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Abstract

Integrated System Health Engineering and Management (ISHEM) requires the monitoring and assessment of system health and condition, and the control of the system’s response to degraded health and capability.  Complex, highly engineered systems, such as the planned robotic missions to the Moon and Mars, future commercial and military aircraft, and manufacturing systems will require both health monitoring and autonomous control to realize goals for effectiveness, affordability, reliability, safety, and reconfigurability.  Whether the systems are human operated, semi-autonomous with human assistance, or fully autonomous, the health monitoring and control functionality must be integrated in order to meet system performance objectives and respond to changing and unanticipated conditions.  The integration of the health monitoring and autonomous control enables intelligent self-situational awareness (ISSA) - the ability of a system to assess its capability to execute a planned mission or maneuver and actively manage its health through informed control of its actions.  

This paper explores the role data mining techniques can play in ISHEM and autonomous control.  One of the critical tasks in the development, implementation, and maintenance of health management systems is the collection and analysis of operational and transitional failure data that can be used to assessment the current condition, health and capability of the system and predict future condition, health and capability.  The collection of this data, in particular the collection of statistically significant amounts of data, is often difficult due to the expense of dedicated testing, the lack of access to the systems of interest or the inability to collect data for the range of conditions under which the systems are expected to operate.  Data mining techniques can be used to analyze and discover trends and relationships, and capture operational knowledge and expertise from data collected from large numbers of systems during routine testing and operation.  The efficient use of data mining techniques can discover hidden relationships across large distributed data sets that might not be apparent in a single set of data.  Data mining techniques have been applied in such diverse fields as banking, machinery condition monitoring and astronomy.  This paper considers data analysis techniques, knowledge representation, and issues of data preparation and the use of open data standards which can improve the efficiency of data mining techniques in ISHEM applications.

Introduction

Integrated System Health Engineering and Management (ISHEM) encompasses the design, operation, monitoring, management and sustainment of “systems” based on the health, condition and capability of the system.  “Systems” can include simple electrical or mechanical components, such as electrical resistors or mechanical bearings, or highly complex systems such as jet aircraft or systems of systems such those planned for future space exploration missions.  Aspects of ISHEM are beginning to appear in requirements definitions for a wide variety of systems.  Examples of high-level system requirements leading to the inclusion of ISHEM in system designs include:

· Reducing scheduled and time-based maintenance, 

· Reducing manning, 

· Reduced total life cycle cost, 

· Increased availability,

· Improved safety, and 

· Improving the capability of autonomous and unmanned systems, and
· Optimizing logistics and enterprise-level operations.

Challenges in monitoring and managing system health include varied operating conditions, accurately predicting the evolution of changing health of the system and controlling the degradation of the system through appropriate control actions.  The integration of health monitoring information with control functionality is a particular challenge in autonomous and unmanned systems [1], since this function is routinely performed by experienced human operators in manned systems. 

Whether systems are human operated, semi-autonomous with human assistance, or fully autonomous, system health information is valuable for optimizing system operation, mission planning, and responding to changing and unanticipated conditions.  The integration of the health monitoring and autonomous control enables intelligent self-situational awareness (ISSA) - the ability of a system to assess its capability to execute a planned mission or maneuver and actively manage its health through informed control of its actions
The focus of this paper is the application of data mining techniques in ISHEM.  In the past, the monitoring and management of system health drew on inputs, or data, gathered by operators and maintainers or from sensors installed on a limited number of key components or subsystems.  Today, thanks to reductions in the cost of sensors and computing hardware, the systems can be instrumented with large numbers of sensors and monitoring system health has shifted from a problem of acquiring data for determining health to a problem of filtering and managing data to convert it into useful information on system health, condition and capability.  In addition, today’s systems are increasingly being networked across the enterprise which provides the opportunity to compare the health and condition of a particular platform to the health and condition of similar systems operating under the same or different operational or environmental conditions.  

The challenges in monitoring and managing system health are shifting to the issues associated with data access, data management, and the processing of large databases of sensor data, operational data, maintenance records, and even plans and schedules for future system operations.   These are the same issues that computer scientist and information technology specialists deal with in many business systems – analyzing and managing databases containing sales data, transactional information, and business forecasts.  The exploration of relationships and trends and the recognition of patterns in data bases of information are generally referred to as data mining.
This paper explores the application of data mining techniques in ISHEM.  The next section describes the general information technology field of data mining.  The following section describes applications of data mining techniques in both ISHEM-related fields and applications in other fields that can provide insight into the power of these techniques in analyzing large distributed information databases.  The final section of the paper considers future challenges in data mining and their application to ISHEM.  
Data Mining

Data mining is the data-driven discovery and modeling of hidden patterns in large volumes of data [2,3] and is a multidisciplinary field that borrows techniques from diverse areas such as statistics, signal processing, image processing, optimization theory, computer vision, and pattern recognition.   Key elements of data mining include

· Databases and data warehouses,

· Data preparation,

· Machine learning,

· Data Models,

· Knowledge Representation, and

· Data Transformation.

Some of these elements borrow techniques from other fields of mathematics and engineering, while others are driving dedicated research aimed at improving the efficiency of data mining operations.

Data mining, or knowledge discovery, is the computer-assisted process of digging through and analyzing enormous sets of data and then extracting the meaning of the data. Data mining tools are used to predict behaviors and future trends from data.  Businesses use data mining to search and analyze databases for hidden patterns and may find trends and predictive information that experts may miss because it lies outside their expectations.  Data mining derives its name from the similarities between searching for valuable information in a large database and mining a mountain for valuable minerals.  Both processes require either sifting through an immense amount of material, or intelligently probing it to find where the value resides.  Businesses are using data mining to make proactive, knowledge-driven decisions based on data they collect during normal business operations, but which may not have previously been analyzed for these purposes.  The same benefits can be achieved using data mining with machinery and system health data by revealing unanticipated correlations between different operational parameters at the platform level or across the enterprise (across many related or unrelated systems)
Data mining derives its name from the similarities between searching for valuable information in a large database and traditional mineral, gem or resource mining.   In both cases large amounts of material (dirt or rock/data) must be searched or processed to yield a small, but valuable, resource (gems/information).  For businesses, the economics of data mining also have many analogies to traditional mineral mining.  Businesses often pay for access to public data and make money from mining the data, in much the same way that a mining company buys access rights to a piece of public or private land in order to operate a mine.

A key aspect of data mining is the organization of and access to data.  Many data mining operations access data stored in databases since the database can provide a means of not only storing the actual data, but also preserving relationships between different types of data (as opposed to storing each piece of data in a separate data file with no relational or object oriented links between data elements).  A data warehouse is a repository where data located in disparate databases are consolidated.  Data warehouses store large quantities of data by specific categories so companies can easily retrieve, interpret and sort the contents.  Companies store data about customers, potential customers, transactions, and other information related to business operations and sales.  The same concepts can be utilized for system health management.  For example, a relational database may link signals from different components or subsystems under the same operating conditions such as engine speed, engine torque, and transmission vibration.
Much of the data analysis performed in data mining is the application of pattern recognition, classification and modeling techniques.  The distinction between data mining and traditional applications of pattern recognition, classification and modeling is that data mining typically refers to the application of these techniques to large data sets often comprised of multiple distributed data sources.  In a system of systems, such as the planned NASA Exploration Systems, such distributed data sources may include data collected by different system or subsystem prime contractors that are eventually integrated, or data collected by different NASA centers as part of routine testing and mission management.  Data mining techniques can be applied in real time to live data streams or off-line to databases of previously collected data.   Sometimes the goal of data mining is to machine learning techniques to develop classification or pattern recognition rules based on historical data that can then be used in operating systems.  Many of the traditional techniques from pattern recognition – statistical models, neural networks, clustering, etc. – are also used in data mining.   In other applications, the goal is to develop data models for systems or processes that can be used to predict certain parameters based on observed or measured data.  Both machine learning and the development of data models, one of the biggest challenges is access to representative data.  Data mining techniques address this problem by facilitating access to larger representative sets of data. 

Before data can be analyzed, it must be properly prepared.  In the context of data mining, data preparation refers to the formatting of data so it is compatible with the planned use of the database.  For example, suppose we want to mine data from maintenance reports and operational data to learn the temperature characteristics for the cooling system in a class of delivery trucks.   If the vehicles have a health monitoring system that collects engine temperature, ambient temperature and coolant temperature, and maintainers fill our electronic forms that include symptoms observed prior to performing cooling-system- related repairs, it is important that the data from the maintenance reports include a numerical measurement of temperature, not just an observation of whether the system is “running hot” or “running cold.”  While it is possible, and common, to apply techniques such as fuzzy logic to convert between such qualitative and quantitative measurements, proper data preparation insures that related data records are compatible and can be analyzed together without transformation.
After mining data bases for a particular application, the challenge becomes one of knowledge representation – representing the knowledge extracted or learned in a form that is useable to human users or automated information systems.  Representation of the knowledge extracted through the data mining operations can take the form of association rules, classification rules or decision trees.  Data models can be described in terms of neural network architectures and weights, model coefficients (for ARMA or parametric models), or statistical characteristics. 

Another key aspect of the application of data mining techniques is data transformation.  Data transformation refers to the application of a models or conversion relationships to apply data one source to or system to another.  These transformational operations can be as simple as applying scale factors to processing data through dynamic models to convert measurements from one domain to another.  Validation and verification of the transformations, however, is an important and non-trivial requirement.
The growth of data mining can be viewed as part of an evolution in the way we analyze data and perform science [4].  Jim Gray, an information scientist with Microsoft, has been studying how data mining can be used to improve the scientific process.  He has identified an evolutionary trend in the way scientific discovery has and is changing.  In the Empirical Science model, scientists gather data by direct observation and then analyze the data.  The empirical model was replaced with an Analytical Science model in which scientists build analytical models and make predictions based on those models.  Computational Science simulated analytical models to both validate the model (based on the model behavior) and to make predictions.  The new emerging paradigm is one if Informatics, in which data are captured by instruments or generated by models, the data are processed autonomously and the results stored in databases, then scientists mine the databases to make new discoveries.  This new paradigm gives the scientists access to and the ability to analyze greater amounts of data than he or she could ever collect individually or even as part of a research team and puts the focus on knowledge discovery and analysis rather than data collection.
The growth of data mining as a paradigm for discovery and analysis has been able to leverage economic trends in computers and information technology.  The effect of Moore’s Law [5] has led to decreases in the cost of storing and processing data, and also an increase in the total storage capacity of information systems.   Figure 1Error! Reference source not found. shows computer storage capacity shipped per year from 1988 to 2000 along with the growth curve predicted by Moore’s Law.   Figure 1 implies that the rate of growth in available computer storage has actually outpaced Moore’s law.  The implication for data mining is that the amount of data available for mining is growing at a similar pace.  It could also be argued that Moore’s Law is influential in decreasing the cost of acquiring data, since the cost of data acquisition equipment has decreased along with the cost of computers and processing hardware in general and has made more advanced sensors with integrated electronics and processing more affordable.
[image: image5.emf]1E+3

1E+4

1E+5

1E+6

1E+7

19881991199419972000

disk TB 

growth: 

112%/y

Moore's Law: 

58.7%/y

ExaByte

Disk TB Shipped per Year

1998 Disk Trend (Jim Porter) 

http://www.disktrend.com/pdf/portrpkg.pdf.

[image: image6.jpg]Another factor favoring the use of data mining techniques is the ability to connect multiple computers via the internet.   The internet facilitates the use of distributed databases as well as distributed processing.  Robert Metcalfe, has proposed that the value of a computer network grows as square of the number of network connections.  While others have disputed this relationship, for instance proposing that the value grows instead at a rate proportional to nlog(n), the concensus seems to be that the value of the network is greater than just the number of connections.  Data mining leverages this increase in value, and research in data mining is focusing on how to more efficiently mine larger databases across large numbers of machines or data warehouses.
Applications of Data Mining

Examples of data mining applications exist in many disciplines, including business, astronomy and ISHM.  Businesses have employed data mining techniques to identify techniques to lure and retain customers, reduce credit risks, and identify fraud.  For example,   Businesses have used data mining to identify correlations between items purchased by different types of customers and use this information to offer incentives and present suggested additional purchases to customers.  Another example from the business world is the use of data mining to trends among cell phone customers and identify customers that should be offered incentives in order to retain their business and customers for whom the loss of their business would actually save the company money (due to repeated calls for service, late payments, etc.) [21].
Data mining techniques are also finding application in the field of astronomy.  Astronomers are using data mining techniques to along with the World Wide Web to create a virtual observatory.  The premise is that most data is (or could be) online so the Internet can function as a virtual observatory.  Computer scientists at organizations such as Microsoft are working with astronomers to improve data mining techniques to facilitate the development of the World Wide Telescope Virtual Observatory [4,6,7].  Such a virtual telescope has several advantages over traditional astronomical instruments:
· It has data on every part of the sky, in every measured spectral band: optical, x-ray, radio, etc.
· It is up when you are up. 
· The “seeing” is always great (no working at night, no clouds, no Moon, etc.)

· It’s a smart telescope and contains links objects, data and literature on them.
Computer scientists are interested in the World Wide Telescope Virtual Observatory because of the challenges and opportunities it presents for the application of data mining.  Compared to business information, the astronomical data has no commercial value, is free from privacy concerns that would come with using data associated with customer accounts, and it is possible to freely share the results with others; hence, astronomical data is good for experimenting with data mining algorithms.  The data are real and well documented, is high-dimensional (with measured or known confidence intervals), and includes both spatial and temporal data.  The data comes from many different instruments from many different places and many different times.  Finally, and perhaps most importantly for challenging the state of the art in data mining capability, there is a lot of data - petabytes (1015bytes or 1 million Gigabytes).
Data mining has also been applied in ISHEM applications and offers possibilities for applications in many aspects of the ISHEM development and implementation process.  Figure 2 shows examples of the processes for developing and implementing ISHEM.  
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Figure 2: Example development and implementation processes for ISHEM systems.
The development process typically begins with an assessment of the system to determine components or subsystems that contribute to critical failure modes of the system or are otherwise key degraders of system performance, reliability, availability or affordability.  Once we have decided what components or subsystems need to be monitored, sensors are selected.  Physical models of the critical components are often used in model-based diagnostic and prognostic algorithms, along with data collected from healthy, working systems, systems already determined to have faults, or transitional failure data collected over the lifetime of a system.  Of these three types of data, transitional failure data is often the most difficult and expensive to obtain, requiring advance knowledge of failure before reaching criticality, sacrifice of potentially expensive components for seeded failures, or collection of large amounts of healthy data just to capture one transitional event.  Finally, diagnostic and prognostic algorithms are developed along with interfaces for users and to other information systems.
Implementation of ISHM systems typically requires sensing to collect raw data, feature extraction to reduce the raw data and convert it to features related to system health, fault detection and damage detection algorithms to analyze the data and detect damage.  Finally feature tracking and model comparison techniques may be used to predict the evolution of faults and remaining useful life of components.
Data mining can play a role in both the development and implementation of ISHM systems.  Figure 3 shows several areas where data mining can be applied in ISHM development.  During system development, data mining techniques can and are used in the analysis of system degraders to identify parts usage, the types of repairs performed and information on maintenance and logistics impacts of component failures.  Data mining techniques can also be used to analyze and select candidate sensors based on sensor reliability, sensor history of providing indicators of faults or failures, or reports of no-fault-found associated with particular sensor readings.  Sensor reliability information can also be used in diagnostic and prognostic algorithms to differentiate between component faults and sensor faults – in the most simplistic implementation providing a probabilistic weight between a possible sensor faults or component fault.  
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Figure 3: Application of data mining techniques in ISHM system development.

Data-driven methods use data mining and machine learning techniques to learn a model of system behavior from historic data.  Data-driven methods can be used for fault detection, fault diagnosis and prognosis. Many data driven fault detection, diagnostic and prognostic applications have used neural networks to lean and execute system models, however other pattern recognition can and have also been applied.  One of the keys to enabling any of these data driven approaches is access to the historical data [8].  Where ISHEM can leverage developments from other data mining applications is the mining of data from databases of maintenance records, repair reports, parts orders and operational data that span multiple systems across organizational units or fleets of systems across the enterprise.  This is particularly useful where you have large fleets of assets, such as planes or missiles to populate the data bases.  The challenge for applications to smaller numbers of assets is collecting enough data to provide a statistically significant representation of the trends in the system.  This is why it is important in applications such as the shuttle or the planned Crew Exploration Vehicle to collect data from all phases of development, preparation, checkout, operation and recovery.
Wu et al. applied data mining techniques to develop algorithms for evaluating the condition of electrical transformers [9].  Data mining algorithms were applied to a data warehouse containing off-line testing results, operational data, fault records, and weather data.  Access to such diverse data allowed an improvement in algorithm performance and reduction in false alarms due to changes in weather and other operating conditions.  Another example where data mining techniques have been employed in an operational ISHM system is for the monitoring of diesel-electric railroad locomotives [10].  Data mining techniques are particular applicable to this application since a large database of historical fault logs and repair history is available for locomotives.  A condition-based maintenance system for the locomotives has been developed and in use since the mid 1990s.  
Data mining can also play a role in the operation of ISHM systems both in real-time, on-board systems, and in off-line systems.   Figure 4 shows the use of data mining techniques to develop and assist in the application of detection, diagnostic and prognostic algorithms and to query historic load history data to determine the anticipated loads on the system during the planned mission and planned maneuvers or operations.  Data mining techniques have long been used to develop fault detection and diagnostic algorithms based on historic data.  In both on-line and off-line systems, data mining techniques can also be used to identify changes in relationships between parameters to update fault detection and diagnosis algorithms as systems change or as more information on system behavior becomes available (either from the target platform or from related systems).  One of the biggest challenges in the development of prognostic algorithms is access to sufficient data to model the temporal characteristics of faults as they progress from inception to the effective end of useful life for the system.  Even with application of data mining techniques, there still may be insufficient data to accurately model fault progression where there is a small population of like systems (e.g. the space shuttle, Crew Exploration Vehicle, early deployment of the Joint Strike Fighter, etc.).  In cases such as this, where there are only a few instances of the target system, it may be possible to develop transformation models that relate anticipated behavior of particular components or subsystems in the target system with the behavior of similar components or subsystems in other systems (e.g. a similar model turbine engine used in commercial and military applications).
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Figure 4: Application of data mining in diagnostics and prognostics.

In systems where the same maneuvers or sequences of operations are required over and over, predicting the anticipated demands on the system may be straight forward, but in systems where the mission requirements differ from time to time, data mining techniques can be used to build relational models between the mission profile and the predicted demands.  For routine maneuvers, the system designers typically have dynamic models of the system used in the system design that can be used to predict anticipated loads for prognostic health monitoring.  For operational modes that were not modeled as part of the original system design, or which have emerged as a result of changes in the system’s operational profile, data mining techniques may be used to collect the relevant data to build the necessary relational models of the system inputs and effects to predict future loads on critical components during similar maneuvers.
An example of where data mining techniques have been used in the development of prognostic or predictive systems is forecasting trends in parts obsolescence.  Most electronic part obsolescence forecasting algorithms are based on models for the part's lifecycle. These models are generally good for determining the current state of availability for a part, but are not so good at predicting future obsolescence.  Sandborn and his associates have demonstrated the use of data mining techniques to augment commercial obsolescence data bases and improve their predictive capability using data mining techniques [11].   Commercial companies are using data mining tools to adapt and improve performance in prognostic health management systems a wide range of systems.  Data mining tools are used to analyze system performance data and extract new knowledge about system behaviors and detect anomalies.  The data mining tools look for patterns in the data that can be linked to faults.  Identified patterns that cannot be explained are treated as anomalies and tracked to monitor their development [12].
Future Challenges

A recent issue of the IEEE Signal Processing Magazine focused on recent research in data mining and identified key challenges in the field [2].  These included

· Secure sensor information management and mining,
· New approaches to model identification,
· Data alignment, and
· New classification algorithms.
The same data and information used by the health management system can also provide valuable information to competitors in business applications or adversaries in military applications.  Consequently, the security of sensor data and system health information is an important issue [13].  While the security and proprietary nature of this information has always been a concern, the perception is that it is more difficult to control access to the information when it is distributed over a network as opposed to being limited to an embedded measurement system located on a single asset.  Since one of the advantages of the use of data mining tools is the analysis of data across assets and information management systems, the distributed nature of the data bases and data warehouses raises additional security concerns.  These same concerns apply in non-ISHM data mining applications as well such as privacy concerns in consumer financial records, personal medical records, or sales figures for businesses.
Concerns about information security have an impact on real-time processing of data.  While data bases and information systems can be protected by layers of security, these layers of security may also slow access to the information.  Examples include secure login, the use of virtual private networks, and data encryption at either the sensor or within databases.  The approach used, depends on the type of data access required.  Direct access to the data streams required real-time management of data security; access to stored data can use traditional security measures.  Security requirement may also vary depending on whether the data is raw (unprocessed) or aggregated (processed).  In military applications, raw and aggregated data often have different levels of security classification.  For example, raw data from a turbine engine may be unclassified, but once the data is processed to provide information about the performance of a particular military asset, there are likely to be restrictions placed on the distribution of the information or the information may become classified.  In business applications, sales figures may be considered public information, but profit data or other information correlated with business operations may be considered proprietary.

Another related security concern is the integrity and accuracy of data.  While businesses and the military want to keep outsiders from accessing their data to learn about the status of their systems and operations, another potential problem is someone accessing and altering data to adversely influence their decisions that are based on the data.  Hence, some form of digital paper trail, digital watermarking, or other form of authorization is desired to validate the data.  The use of such digital paper trails and authentication procedures can provide validation of the data without associating it with the actual source, thereby maintaining the privacy of the owners or source of the data.  This could be a great benefit to the ISHEM community since it could allow for the sharing of machinery health and performance data among competitors and between contractors and the government, without revealing proprietary information on system design.  The techniques used to flag or identify data that may have been tampered with or otherwise altered may also be useful for identifying data incorrectly entered by operators or maintainers or resulting from faulty sensors or systems.  Anomaly detection is an active field of research in ISHM, but the application of anomaly detection across larger data sets may provide additional opportunities to detect “bad” data.
Other challenging issues in the development of new data mining techniques and applications include [14-17]:

· Model development – such as the use of adaptive filters and genetic algorithms

· Data alignment – enabling comparisons of data sets collected at different time (temporal alignment) or at different locations (spatial alignment)

· Classification – develop the ability to compare responses that vary due to different inputs and separate variations from common responses

· Standardization – develop open standards to facilitate access to data.

Classification research is exploring new kernel-based methods that use support vector machines - nonlinear versions of familiar linear techniques such as linear discrimination, principal component analysis or least squares regression.   Graph theoretic approaches have been applied to temporal recordings to identify patterns in signal responses.  These techniques have been applied to multichannel recordings of brain wave responses to different stimuli, but also have application in the analysis of the response of electrical and mechanical systems to repeated operations.
The issue of data standardization is important to improve access to data and to avoid the development of stovepipe systems where a single vendor must provide everything from the sensor to the enterprise-level information system because of the use of proprietary and closed data and information formats.  There has been an ongoing effort in the ISHM community to adopt open standards for condition based maintenance information.  These efforts have lead to the Open Systems Architecture for Condition Based Maintenance (OSACBM) [18].  The OSACBM initiative developed a seven-layer model for a generic health monitoring system and developed high-level descriptions of the input and output requirements for each layer.  The architecture is designed to allow the use of middleware software applications to access and communicate between the different layers.  The OSACBM initiative has been expanded under the oversight of the Machinery Information Management Open Systems Alliance (MIMOSA) to include Enterprise Application Integration (OSA-EAI) [19].  This has important implications for the use of data mining as a tool for ISHEM since MIMOSA’s original emphasis was on the development of open standards for machinery management, which included the development of open standards and schema for data bases to store and manage machinery and industrial asset information.   

Figure 5 shows different standards developed by MIMOSA for machinery and logistics management.  The standards fall into three areas: reliability management, maintenance management and asset health and usage management.  The elements of the open systems architecture for enterprise application integration are shown in the bottom portion of the wheel.  The include standards for modules for data manipulation, alarm and event state detection, diagnostic health assessment, prognostic assessment, and advisory generation.  There also exist MIMOSA data base schemas for describing asset location, configuration and usage.

Figure 5:  MIMOSA open system architectures for machinery health management.
One of the biggest future challenges for the use of data mining in ISHEM may be the integration with other enterprise-level information systems that need access to the same information.  In the future, platforms will require the ability to pull information and learn from multiple diverse data sources.  These include manufacturing data, operational data, maintenance data, design data, and maintenance experts as shown in Figure 6.  Examples of the different types of data are shown in Table 1.
Table 1:  Examples or enterprise-level information for ISHEM data mining applications.

	· Manufacturing

· Parts and lot number 

· Test results 

· Component signatures

· Operational 

· Fault codes 

· System performance

· Component performance 

· Operational context parameters


	· Maintenance 

· Procedures 

· actions taken 

· Parts ordered / replaced 

· Design 

· Physics of Failure Models 

· Sensor Capabilities 

· Initial Diagnostics and prognostics 

· Maintenance Experts

· Procedures 

· Diagnostics 
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Figure 6:  Access to system health information is required by many different customers for many different uses.
There is a general need for greater integration of ISHEM capability into control systems.  Examples of where greater integration of control and health monitoring include the use of the control system to excite the system for assessing system health, the correlation of control inputs with sensor readings used to determine health, and the use of information from the health monitoring system in the control loop to correct for control system sensor degradation.  As systems become more autonomous, integration of ISHEM capability into the control system will help compensate for the absence of human operators whose job has traditionally included providing feedback between the control and health monitoring systems [1].  One of the things that is needed to realize self-aware systems is a new way of representing systems and systems of systems.  The traditional way of representing systems assumes those units are independent and identically distributed.  Modeling units and components based on their features and relationships makes it easier to interpret data across units and understand the impact and importance of data from one unit to the operation of other units.  This will facilitate the implementation of what has been called a collective mind that can tie together the collective intelligence and experience (data) across a large collection of systems [20].
Conclusions

Data mining is the discovery of information and relationships from data.  The techniques used in data mining – pattern recognition, data fusion, modeling – are already standard tools used in the development of systems for monitoring and managing the health of complex systems.  The difference is that data mining techniques are targeted at analyzing large data sets located on either single, large data storage computers or distributed across a network.  While single, dedicated health management systems may store and access megabytes and gigabytes of data, data mining applications often work on terabytes and petabytes of information.  Scientists and engineers from computer science, signal processing, business, and the life sciences are developing new techniques and algorithms for efficiently analyzing and mining data from these large data warehouses.

As the price of the hardware needed to implement health monitoring systems continues to decrease, and the demand for the information available from ISHEM continues to increase, the key challenges in ISHEM start to include information management in addition to the ability to diagnose and predict the evolution of faults.  Data mining techniques can help in the management of the information mountain generated by ISHM system, but can also help in the traditional challenges of fault diagnosis and prediction by facilitating access to larger sets of data, across multiple platforms and systems of systems.  One of the limitations in the development of pattern recognition and classification systems has always been access to more data.  Adopting the practices being developed for data mining in business and elsewhere, should provide access to expanded data for ISHEM system development.  One of the key challenges, however, will be to insure the security and authenticity of the data, to protect proprietary information and maintain data classification, and access to the data (once authorized) through the adoption of open standards and data architectures.
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Figure � SEQ Figure \* ARABIC �1�:  The grown in computer storage compared to the rate of growth predicted by Moore's Law.





