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ABSTRACT

In its broadest context, an Engine Health Management System (EHMS) deals with the monitoring, detection, isolation, predictive trending and accommodation of engine degradation, faults, and failures. Its approach draws from methodologies and processes employing both physics-based and empirical techniques, derived from a wide range of engine system disciplines including Materials, Structures and Controls. Minimizing total cost of (engine) ownership, and increasing asset availability / and mission readiness and while maintaining or even increasing safety are just some of the key drivers for the implementation of an Engine Health Management System (EHMS). Relative weighting of these factors vary in importance depending on the end-user’s operating and business environment, as well as application-specific needs. Although they share a common vein, it is not unusual for Commercial Aircraft EHM systems to direct a different emphasis than Military Aircraft EHM systems. As a result, there is no specific one-size-fits-all approach for an EHMS, but rather an array of capabilities that can be assembled to address the specific needs of an end-user. The range of capabilities employed in these systems include not only those that are engine specific, but also draw from mathematical, statistical and artificial intelligent methods that are more generic in nature and have potential cross-cutting application to other propulsion and space vehicle health tracking.

This paper provides an overview of current and evolving Engine Health Management System capabilities available for the spectrum of possible aircraft applications. Many of the methods and issues examined are generic in nature and have applicability to a wider range of engine systems such as marine and power generation gas turbines as well as rocket and hypersonic propulsion systems. For the sake of brevity, however, we will only address aircraft propulsion system related items. While the bulk of the material presented draws heavily from Pratt & Whitney experience, it should not be considered unique to a specific engine manufacturer or engine product.

INTRODUCTION

Gas turbine engine health management is as old as the jet engine itself. From its beginnings as simple monitoring practices performed by a line mechanic, advances in engine complexity and economic pressures has pushed the boundaries of monitoring to impact flight operation, safety, and maintenance activities to an ever-increasing degree. Over three decades ago, the acronym EHM would have been recognized as meaning Engine Health Monitoring, instead of Management, the former referring to passive observations and the latter an active pursuit, with dependencies on the former. Engine Health Monitoring began in earnest with the advent of commercial high bypass turbofan engines in the 1970s. These modular machines provided an economic impetus for monitoring and the development of analysis methods to track the performance health down to the module level, in an attempt to impact maintenance work scope and hence reduce overall maintenance costs. With the advent of the Full Authority Digital Engine Control (FADEC) in the early 1980s, flyable instrumentation intended for control functions was now available for diagnostic purposes. 

Slowly, as both monitoring and analysis methods matured, the scheduled engine removals based on number of flights or engine operating time have begun to give way to autonomic on-condition maintenance practices. This has opened the door on the possibility of not only improving flight safety, but also simultaneously having a positive impact on shop logistics, asset availability through the implementation of engine fleet management systems. Engineers are capable of designing very safe gas turbine engines, but there is always a trade in increased weight, cost or reduced performance in order to achieve the extremely high levels of safety. One means to mitigate the penalties associated with increasing levels of engine safety are the introduction of EHM capabilities that continuously monitor the condition or health of the engine. The trades between introduction of a new sensor and creating a robust engine structure are often very favorable to the former solution.

As engine safety is now reaching unprecedented levels, pure economics is becoming more of the prime driver for implementation of EHM systems in commercial, military and power systems sectors. Commercial airlines seek to reduce the overall cost of ownership and increase flight safety by reducing the potential for in-flight shutdowns (IFSD), unplanned engine removals (UER) and delays and cancellations (D&C) through managed maintenance, by striving to eliminate unexpected events. These factors are important to the military as well, where the war fighter’s readiness and availability to launch and successfully complete a mission on a moments notice is of ultimate importance. Down time for power system gas turbines carries direct economic penalties. The bottom line is that judicious application EHM Systems to the commercial, military and power engine sectors can provide benefits to each in similar, although not identical means. Based on the weighting of the importance of each of the above-mentioned metrics, the optimum EHM solution may vary between sectors, and between applications within the sector. A one-size-fits-all solution is not likely to exist and EHM systems must be tailored to address the specific application at hand.

Experience has shown that EHM needs vary from engine-to-engine, even customer-to-customer using the same engines. It is possible to design an EHM system that provides near 100% fault isolation and prognosticates engine service requirements weeks into the future that meets the basic requirements of one customer, which does not have a viable business case for another customer. EHM systems are intended to improve the business propositions of engine applications by providing: 1) marketable capabilities that make the product more attractive to the end customers, 2) a means to reduce Life Cycle Costs for the end user, 3) a means of financial exposure reduction for a Fleet Management Services provider, etc. 

Engine Health Management can best be visualized as portfolio of capabilities from which building blocks can be drawn to create customized architectures that best meet individual user needs. Both Engine-Hosted and Ground-Based elements are viable tactics, not as competing EHM approaches, but rather complementary features of an overall integrated system. Engine-Hosted elements generate data from on-board sensors, and perform basic fault isolation and prediction, supporting on-wing maintenance, while the Ground-Based elements support long-term degradation trending, providing planning information that can be used by aircraft fleet managers. These will be explored in greater detail in the sequel.

Ground-Based Engine Health Management

Among the EHM systems, ground-based diagnostic systems were the first to evolve. Starting in the test cells, these systems were very specialized and limited in their scope.  These systems were largely comprised of independent programs for vibration monitoring and analysis of high bandwidth (2k Hz) accelerometer data and low bandwidth (5-20Hz) time averaged steady-state gas path data and was typically performed during outbound post overhaul acceptance test runs and occasionally for inbound Test-As-Received (TAR) engine runs. One of the analysis areas to benefit from the added instrumentation typical in the test cells was Gas Path Analysis (GPA), also referred to as Module Performance Analysis (MPA). The literature abounds with descriptions of this type of diagnostic procedure, as it has been an area of active research over the past three decades by practitioners in industry (engine manufacturers, small businesses), academia, and the government (NASA, DOD, USAF, Navy, etc). Since there is adequate information in the public domain describing the many varied approaches (physics-based and empirical) a detailed discussion of this, albeit important area of engine diagnostics, will not be provided. The interested reader is referred to the general literature (see references [1-20]). However, since it is one of the more mature technologies and serves as a foundation methodology for general engine diagnostics (both ground-based and engine hosted) a cursory overview at this important area will be provided.

Module Performance Analysis

Most diagnostic methods rely on discernable changes in observable parameters in order to detect physical faults. As a generality, physical faults consist of combinations of problems such as foreign object damage (FOD), blade erosion and corrosion, worn seals, excess clearances or plugged nozzles, which result in changes in the thermodynamic performance of the engine as measured by adiabatic efficiencies, compressor flow capacities and effective nozzle areas, etc. These thermodynamic changes, in turn, produce changes in observable engine parameters measured along the engine gas path, such as rotor speeds, temperatures, pressures, fuel flow, power output and the like. The fundamental task of Module Performance Analysis (MPA) is to infer (from these observable shifts) the level of deterioration in the various modules of the engine, thus allowing correction of the underlying physical faults through proper maintenance action (Figure 1).
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Figure 1: MPA Principle

This type of diagnostic procedure can be referred to as relative engine performance diagnostics, i.e. it assesses changes in engine performance not absolute performance levels. This makes it possible to track performance of a particular engine against itself (say from when the engine was installed on an aircraft) or how a particular engine has changed relative to some production level or fleet average. Whatever the base reference point, valuable information can be obtained which can directly impact the maintenance schedule, logistics and cost. This form of gas turbine performance diagnostics is a fairly mature methodology, which has been in practice in both commercial and military engine diagnostic programs for almost three decades. References to this approach first appeared in the literature by one of the early investigators and pioneer, in this field, Louis A. Urban [1-2]. As a result of its longevity, the method has been referred to by several names, Gas Path Analysis (GPA) and Module Performance Analysis (MPA), being two of the most popular.

To infer changes in these performance characteristics it is necessary to observe discernible changes (from reference) in various engine parameters taken along the engine’s gas path and have a mathematical model interrelating the two sets of variables. The fundamental tenet underlying this approach is that physical faults occurring in the engine (such as blade erosion, corrosion, tip clearance, fouling, etc.) induce a change in component performance (as modeled by efficiencies, flow capacities, etc.), which in turn produce observable changes in measurable parameters (such as temperatures, pressures, speeds, etc.). Through inverse relationships, it should be possible to estimate the component shifts responsible for the measurement shifts observed which in turn provides information needed to address the underlying physical fault(s).

The general approach taken is through the use of a linearized model approximation evaluated at a selected engine operating point.  This provides a matrix relationship between changes in engine component performance (independent parameters) and the attendant changes in the typically measured engine parameters. The model relationship may then be succinctly represented as
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    (1)

where Z is a vector of measured parameter deltas, x is a vector of fault deltas, H is a matrix of fault influence coefficients and   is a random vector representing the uncertainties inherent in the measurement process. In addition to the precision of the individual sensors, it has been customary to address the potential for sensor bias and drift. Consequently, the fault vector given in the model above is often configured to contain components directly related to sensor error in addition to engine fault deltas and the H matrix is augmented to account for these additional fault parameters [5]. The MPA problem then reduces to one of estimating the fault vector x, i.e.
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While this might seem like a simple task, there are many difficulties encountered, not the least of which is that, in practice, the number of unknowns (size of x) is far greater than the number of equations (size of Z), as well as observability issues between certain faults amongst the measured quantities, poor signal to noise ratio, engine non-linearity effects and a host of others [6-7]. For this reason the estimation problem has been the focus of considerable research over the last several decades with methodologies incorporating a wide range of techniques from Kalman Filters [6-12, 21-28], Neural Networks [25,29-31], Fuzzy Logic[32], Bayesian Belief Networks[33-34], Genetic Algorithms[35-37], and combinations of the above [35,38,39].

Engine Health Tracking
As mentioned in the previous discussion, the matter of determining performance shifts poses certain mathematical difficulties. Indeed, with an undetermined system (number of unknowns outweighing the number of equations), there cannot exist a mathematically unique solution. The pursuit for greater estimation accuracy can only be achieved through the incorporation of more information regarding the performance state of the engine. Information abounds, however, most of it is heuristic in nature and cannot be applied directly in a quantitative fashion without considerable effort. A few examples of this type information might be

· Over time, component performance degrades, not improves, i.e. ( efficiencies and flow capacities tend negative, not positive.

· Maintenance actions influence performance (engine and sensor) in a variety of ways (positive and negative).

· The existence of similar gas path shifts in aircraft companion engine parameters might provide corroborative evidence for common instrumentation problems (e.g. altitude, Mach, TAT, etc.).

· Non gas path information, such as engine vibration, inlet and exhaust debris monitoring sensors, etc might allow a different perspective on the type of underlying faults which should be assessed.

· Measurement non-repeatability may differ (for a particular engine) from the assumed (fixed) variances for that engine model installation.

This list is by no means exhaustive. Once again the literature [40-44] offers some guidance on potential improvement through the inclusion of additional health feature information, some quantitative and some heuristic. This topic of information fusion will be discussed in more detail in the engine-hosted engine management section. In a ground-based system, data availability (as to type and quantity, i.e. bandwidth) imposes certain restrictions that are not necessarily present for engine-hosted systems. Conversely, tracking engine health on a fleet basis is only possible with ground-based systems. Having an appropriate data infrastructure in place for capturing in-flight engine data with seamless transfer to the ground-hosted systems is a critical element for engine health management to be successful. This must be accompanied by appropriate links to maintenance information, life cycle information, supply chain information and the like as well as a suitable interface for the end user to access and utilize the information. The data IT aspects are enormous and are far beyond the scope of the present discussion (and expertise of the authors). Some associated information on some of these topics is available in the following references [45,46].

This section will be concluded with a brief discussion of one aspect of the general information-leveraging problem. The information comes by way of inspecting a time series of points rather than just a single point in isolation. It is concerned with the difference between gradual deterioration and a rapid deterioration, in the temporal sense. Engine performance changes can manifest themselves in one of two ways: a) gradual (long-term) deterioration or b) rapid (short-term) deterioration. These may effect component (module) performance changes that can be characterized in terms of estimated parameters such as efficiencies, flow capacities, and effective nozzle areas discussed previously or can be changes in performance of engine sub-systems such as bleeds, cooling flows, variable geometry mechanisms etc.  To properly address these different types of degradation, different algorithms with different assumptions come in to play. It is assumed that all of the engine components (whose shifts in performance are being estimated) are deteriorating slowly whereas rapid trend shifts (if observed) are most probably due to a single entity (or perhaps two) going awry. This concession is a form of heuristic information based on experience. The methodology defined below attempts to leverage this information allowing for both of these processes to operate in concert with one another, automatically, and without corruptive interaction. It might be considered an example of algorithm fusion driven by observational information.

Without much loss of generality, two different fault mechanisms can be considered, gradual deterioration and rapid deterioration as illustrated in Figure 2, below. 
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Figure 2: Effect of gradual versus rapid deterioration on an observed measurement
Pictured in this plot is a particular gas path parameter ( (say Exhaust Gas Temperature (). As the engine degrades naturally over time, the ( increases slowly as indicated by the averaged trend line. The scatter observed is due to the measurement non-repeatability and processing errors. Each of these points, along with similar (s in other gas path parameters, would be taken collectively (at each time point) and analyzed to estimate the underlying Module Performance deterioration, as discussed in the preceding paragraphs. In the middle of the plot, the gradual trend is observed to change and there is a rapid shift to a new level, followed by a continuation of the slow trend. Clearly, something has occurred to force this rapid trend shift, and this is where a single fault assumption could be leveraged. Keeping in mind that data is flowing into the system over time and that each data point is analyzed individually as it is received, there is a need for a process to check for outlier data versus true trend shifts, a detection mechanism to recognize the shift and calculate the level offset ((() and a (single fault) isolation process to identify the fault and quantify its severity. Figure 3 depicts a top-level view of the process.
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Figure 3: Simplified MPA Process Overview

Fundamental to this process is an automatic means to detect the presence of a trend shift, quantify the level, identify the root cause and establish (temporally) when the event has ceased and natural (slow) trending has resumed. Figure 4 depicts the situation. Methods to analyze this kind of behavior and integrate it with the normal MPA process vary from user to user. Some suggestions (and comparisons) can be found in [8,47-49].
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Figure 4: Calculating the  shift for single fault isolation

Engine-Hosted Health Management
Purposes of Engine-Hosted EHM: Detection and Isolation

The primary purposes of the Engine-Hosted EHM systems are to enhance engine safety against damage by providing early real-time detection of conditions that might progress to critical system failures, and to aid in the reduction of maintenance support costs and aborted missions by automatically “reasoning” on data to minimize fault isolation time of a failing component to a Line Replaceable Unit. An Autonomic Logistics approach is being introduced for the military Joint Strike Fighter (JSF) (see [50]). is an example of an application of on-board Diagnostics and Prognostic Health Management (D/PHM) capabilities to eliminate scheduled engine inspections and rely on on-condition health assessments.

Functions of EHM

In general, it is the function of the Engine-Hosted EHM system to acquire data, monitor and assess current engine condition, as well as predict future engine state. Subtle changes in combinations of some measured parameters can indicate early symptoms of a progression towards a failure condition. These changes in a parameter’s characteristics are often difficult to detect by simply observing limit exceedances, since the parameter values typically remain within the normal operating range. Trend analysis of parameter values, taken over time at specific operating conditions, enables detection of shifts, abnormal rate of change, and abnormal scatter in the data. Measures of gas path performance, lubrication and fuel system operation, and rotating  function are typically used to perform these trend analyses.

Sensors

“Sensed” measurements are required to provide data for comprehensive monitoring. The number of sensors depends on the complexity of the engine to be monitored and the level of coverage desired. These can range from engine control sensors doubling in an EHM function, to a sophisticated suite of dedicated EHM sensors. Sample rates can vary from as low as once per flight to hundreds of thousands of times per second (see [51]).

Engine Gas Path

At a minimum, the sensors that are used to provide closed-loop control of the engine serve in a dual role as a basic suite of EHM sensors. This suite usually consists of some mix of gas path pressures, temperatures, and spool speeds as appropriate to the engine configuration, which can typically range from as few as four to upwards of twelve or more sensors. 

Operating Conditions

Additional measures such as inlet temperature and pressure, vehicle speed (Mach number), and altitude define the flight condition at which the engine is operating. While they do not directly address the health of the engine itself, these measures are useful in the “normalization” of the main gas path parameters to a set of “standard” operating conditions, significantly reducing the amount of computations that must be used to interpret the gas path performance data at all flight conditions.

Actuation

A basic suite of EHM sensors will also contain measures of the actuation system such as mechanical displacement or rotation, index of rotation position, fuel flow, fuel system pressures and temperatures, bleed air valve position, etc.. Some systems also include a “wrap-back” of the analog commands to the actuators to verify the integrity of the wiring system. Often the actuation element of the EHM constitutes a good portion of what is typically referred to as a basic Fault Detection system. 

Mechanical Components

In recent years, basic EHM systems are being expanded to include measures of the condition of the Mechanical Subsystems, which include components such as bearings, gearboxes, power extractions and the lubrication system that supports it. This expansion was driven both by the significant percentage of engine problems associated with these components, and the relative ease with which new sensors could be incorporated into the engine design. 

Vibration
Bearing degradation, ultimately leading to failures, results from unexpectedly rapid and often asymmetrical wear of the rotating parts (e.g. balls, rollers, etc.) and the surfaces against which they move (i.e. races). Likewise, gear degradation appears as uneven wear on the surface of the gear teeth, often resulting in audible “chattering”.  The most common means of sensing bearing and gear degradation is via vibration monitoring. Typically this is accomplished by mounting single or multi-axis accelerometers in the vicinity of the bearings and on the gearbox. Mounting the sensor closer to the source of vibration is preferred since it provides a “more distinct” signal, but often this is not possible to temperature constraints on the sensor. Often the accelerometers are simply mounted on the engine case. 

The frequency range for the accelerometers depends on a number of factors. One consideration is the attributes of the signal to be sensed, which is generally a function of engine speed. Another is the operating environment; the background noise which may obscure the signal. A third consideration is how the signal will be used; whether it will be used to provide a “high vibes” indication or used to perform real-time on-board analysis of the signal to aid in fault isolation.

Lubrication System
Sensors generally used to monitor the Lubrication System include measures of oil quantity, temperature, delivery pressure, debris and degradation. Measure of specific components, such as the pressure drop across an oil filter may provide indications of eminent bypass condition and the need for filter replacement. Oil Debris Monitoring has been found to be a highly effective means of early bearing degradation detection; by monitoring the liberated metal particles in the oil it is possible to identify and trend degradation well in advance of indication of irregular rubbing provided by a vibration sensor, especially when complications of filtering out system noise are considered.

Turbo-machinery

EHM Systems are now being enhanced to add the capability to monitor components. Blade damage features of interest are bending, chipping, etc. due to Foreign or Domestic Object Damage (FOD/DOD), high cycle fatigue (HCF), creep, etc. Even more difficult to monitor is disk damage, such as crack progression.  monitoring has been long in finding its way into EHM Systems due to the difficulty of installing sensors in appropriate locations to monitor high-speed rotating parts in an extremely high temperature environment. 

Some form of vibration monitoring is typically performed on most engines. This is usually on the low spool to measure Fan and Low Pressure Turbine (LPT) vibration, but may include high spool vibration probes as well as specific bearing and gearbox vibration measurements.

Basic monitoring has been accomplished via vibration monitoring, serving in a dual role as a means of bearing monitoring. The premise is that blade and or disk damage will result in a rotor shaft unbalance that is detectable via accelerometers. This may or may not be true, depending on the magnitude of the damage; it will not add in the detection of HCF or creep. Higher frequency accelerometers may be required to monitor blade damage.

Direct Blade Measures

New sensors are being developed to enhance turbo-machinery-monitoring capabilities. Of particular interest are blade passage sensors that project electromagnetic energy from their engine case mounting locations. Reflections of the energy that occurs as the blades move past the sensor are detected. Inconsistencies in the sensed “time of arrival” are indicative of blade or disk damage. The time delay associated with the signal reflection is also indicative of the clearance between the blade and engine case. Deterioration of the blade tip, which widens of the clearance “gap”, correlates directly to the loss of component efficiency.

Precise measures of the peak level and variations in operating temperatures of the hardware are a key factor in assessing its condition, especially with regards to creep. Taking measurements in the hottest sections of the engine using conventional “direct” means are not possible, due to the difficulties of placing sensors in the extremely high temperature and rotational speed environment. Indirect means such as inferring temperature from real-time analysis of electromagnetic spectrum are now becoming feasible.

Debris monitors are another means being used sensing turbo-machinery health. Rather than directly measure blades and disks health, debris-monitoring devices attempt to quantify the number and mass of particles ingested into or expelled by the turbo-machinery. The magnitude of particles is correlated to damage by analytical and empirical methods.

Future

Sensor technologies under development now will enable future EHM Systems to provide a more comprehensive assessment of engine conditions. Fuel and oil leak detection, on-board combustion products analysis and self-monitoring wiring systems are but a few of the new capabilities on the near horizon.

COMPUTING HOST

Engine Diagnostic Unit

Sensors generate condition information that is either directly digitized, or pre-processed in analog form before digitization. In either case, modern EHM systems deal in digital data. Simple EHM systems will merely capture the raw data as it is generated in real-time and record it some storage media such as a digital tape, disk or memory stick for on-ground processing. More sophisticated EHM Systems will employ either a standalone Engine Diagnostic Unit (EDU) or some portion of a Full Authority Digital Engine Control (FADEC) to process at least significant portions of the date in real-time on-board.

Processing

Depending on the sensor suite utilized, the amount of on-board processing can be significant. High sample rate sensors can require implementation of Digital Signal Processors (DSPs) dedicated to a single sensor in the EDU. The level of sophistication of the algorithms used to convert raw sensor data into engine condition information sets the requirements for the Central Processor Unit, which could call for significant throughput. 

Memory

Memory storage capability is as an important consideration as processing speed. The EDU records in its memory a time-tagged chronology of failures, as well as flight and engine operating conditions at the time of the failure. For EHM systems that do not take advantage of on-board algorithms to pre-process data, the requirements for data storage can be enormous. Low sample rate gas path monitoring systems generally have data storage requirements in the kilobyte range per flight hour. But if raw data is to be recorded for high sample rate sensors such as certain accelerometers, data storage requirements can easily move into the gigabyte per hour range. In these cases, on-board data compression, using analytical methods or by brute force (e.g. MPEG techniques), are particularly valuable.

Communication

The EDU/FADEC also serves as the communication interface for the EHM system. EHM data may be used in the FADEC for optimal control of the engine. But it is often communicated to the pilot to annunciate warnings, cautions, & advisories and to aid in decision making in the presence of fault condition. It is ultimately communicated off board the aircraft to assist the maintainer in troubleshooting problems and for the Fleet Manager to aid in maintenance planning. The EDU may move EHM data off the aircraft through the vehicle communication system (ARINC, AFDX, 1553, Firewire, etc.), or it may offer a direct link such as a USB-type port or even a wireless link. Consideration must be made as to the amount of and the means by which data will be moved off the vehicle; attempting to move huge sums of data through slow communication links is not practical. 

SOFTWARE

A wide range of software may be hosted in an engine-mounted Engine Diagnostic Unit (EDU). It could be as simple as routines that periodically write data to memory or as sophisticated as a system of algorithms that autonomously detect, isolate and report changes in engine condition.

FADEC Codes 

A basic EHM system will leverage the Fault Detection functions that are typically performed within the FADEC. An electronic engine control performs a number of performance tests on sensor signal condition and fidelity. Cross-channel checks in a multi-channel FADEC can aid in determining when engine sensor is drifting, periodically or continuously exceeding range limits, or in fact, failing. Checks on bleed valves, active clearance control, and variable geometry can provide independent information regarding engine health and the health of various engine subsystems. FADEC fault detection algorithms typically generate “codes”, that indicate the presences of one (or more) of a list of pre-identified failure conditions. These “codes” are typically recorded in order of occurrence and may have a time-stamp associated with them to aid the maintainer in troubleshooting.

Anomaly Detection 

In contrast, engine-operating conditions may be observed that are not expected, for which there is no “Fault Code”. These are said to be “anomalous”. Software algorithms that detect the presence of anomalies are commonly called Anomaly Detectors (see [64-72]). These algorithms typically work by comparing the relationships observed in engine-generated parameters against some standard of expected relationships.  The persistence of significant variations in measured versus expected relationships would be considered an “Anomaly”. 

There are a number of methods for establishing the expected “normal”. One means is to determine if the relationship between parameters violates the basic rules of physics. Another means collects data over some period of time to train an empirical mode of the engine (or engine subsystem). A third method uses an on-board analytical model(s) of the engine.  

Empirical models developed from a statistically significant sample of nominal engine operation data can be used to form the basis for an anomaly detector. These types of models typically take the form of Artificial Neural Networks (ANN) and are trained to output normal engine operation measurement estimates. When compared to actual measurements they provide a basis for making a statistical determination as to whether or not the observations at hand conform to what is considered “normal” operation.  Although the ANN may take many forms, the Radial Basis Function (RBF) ANN, has been used successfully in several applications. During the training process for these types of ANNs, the training data is self-organized into a group of classes wherein each class is modeled by an n-dimensional Gaussian function referred to as a radial basis function. These functions capture the statistical properties and dimensional inter-relationships between the input and output engine data parameters. The structure an RBF ANN is depicted in Figure 5.
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Figure 5: Radial Basis Function ANN
The practical implementation of an Anomaly Detector (AD) often involves partitioning the modeling problem into smaller constituents to avoid the difficulties associated with constructing an ANN large enough to cover the entire flight regime and engine operating conditions. A Gas Path AD described in [66] is configured as a set of several RBF ANNs, each representing a particular flight regime or operational characteristic to enhance the accuracy of the overall detector. For example there is an RBF ANN for steady state operation with and without stability bleed off-take, acceleration and deceleration. Simple regime recognition logic controls the selection of the appropriate RBF ANN. Pre-processing of engine parameters in terms of standard day corrections and range normalization are made prior to input into the ANN. The primary output of the system is a (fuzzy-like) detection variable that takes on the values between 0 (anomalous data) and 1 (normal data). A threshold and median filtering is applied to the output to produce a discrete binary parameter to serve as a detection flag. A representation of this model is depicted in Figure 6, below.
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Figure 6: Anomaly Detection Scheme
In addition to the binary AD output parameter, individual signal distance measures are available which quantify each parameter’s contribution to the data’s classification as normal or anomalous. Collectively, these provide an empirical signature for anomalous data and can be helpful in performing fault isolation once detection has been made. More information on methods and application of ADs can be found in the following references [64-72].

Information Fusion

As has been shown, engine condition information is generated by a variety of on-board sources. Some of this information comes directly from continuous sensor measures; some may be generated from on-board component models, while other information comes from data bases stored in the Diagnostic Unit (such as maintenance history). An ultimate goal of an EHM system is to maximize the amount of meaningful information that can be extracted from disparate data sources to obtain comprehensive diagnostic and prognostic knowledge regarding the health of the engine. “Fusion” techniques integrate of data/information from multiple sources, to achieve improved accuracy; confirmation of observations and more specific inferences than can be obtained from the use of a single information source alone. The basic tenet underlying the data/information fusion concept is to leverage all available information to enhance diagnostic visibility, increase diagnostic reliability and reduce the number of diagnostic false alarms. In-depth discussions on particular approaches and methodologies can be found in [55-64]. 
Fault Isolation

It is most often desirable to have knowledge of more than just the presence of a fault condition, but to actually isolate the fault to its root cause. In legacy EHM systems, Fault Isolation has been limited to simple cases in which a single measure can be interpreted as a specific fault. But as part of the drive to provide more comprehensive engine coverage, more sophisticated methods of fault isolation are desirable. Often some form of “Reasoner” is used to provide the Fault Isolation capability. Examples are a case-based Reasoner that utilizes trees of past experience to reason its way from observed condition to the source of variance from “normal”. Other methods use detailed “failure progression” models of the engine as an organized technique for resolving anomalous conditions into faults. Autonomous isolation faults can be used to specify real-time accommodation of faults by the FADEC, as well as assist the maintainer in performing required repairs.

ON-BOARD MODELS

Real-time executing models are an integral part of modern Engine-Hosted EHM systems. The models use engine-operating conditions to generate expected values for many of the engine parameters. Models can merely be tables representing the “states” of the engine parameters at a number of critical operating points, using piecewise linear interpolation to estimate values between these key conditions. Or the model can be as complex as a real-time implementation of a non-linear aero-thermal representation of the engine.  More sophisticated versions of the models tune themselves to account for engine component deterioration and component damage. 

On-Board Gas Path Analysis

An alternative (or complement) to ground-based Module Performance tracking systems is the use of on-board engine models and attendant logic to perform gas path analysis in real-time during flight. These systems (see references [52-54,72]) typically consist of simplified on-board engine models with Kalman Filter observers to perform the module performance deterioration estimation. A practical consideration for implementing a real-time on-board Module Performance tracking system is the development of a high fidelity engine model capable of providing a reference level from which performance changes can be tracked. Real-time engine models made their advent with the State Variable Model (SVM) in the mid-‘80s which provided a piecewise linear model that granted a reasonable representation of the engine during steady state operation and mild transients. Increased processor speeds over the next decade allowed more complex models to be considered, that were combinations of linear and non-linear physics based components. While the latter may provide greater fidelity over transient operation and flight envelope excursions, it bears the limitation of potential model obsolescence as performance improvements in the form of hardware modifications, bleed and stator vane schedules alterations, cooling flow adjustments, and the like are made during an engine’s life cycle. Over time, these models may deviate enough from the actual engine being monitored that the module performance estimations are inaccurate and misleading. To mitigate these effects, an alternate approach to engine modeling can be taken, utilizing a hybrid engine model architecture that incorporates both physics-based and empirical components. This methodology provides a means to tune the engine model to a particular configuration as the engine development matures and furthermore, aligns the model to the particular engine being monitored to insure accurate performance tracking while not compromising real-time operation. This approach effectively removes the uncertainty introduced with engine-to-engine variability since each monitored engine would, in effect, have its own custom (hybrid) model representation. A typical configuration for a system of this type is depicted in Figure 7.
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Figure 7:  Adaptive Hybrid Engine Model 
In this configuration, The “ANN” (Artificial Neural Network) represents the empirically derived model of the difference between the simple physics-based engine model (SVM) and the actual monitored engine. The combination of the two represents a hybrid engine model that is tuned to the specific engine being monitored. The real-time determination of this empirical model is the key technical challenge in realizing this emerging technology and is an area of current research. Information on this type of methodology and its impact on improving Module Performance deterioration tracking can be found in [73-75].

Component Life Usage Estimation

Many engine components (Life Limited Parts) require inspection after some regular intervals, and must be replaced well before all usable life has been expended. Component Lifing algorithms that accurately track component usage can allow Life Limited Parts to remain on wing until their life is more nearly consumed. Safety is actually increased by accurately knowing life consumption on an engine-by-engine basis, while at the same time reducing support costs. The Component Lifing System can be implemented either as part of an Engine-Hosted or Ground-Based EHM system, with the Ground-Based implementation supported by on-engine generated, compressed and downloaded data. 

Traditional Component Lifing Methods

Analysis techniques commonly used to determine accumulated life consumed are either engine operating time or total accumulated cycles, which are correlated to low cycle fatigue for each life limited component. Computation of these cycles assumes that each engine on each aircraft will be used in a manner consistent with “expected” flight profiles. Maintenance of life-limited parts is scheduled based on a very conservative assumption of engine usage in order to maintain required safety levels. In reality, engine usage often falls short of the standard mission profiles. Yet in order to ensure safety, parts are replaced “early”, per the conservative schedule. As a result, due to a lack of actual usage knowledge on an engine-by-engine basis, most components on most engines are replaced with significant life and, hence value remaining in the part.

Advanced Component Life Usage Tracking

By implementing methods to accurately track actual component life usage, there is potential to greatly reduce the width of the usage uncertainty distribution, allowing the scheduled maintenance point to moved much closer to the center of the distribution. This greatly reduces the number of parts that are scrapped with life remaining, while maintaining or even increasing safety levels.

Advanced life estimation techniques use validated models derived from component design tools to allow more accurate tracking of component life used and estimation of life remaining. The algorithms accumulate usage by tracking time-variant changes in parameters such as pressures, temperatures and speeds to drive the “lifing algorithms”, that are in essence real-time models of critical component failure mechanisms. Based on how a family of engines is predicted to be used for a particular vehicle application, and based on how they are actually being used, the life usage estimation can be transformed into a life remaining estimation. Life Remaining for each modeled component accumulated and is made available to the engine fleet management system, allowing the scheduling of necessary overhaul based on actual usage.

DESIGN OF AN ENGINE HEALTH MANAGEMENT SYSTEM

In the prior sections of this chapter, the function of many elements of Engine Health Management has been described. But for any given application, how does one select what elements are appropriate and “buy their way” into the system configuration?

Generally there are two primary drivers for the inclusion of a Health Management capability into an engine design: Safety and Reduction of Life Cycle Cost. Providing the means to detect conditions indicative of component failure well in advance of the actual event, the EHM system can alert the engine operator with sufficient forewarning to allow the risk to be mitigated.  Similarly, the same EHM system can generate information that allows maintenance practices to be transformed from economically inefficient “scheduled” to more effective “on condition: methods. But these benefits come at a cost; providing EHM system hardware, software and infrastructure can be expensive. 

Safety and Reduction of Life Cycle Cost are typically not standalone drivers, but rather tend to be coupled. While it is necessary that any engine system be “safe”, “safe” is a relative term. An EHM System designer must answer the questions, “What levels of safety are acceptable for a given application?” and “How much safety is affordable?” In a theoretical sense, it is desirable that any given engine system be 100% safe and reliable. In practical application, 100% reliability cannot be achieved. The designer must trade safety versus cost. For example, is a system providing 99.99999% reliability truly desirable if the cost of that system is two orders of magnitude more than one providing 99.9999% reliability? Similarly, driving towards a goal of “no delays and cancellations due to engine problems” is certainly a desirable goal, but not if the implementation of the means to achieve that goal is more costly than the engine itself.

The design challenge is then how to select a suite of capabilities that affordably provides the desired benefits. An appropriate EHM architecture is a function of the business model(s) selected for each engine offering and the costs to implement them. Is the customer interested in purchasing an engine that is safer than the one that the competition is using? How much is a delay or cancellation worth the operator? The design of an appropriate EHM is further complicated by the fact that there are really several customer needs to be considered, including the engine manufacturer, vehicle manufacturer, vehicle owner, vehicle operator and maintenance services/part supplier.

The following section provides some insight into the factors that are should be considered in the design of an EHM system. It does not attempt to turn EHM System design into a regimented process, but rather seeks to provide some general guidance and rationale. 

Safety

Engine Health Management systems in of themselves cannot make an engine safer, but their judicious application enables those operating and maintaining the engine to do so with higher margins of safety. Very rarely do engine components fail without any warning. Changes in performance, unusual vibration modes, the presence of material particles in either the primary gas path or associated subsystems all provide early indicators of what, if let unchecked, could propagate into failures. The engine generally provides indications of its health; the question is whether or not anyone is “listening”.

As has been shown in the prior sections, a plethora of sensors and analytical techniques are available for determining engine condition. The challenge is to select those EHM elements that are capable of “listening” to what the engine is saying; providing a means early of detection of a problem prior to failure. A means of accomplishing this is use the Failure Modes Effects and Criticality Analysis (FMECA) document that is required of all engines as a guide of what needs to be detected. This document generally lists failure modes of concern, the generally accepted means of “observing” them, and the criticality should such a failure occur. The priority and importance delineated by the FMECA should provide guidance as to EHM element selection. Reference [76] provides as a good summary of the trade considerations related to Safety for design of a Rocket Engine Health Management System (EHMS).

A second EHM System Design consideration related to Safety is “perceived safety”. Clearly, no Engine Manufacturer wants to make a product that is unsafe, nor does an Operator wants to use one that is unsafe. But, as indicated earlier, safe is a relative term. If either the Operator, or End Customer, believes an engine and associated vehicle to be unsafe, the product will lose value relative to its competition. An EHM system can in part address these concerns by offering a means to continuously monitor engine condition for safety, a advantage over engines that rely on periodic check-ups to assess engine health. But note that this factor has the potential to cut both ways. If the customer perceives that an engine requires an EHM system to ensure safety, the advantage could become a detriment. It is important to coordinate with those people involved with the marketing and sales aspect of the engine business, as well as the engineering community, in the design of an EHM system.

Life Cycle Cost

Health Management systems can enable significant reductions of life-cycle costs associated with owning, operating and supporting a fleet of engines. It is important to recognize that for most commercial and military applications, EHM provides benefits to multiple customers. This is especially important in building a business case for inclusion of Engine Health Management capabilities in an engine configuration, since introduction of a single capability may result in multiple simultaneous payoffs. The cost benefits that an EHM system provides can become a “tradable” commodity; the value that it provides can be assigned by the engine manufacturer to either itself or to a customer for appropriate compensation.

Engine Manufacturer

The Engine Manufacturer can obtain benefit from an EHM system by either being able to produce and sell its product at a lower Initial Cost, or by making their product more attractive by selling the ability to derive additional value through the use of the EHM features of their engine product. Typically engines are developed in cooperation with the Vehicle Manufacturers; both of the benefits described above can be extended to the integrated vehicle/engine system.

Impact on Initial Cost Through Reduced Margins 

Engine Components can be designed with reduced design margins, assuming that an appropriate Health Management system will actively monitor the component use to ensure safety. This could enable weight or material cost reductions in the both the component and associated structures either supporting or potentially affected by the component. A new centerline engine could take advantage of this "Health Management-Enabled Design" to make significant reductions initial production cost and weight.

Engine Operator - Impact on Operational Costs Through Improved Performance

The Engine Operator obtains benefit by taking advantage of the ability of the EHM system to reduce both operational and maintenance costs. Significant reductions in operation costs via improvements in engine performance can be realized through the implementation of an EHM System that provides information as to the current condition of the engine, allowing the engine control to understand how to provide near-optimal engine performance over the entire engine life cycle. One example is reduction in specific fuel consumption that can be achieved by improved blade tip sealing in the High Compressor and Turbine. Due to various wear mechanisms, the clearance between blade tips and seals erodes over the life of the engine, with a corresponding loss of efficiency. Through engine monitoring techniques, active clearance control systems can recover performance lost due to deterioration.

Engine Operator - Impact on Operational Costs Through Reduced Maintenance Costs

The benefits most often associated with Engine Health Management are those associated with reduction of life-cycle maintenance costs. These include both the direct cost of replacement of life-limited parts and maintenance labor costs associated with flight-line repairs and shop overhauls. The benefit for the Life-Limited Part cost is derived from accurate tracking of part usage, so that parts are not prematurely removed while still having significant usable life remaining. A benefit for improvements in Maintenance Labor Costs is directly realized by, among other means, reducing troubleshooting time on the flight line through automated fault resolution. Significantly greater Maintenance Cost benefits are possible if “indirect” factors are considered, especially those associated with conversion of unscheduled to scheduled maintenance. A number of these indirect factors that should be considered are listed below:

· Turnaround Supporting Time Limited Dispatch 

· Unscheduled Maintenance / Increase Mean Time Between Failures


· Number of Non-Recoverable In-Flight Shutdowns 

· Number of Unplanned Engine Removals 

· Number of Rejected Take-Offs / Mission Aborts / Cancellations

· Number of Flight Diversions / Schedule Interrupts / Delays 

· Dispatch Interruption Rate via In-Flight Fault Isolation 


· Number of Periodic Inspections  (i.e., Eliminate Inspections)

Fleet Management Provider

In today’s cost-conscious Aviation environment, Fleet Management Plans (FMP), provided by companies other than those actually operating the engines, are becoming more economically attractive. They allow the engine Operator to establish via contract a fixed-cost for maintenance, transferring risks to the FMP provider. EHM Systems offer the opportunity for the FMP provider to better manage their risks by providing a comprehensive understanding of the current condition of the engine, but more importantly, by providing a means for accurately predicting future condition of the engine at any given point it time. 

Most of the engines Life-Cycle Costs are associated with the continual refurbishment/replacement of consumable or Life-Limited Parts (LLPs). These are typically rotating parts (blades, disks, shafts, hubs), which have a defined Low Cycle Fatigue life and must be removed from the engine and scrapped when life is reached. In addition to being able to keep these LLPs on wing for longer intervals by more accurate tracking methods described above, the same analytical capabilities can enable better spares production planning by anticipating tracking part consumption and accurately and trending predicting when spare parts will be required.

The key is to be mindful that there is no “right” answer as to what elements should be included in an EHM System. Engineering, business and strategic factors determine what suite of EHM capabilities will be provided for a given engine for a given business opportunity; and these may not be identical for the same engine applied to a different business arrangement. The best recommendation is to collect requirements from the broad range of functional organizations that have some need for EHM capability, identify the “must haves”, and then look for those capabilities that are crosscutting in terms of meeting requirements. Other requirements will have buy their way into the configuration on a priority basis. Note that once an EHM System is designed and implemented into a product, benefit is often derived in ways that were never anticipated in the original design. Whatever value an EHM System has when it goes ito service, it will provide additional value as it is used.

CONCLUSION

While there is no specific one-size-fits-all approach for an EHMS, this paper has attempted to provide an overview of the array of current and evolving Engine Health Management (EHM) capabilities that can be assembled into system to address the specific needs of an end-user, for any number of possible applications. On-board Hosted as well as Ground-Based EHM elements have been presented, along with information regarding the interrelationship between the two. Capabilities discussed have ranged from on-board sensors and failure detection methods to ground-based performance and life trending algorithms. Finally, some considerations for design of Engine Health Management Systems, both for Increased Safety and Reductions in Life-Cycle Cost have been provided, along with some notional benefits, and some general guidance as to how the individual elements could coalesce into an integrated system. It is hoped that this document will not be the final word in Engine Health Management, but rather the first word; that the information provided herein and the extensive Reference list will serve as a valuable starting point for design of future EHM Systems.
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