboatSetSail"
$PARENT : const char* = "SailboatInteraction”

— | @SAIL : const char* = "sail"

VesseIWe?ghAnchorsInteract?on() SailboatSetSaillnteraction()
VesselWeighAnchorsinteraction() §Sailboat5et5ailInteraction()

=SS 2YEsE N G - ie el T EE ey <<virtual>> ~SailboatSetSaillnteraction()

VesselDropAnchorinteraction

CLASS : const char* = "VesselDropAnchor"
$PARENT : const char* = "Vessellnteraction"”
$ANCHOR : const char* = "anchor”

¢CHAINLENGTH : const char* = "chainLength"

VesselDropAnchorinteraction()
<<virtual>> ~VesselDropAnchorinteraction()

§VesselDropAnchorInteraction()

Figure 5:Interactions Classes.

2.5 Messages

In a simulation, each federate can send and receive interactions. These entities are represented in the LRC
by objects of clas$iLAlnteractionMessage (in fact a specialized version of it). The inheritance in

the HLA interaction classes is not reflected at all in the messages hierarchy: unlike in HLA, an operation
of a source class does not inherit the parameters of the operations in its parent class. The hierarchy of
the message classes is maintained byHh&lnteractionClass classes, but all the actual messages

inherit from the same message clabethodMessage . This latter class provides facilities related to the
destination object of any message.

Each specializetHLAlnteractionMessage class has private attributes to store the parameters a
message will carry in the simulation. The type of the attribute reflects the parameter type of the operation in
the source class. Methods to access these attribbétsgndGet) are also present.

VesselDropAnchorMessage

MethodMessage
(from Federate ToolKit (FTK))

/

_anchor : msf:STRING
T_chainLength : msf::REAL_F

VesselWeighAnchorsMessage

SailboatSetSailMessage

_sail : msf:INTEGER

%VesselDropAnchorMessage()
%VesselDropAnchorMessage()
%VesselDropAnchorMessage()
®<<virtual>> ~VesselDropAnchorMessage()
®<<const>> anchorGet()

®VvesselWeighAnchorsMessage()
®VesselWeighAnchorsMessage()
®VvesselWeighAnchorsMessage()
®<<virtual>> ~VesselWeighAnchorsMessage()
%setParameterData()

®getParameterData()

%sailboatSetSailMessage()
%SailboatSetSailMessage()
#®sailboatSetSailMessage()
$<<virtual>> ~SailboatSetSailMessage()
$<<const>> sailGet()

®sailSet()

®anchorSet() ®setParameterData()
®<<const>> chainLengthGet() ®getParameterData()
%®chainLengthSet()

$setParameterData()
®getParameterData()

Figure 6:Messages.

2.6 Classes Details
2.6.1 *“Class” classes

The two classes derived froMLAODbjectClass andHLAInteractionClass are very simple and

share the exact same scheme, as shown on Fiduoe pagels and Figurel2 on pagelé. These classes

only store the properties of a class of entities, the mechanism to manage and access this data is embedded in
their parent class in FTK.

As this type of classes represent&kassconcept, only one instance of the class will exist in each
federate. For this reason, the constructor and copy constructor of these classes are private: the only way
to create an instance of such a class is usirgiragletonpattern implemented through the FTK class
SingletonHolder The classes derived frotdLAObjectClass and HLAInteractionClass
have a friend which is an instantiated class of fiegletonHolder template (instantiated by the class
itself). The user of these classes will get a reference to them by usinpgtence method of the
SingletonHolder . Thelnstance call will return a reference to the desired object class if it exists, or
create first such an instance if it does not yet exist.

The attributes of these Class classes are all public and only store data relative to attribute and parameter
names: it allows the federate programmer to reference these attributes/parameters without having to know
their names in the federation or their handles (these latter being only defined at run-time and so not accessible
before).

2.6.2 Instances

Instance classes, likgailboatinstance shown on Figurd1 on pagel5s store attribute data of object
instances existing in the simulation. In the above example, the federate developer can retrieve the parameter

heelthanks to the generated methoeelGet . When the attribute is set withiheelSet , then, in addition
to having the given value assigned to the private data mentiee| , the attribute is queued in the RFI to
be updated (which will cause an update in the RTI at the next tick).

All instance classes have three constructors (see FTK documentation for a detailed description). The
default constructor is used by a federate which wants to create a new instance and declare it to the RTI: the in-
stance is created directly with the correct default arguments. The constructor with tHeditlomatinstance(ftk::HANDLE
h, HLAODbjectClass* cl) is used when the Federate Ambassador of a federate discovers a new ob-
ject instance and wants to add it in its local LRC: the only things the RTI provides on discovery is the
new instance handle and the handle on the class of object (which is used to retrieve the corresponding
HLAODbjectClass). Finally, the third constructor of the for@ailboatinstance (const char*
className) is called by a subclass constructor and so cannot be used directly by the federate developer.

Two key methods are also automatically generated for each InstancesdgSributeData and
getAttributeData . These methods cannot be implemented aHthaObjectinstance level since
they require knowledge about the type of the data used for each attribute of the Instance. It should be
noted that these methods are not normally used by the federate developer because they are called by either
the FTKFederateAmbassador or theRFI. Nevertheless they provide a very important service for the
FTK:

setAttributeData(ftk::HANDLE h, const char* data, unsigned int size) is used
by the generic Federate Ambassador, which receives a callback to reflect some attribute changes in
the simulation: the Federate Ambassador provides the handle on the attribute to update and a buffer
of characters containing the associated data (as well as its size). This method un-serializes the XDR
encoded data and puts it in the correct data member of the instance.

getAttributeData(ftk::HANDLE h, char*& data, unsigned int& size) is used by
the RFI when it needs to update some attributes of an instance (to notify the RTI of changes in the
LRC of the federate): in this case, the RFI provides the handle of the attribute it needs to update and
is returned a buffer with the corresponding data serialized as an XDR string.

2.6.3 Messages

Message classes liktesselDropAnchorMessage shown on Figurd 2 on pagel6, behave similarly
to Instances as described in the previous section. For each of these classes, three constructors are generated
for the same reasons mentioned above.

The Get methods return data associated which each parameter: they are used to read the parameters of
a received interaction message. B& methods assign the given values to the right data members but do
not push them directly to the RTI: tleend method will send an interaction message to the RTI will all the
parameters of this message.

The functionalities ofetParameterData andsetParameterData are the same as tigetAttributeData
andsetAttributeData defined above.

3 The tool: uml2hla

The tool unl2hla was created to fully automate the implementation of communication entities from their
UML description. The goal of this tool is to generate directly compilable code from a UML description.

10

The current realization of this tool relies on Rose, a commercial modeling software from Rational, but the
concepts could be easily applied to another environfoent

3.1 Concept

The work-flow of the uml2hla tool is shown on Figlfend summarized below:
1. Communication entities are designed with UML diagrams in Rose.

2. Using a script, implementation classes are generated according to the proposed mapping. The code
for each method of the implementation classes is also generated by the script.

3. Byforward engineering these Rose classes, C++ code is written to files which can be compiled without
modification or addition.

uml2hla ose Forward
_ script UML Engineering
UML Design Implementation C++ Code
Classes (FTK based)
Classes

Figure 7:Work-flow of the uml2hla tool.

The uml2hla tool comes as a Rational Rose Addin. This particular Addin is composed of:

e A property sheet which allows the designer to select HLA specific properties for packages, classes,
attributes and methods.

o A menu file which enables a direct access to the tool functionalities.

e A set of scripts (written in Basic-Script) which generates implementation classes and associated code
from a set of design classes.

Most of the work is done by the main script (which calls sub-scripts) which parses the given UML
design class diagram and generates the implementation classes. These implementation classes follow the
mappings described in the previous chapter. They contain inheritance relationships, attributes and methods.
In addition, the C++ code for each method is directly embedded in the class by the script. These classes are
added to the current Rose model in a new package and can then be forward engineered. The implementation
classes rely on the Federate ToolKit (FTK) which is also part of the same Rose model: this allows the
forward engineering process to resolve the correct relationships between the classes.

"The usage of Rational Rose brought two advantages for the rapid implementation of the tool. First, Rose fully exposes its API
to the developer with a set of Basic-Script classes, which allows easy parsing of UML models as well as the creation of new
model elements. Second, the ANSI C++ forward engineering capabilities of Rose is used to generate the skeleton of the code
as well as the file dependencies (#include statements).

11

3.2 Installation

A simple installation program is provided to setup correctly the uml2hla tool for Rose. This program, called
install.sh is a shell script ('sh’) which make use of the 'sed’ program. It should then be usable on any
Unix platform and under Windows with the Cygwin utilities.

If this script does not work, a manual installation could always be performed as follows (a look at the
previously mentioned script will give a detailed explanation of the procedure):

1. Create the directory where to put the hla Addin. You could also simply use the standard distribution
directory $MSF_HOME/uml2hla) and then skip steps 2 and 3

. Copy or link the menu and property (hla.mnu and hla.pty) files into this directory

. Copy or link the 3 scripts (uml2hla.ebs, objgen.ebs and msggen.ebs) into this directory

2
3
4. Change the hla.mnu file to reflect where the scripts are located
5. Change the hla.reg file to reflect where the Addin is located

6

. Import the hla.reg into the registry using regedit

After having done the instalation automatically or manually, a new group of commands named HLA
should appear in the Tool Menu in Rose. In addition, a package specification should present a new HLA tab.
If these two checks are OK, then the installation was probably successful.

3.3 Usage
3.3.1 Requirements

The first requirement to use the automatic generation tool is to open a Rose model, which, contains the FTK
package that is needed by the scripts (since the generated classes are FTK based). Itis also possible to create
a new model and to import ttf®MSF_HOME/FTK/ftk.cat package in it.

3.3.2 Define the source classes

The design of the communication entities should be put in a Rose 'paék&ge'this, create a new package

in the Logical View. Then open the specification of the package and configure it to be used with the umi2hla
tool. As shown in Figur® on the following page, several fields in the HLA tab should be set according to
your needs:

FedFileName is the file name of the federation file which will be generated from the classes in this pack-
age.

SubSystemName is the name of the generated Subsystem (package in the Component View) which will
contain all the components for the generated classes.

8Multiple packages containing design classes are allowed, but at least one should exist because the script act on a complete
package.

12

CategoryName specifies the name of the generated Package (in the Logical View) where all the generated
classes will be produced.

CodeGenerationDir specifies the directory (on your filesystem) where the generated code will be written.
This directory should exist before running the code generation. Rose variables are allowed in this field.

ﬂ Package 5pecification for UML to HLA Design BHE
Genersi | Detail | Fies | ansices M4 |
Set [defaut = Edtse. l

Model Properties
[+ | raine [value | source |

Subsystembame
CategoryMame umiZhila_Example Generated Cwerrice
CodeGenerationDic $MSF_HOME/xamplesiumiZhia Owerride

umlzhle Example Component

| oot | - |

(o] oo | oo | mowee]| o |

Figure 8:Specifications of a package containing design classes for communication entities.

In addition to the design package, one component (in the Component View) should also be created and
have the HLA Language assigned to it (one example is shown in F@joinethe next page). This way, the
design classes can then be assigned to this component

The next step is to populate the design package with the classes representing the communication entities.
Each added classes should be assigned to a component being of HLA language.

The attributes of the class should be simply defined as usual. They could begeftigsince the script
generating the implementation classes will convert them to private data members. There is an additional
HLA tab in the attribute specification (as shown in Figlifon the following page) which allows to specify
the characteristics of this attribute seen as an HLA attribute (Transport method and Delivery mode).

The operations of the class should also be defined as usual. Their arguments will become HLA parame-
ters in the generated code.

3.3.3 Generate implementation classes

Once all the design classes have been defined, it is possible to generate automatically the implementation
classes. To do so, the icon of the design package should appear on a class diagram. Select this icon and then

°It is possible to create one component with the HLA classes for each design classes, but it is not necessary since it is only used
to set the HLA language

13

ﬂ Component 5pecification for umlZhla_mappings EE ﬂ Class Attribute 5pecification for heel HE

General | Detai | Resizes | Fies | Genersl | Detal HLA |
Mame: |um|2hla_mapplngs Set |defau|t j Edit Set...
Stereotype: »| Language: - hiode! Properties
] ’] Ieme:] Walue] Source I
Documeantation:
__J TimeStamp Delivery

_‘J Qverriml | |
ok | cml |mms.vf Help | ok | cml |nowuv§ Help |

Figure 9:Specifications of a component with the L&igure 10:Additional specifications of an attribute for
guage set to HLA. the HLA language.

go underTools -> HLA -> Generate HLA classes for package_ndihthis menu is not available, it means
you did not select a package or you selected one but in the browser view).

The “Generate HLA classes” command will launch the appropriate script to process the selected pack-
age. The script opens a window which displays some information about the process. The script will create
one new subsystem and one new package according to the names defined in the design package specifica-
tion (see previous section). If this subsystem or package already exists in the Rose model, they will not be
deleted. The script then generates all the necessary implementation classes. If a class with the same name
already exists in the implementation package, then it will be completely cleaned up (remove attributes, op-
erations, relationships), but not deleted: this allows to keep coherency in existing diagrams showing it. The
script also creates one component for each generated class. These components are configured to generate
C++ code with the correct dependencies.

After the script completes, you should have a new package containing a set of generated classses (which
are inside the msf name space). Now, you can select individual classes and generate code for them us-
ing the Rose forward engineering capabiliNSI C++ -> Generate Code Note that the code genera-
tion could also be done from the component view. Finally, care must be taken to generate code for the
classes in the order of their inheritance tree (this applies only for the dependencies inside the generated
classes): first begin to generate code for the parent classes and then their children. In the presented exam-

ple, there is inheritance only betwedessellnstance and Sailboatinstance : this means you
should first generate code for the cldssellnstance and then for the clasSailboatIinstance
Otherwise, the generated filgailboatinstance.h will not contain the required include directive

#include "Vessellnstance.h"

14

4 Problems and Limitations

e The uml2hla.ebs script will crash when it tries to generate a class with a name which already exists in
another package.

15

<<anonymous_type>>
SingletonHolder<SailboatObjClass>
N

\
<<friend permissic‘bn>>

\
SailboatObjClass
$CLASS : const char* = "Sailboat"
$PARENT : const char* = "Vessel"
$HEEL : const char* = "heel"

§Sailboat0bjclass()

SailboatObjClass(obj : const SailboatObjClass&)
<<virtual>> ~SailboatObjClass()

Sailboatinstance

%g_heel : msf:INTEGER

*Sailboatinstance()

#®sailboatinstance(className : const char*)
#*Sailboatinstance(objHandle : ftk::HANDLE, classHandle : ftk::HANDLE)
%<<virtual>> ~Sailboatinstance()
setAttributeData(h : ftk::HANDLE, data : const char*, size : unsigned int) : bool
getAttributeData(h : ftk:HANDLE, data : char&, size : unsigned int&) : bool
®<<const>> heelGet() : msf::INTEGER
#¥heelSet(value : msf::INTEGER) : void
¥messageReceived(msg : MethodMessage*) : void

Figure 11:0bject Class and Instance details.

16

<<anonymous_type>>
SingletonHolder<VesselDropAnchorinteraction>

A

\
<<friend permission>>
[

VesselDropAnchorinteraction

@CLASS : const char* = "VesselDropAnchor"
$PARENT : const char* = "Vessellnteraction"”

$ANCHOR : const char* = "anchor"
$CHAINLENGTH : const char* = "chainLength”

VesselDropAnchorinteraction(obj : const VesselDropAnchorlnteraction&)

VesselDropAnchorinteraction()
<<virtual>> ~VesselDropAnchorinteraction()

VesselDropAnchorMessage

_anchor : msf::STRING
f%@_chainLength : msf::REAL_F

%VesselDropAnchorMessage()

’VesselDropAnchorMessage(className : const char*)
%VesselDropAnchorMessage(classHandle : ftk::HANDLE)

%<<virtual>> ~VesselDropAnchorMessage()

%<<const>> anchorGet() : msf::STRING

®anchorSet(value : msf::STRING) : void

$<<const>> chainLengthGet() : msf:REAL_F

#chainLengthSet(value : msf::REAL_F) : void

%setParameterData(h : ftk::HANDLE, data : const char*, size : unsigned int) : bool
%getParameterData(h : ftk::HANDLE, data : char*&, size : unsigned int&) : bool

Figure 12:Interaction and Message details.

17

