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Abstract

Online health monitoring, with the ultimate objective of safe situation and damage-tolerant control, is critically dependent on sensor reliability and timely high integrity on-board data. A portion of health monitoring is data validation or crosschecking sensor data. There are 4 types of anomalies from typical analog sensors; dead, excessive noise, drift, and offset sensor faults. Dead sensor or excessive noise conditions can be detected and isolated using statistical analysis of the individual sensor data stream. Drift or offset faults require model-based approaches since changing operating conditions may cause similar signals. Drift or offset fault detection model equations can be based on performance criteria, heat/mass balance equations, or other model structures. Fault detection parameters are derived from the equations. Any change indicates an anomaly, which can then be investigated. Kalman filters are frequently used to estimate the fault parameters in stochastic systems. Model-based drift or offset fault detection is usually done by state estimation or parameter estimation. Linear Kalman filter observer banks provide a basis for state estimation whereas parameter estimation implementations may use more accurate nonlinear models.

Conventional parameter estimation methods for in-line probability of loss of control detection, noticeable dynamics changes, and response to both stability and structural mode changes are neither sensitive nor robust enough to investigate any but minimal damage or situational changes. Conventional parameter estimation methods used for primarily passive fault detection systems also do not work well in practice due to: 1) lack of persistent excitation of relevant frequencies and 2) inability to distinguish environmental/flight condition disturbances from system degradations. At the least they are expensive to produce and even more expensive to validate. We propose a fault detection system with active components that will detect lack of persistent excitation at relevant frequencies and design a low power narrowband auxiliary signal that will excite the necessary frequencies at appropriate intervals. We will retain aspects of state-sensing and passive signal processing components forming a comprehensive solution ready for integration into any flight system. Our active fault detection system will be focused at the actuator level for the purposes of this paper. 

Overall Concept of Sensor Faults
A non-invasive real-time actuator fault detection system should be reasonably comprehensive and indicate that some anomalies require further investigation or troubleshooting. The actuator fault detection relies on the data stream which includes measurements and computer commands. The data stream should be able to shed light on the actuator’s operational performance by using model-based approaches as well as statistics. Physical models are also useful for estimating measurements for which locations sensors that are difficult to place. Such estimation is called analytical redundancy1, 2. The architecture is shown in Figure 1. 
[image: image8.emf]There are 4 types of anomalies from typical analog sensors:  dead, excessive noise, drift, and offset sensor faults.  Although a multitude of sensor failures may result in similar measurement signatures, all the information generally available is from the analog signal itself.  Therefore, the ability to perform root-cause failure analyses is usually limited to what may be determined from the sensor signal itself.  Dead or excessive noise can be detected and isolated using simple statistics of the individual sensor data stream.  Statistical fault indicators may be derived from simple statistics of the data streams. These statistical indicators may be derived from the noise power of the signal being monitored.  Noise may be characterized as Johnson thermal noise, process noise, or sensor noise.  Much of the noise is due to the system environment and is uniform unless the environment undergoes a significant change.  A significant change in the indicators infers an anomaly for investigation and a possible fault.  The statistical indicators of common sensors throughout the plant may be compared to each other in lieu of an appropriate standard or healthy condition.  A typical way of computing the standard deviation (s) in real-time is shown in Figure 2.  ‘s’ may be further processed to improve the quality and reliability of the residual or indicator. 

In most cases, there are some common types of sensors.  We may take advantage of this fact in our approach.  The statistical indicators of all those measuring the same measurand and range should be similar.  These indicators may be compared together.  Any statistical outliers become candidates for further inspection.  In addition, any change of an indicator of one sensor with respect to its peers or itself should also attract operator attention. 
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Overall Concept of Actuator Faults

Dead-zone, backlash, and hysteresis are typical nonlinearities found in various system components including actuators.  These types of nonlinearities can have adverse effects on control loops. They may also vary with age, wear, or corrosion. Models exist for the above nonlinearities and can be used for standard parameter identification. Frequently used models4, 5 for dead-zone and backlash are shown in Figure 3. A study was done to demonstrate the concept. A sine wave was used for a signal and then a nonlinearity was added. A Kalman filter was used for the parameter estimation as shown in Figure 4 and in Figure 7. Note that the Kalman filter went through 10 iterations for each pass through the filter. Kalman filter iterating exists for the purpose of improving convergence3. Although optional for the designer, each iteration should provide improved convergence. Ten iterations are probably excessive, the designer may iterate until little further improvement is achieved. However, each iteration essentially doubles the computation time required. 
To demonstrate the concept a test on a simple static model for both dead-zone and backlash was performed. The objective in this simple test is for the estimated parameters to converge to the real nonlinear model parameters. In the static dead-zone model there are 4 parameters to be estimated [ml, bl, mr, br] as shown in Figure 3. Due to the nature of the model only two of the parameters are active (for the purposes of estimation) at once, ie, if the combination [ml, bl] is active, then [mr, br] is not active. Therefore, the parameter estimation is active on one combination at a time. The static backlash model is also shown in Figure 3 and has three parameters [m, cl, cr]. In this case m is active all the time but cl and cr are not. The matlab code that shows how the parameter estimation is set up to account for periods of parameter inaction is shown in Figure 7. The parameter convergence results for dead-zone and backlash are shown in Figure 5 and Figure 6. Convergence to the four actual parameters of the simple static model for dead-zone estimation was obtained within 50 samples. Convergence for the three parameters of the simple static backlash model occurred within 30 samples. The input to both the dead-zone and backlash models is the same sine wave of 0.2 Hz. Typical applications1, 2 for on-line parameter estimation technology for actuators include:  1) acceptance criteria for new & rebuilt [image: image9.png]Sensor Health Checking
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actuators, 2) periodic readiness testing, 3) parameter information to support adaptive or nonadaptive control loops.
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Figure 4

Kalman Filter Matlab Code 
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Auxiliary Signals

Systems may be described by some class of models when the system is in a healthy or normal state. It is assumed that if the system behavior is somehow inconsistent with the healthy model, then a fault or anomaly has occurred. Most systems have dynamics and interactions that, at steady state may be quiescent for periods of time. 
Much of fault detection has relied exclusively on ‘passive’ monitoring of the item under investigation. However, if the dynamics are not excited, a fault may exist without detection because the passive monitoring system residuals do not change. In an ‘active’ approach6 to fault detection the detector acts upon the system on a periodic basis or at designated times, using a test signal or auxiliary signal designed to expose abnormal behaviors. The auxiliary signal would have the characteristics of low power and short duration. It is important that it be designed to not interfere with normal operations or cause anomalous behaviors. 
An analogy for the need for active monitoring can be found using the example of a truck driver. When he is cruising up hill or on a level grade the brakes are not used. When he begins a down hill descent he may apply the brakes. If there is a malfunction in the brakes it would not become apparent until the down hill stretch is reached. It would have been better to know when going up hill or on a level stretch that the brakes were bad. The question then remains: ‘How do we test the system to adequately evaluate its condition?’  One approach involves the use of persistent excitation7. 
A piecewise continuous signal vector φ is persistently exciting (PE) with a level of excitation α0 > 0 if there exist constants α1, T0 > 0 such that
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[image: image6.wmf](

)

(

)

t

j

t

j

t

 is uniformly positive definite over any time interval [t, t + T0]. The above equation may be expressed in a scalar form as
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, where q is any suitable constant vector with |q| = 1. Thus, the above equations may be considered as energy conditions on the vector φ. From the definition of PE we may monitor the system to ensure the dynamics are properly excited by calculating the PE continuously in real time. If the PE measure of a given system signal vector φ falls below a given limit α0 we may add an appropriate test signal or dither to raise the PE back to acceptable levels. In this way we may be assured that the parameter estimation approaches have sufficient energy for convergence7. 
A test signal may be generated in one of several ways: 1) random noise, 2) filtered pseudo random binary sequence (PRBS), and 3) chaos circuit. Regardless of the approach selected the energy level of the test signal should be sized to coincide with the lower limit of PE. Also, the test signal bandwidth should be appropriate for the system being evaluated. In other words, the frequency content should match the dynamics of the system. The test signal must be sufficient to enable parameter estimation without interfering with normal operation. Of the three approaches a chaos circuit is of interest because it may be set up to generate a given range of excitation frequencies8. 
Conclusion
Health monitoring has gained much attention recently due to recent emphasis on autonomous operations. High cost of maintenance is a driver for software diagnostics and predictive fault detection. The intent of this paper is to present a concept that would contribute to increased reliability and on-line availability of aerospace subsystems involving sensors and actuators using a real-time approach. Typical applications1, 2 for on-line parameter estimation technology for actuators include:  1) acceptance criteria for new & rebuilt actuators, 2) periodic readiness testing, 3) parameter information to support adaptive or nonadaptive control loops and 4) real-time fault detection for applicable subsystems. The sensor fault detection approach would apply to isolated sensors as well as sensors dedicated to subsystems. 
An architecture for health monitoring of aerospace actuators and sensors was presented. Statistical and model based approaches for detecting four basic types of faults: dead, excessive noise, drift, and offset sensor faults. Dead and excessive noise sensor faults may be detected using a simple statistical approach. Drift and offset fault detection require model based approaches. A model based fault detection method was outlined with application to actuators. Issues regarding Kalman filter accuracy and an active test signal for improving the convergence of the parameter estimation were discussed. Future research includes application to enhanced actuator simulations and hardware, development of software fault detection modules for each fault type, development of proper threshold criteria, active test signal generation, and parameter estimation refinements. 
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Figure � SEQ Figure \* ARABIC �1�		Architecture of Fault Detection System





�


Figure � SEQ Figure \* ARABIC �2�		Sensor Fault Detection Object
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Figure � SEQ Figure \* ARABIC �3�		Typical Steady State Actuator Nonlinearity Models





function [param,P,err] = KalmanF(param,P,y,x);


%


%


niter = 10;


Q = 0.05*eye(size(P));


for i = 1:niter


   err = y - x'*param;


   k = P*x/(1 + x'*P*x);


   P = (eye(size(P)) - k*x')*P + Q;


   param = param + k*err;


end;   
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Figure � SEQ Figure \* ARABIC �5�		Dead-zone Example
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Figure � SEQ Figure \* ARABIC �6�		Backlash Example
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Figure � SEQ Figure \* ARABIC �7� Backlash and Deadzone matlab code
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[image: image13.png]Matlab code

% matlah deadband code
if udb(i)>0;
[p1,Pdb,erx (1)] = KalnanF(pl,Pdb,.. .
udb (1], [v(1) -1 001");
end;
if udb(i)<0;
[PL,Pab,err(i)] = KalnanF(pl,Pdb, ...
udb(1),0 0 vit) -11');
end;
% backlash Kaluan Filter set up
if (ublp-ublpp)>0;

[plbL,Phl,errbl(1)] = KaluanFiplbl,Pbl, ...

wl(i),[v(i) -1 01');
end
if (ublp-ublpp)<o;

[plbl,Phl,erzbl(1)] = KaluanFiplbl,Pbl, ...

wl(i),[v(1) 0 -11');
end
if (ublp-ublpp)
[plbL,Phlexrbl ()]
wbl(1),00 0 01 ;

end
function [paraw,?,err] = KaluanF(param,P,y,x) :

miter = 10;
0 = 0.05%eye(size (P))
for i = liniter
err = y - x'tparan;
B = Pex/(L 4 xeRR)
P = (eye(size(P)) - k*x')*P + O
param = param + krerr;
end;

RalnanF(plbl, Pbl, ...
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