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Abstract

The Environmental Control and Life Support (ECLS) system of a space vehicle or habitat is respon-
sible for maintaining a livable environment for human crew members. Depending on the duration of the
mission, ECLS systems can vary from a set of simple subsystems to a set of complex interacting systems.
The high importance of ECLS systems on manned space vehicles and surface habitats being planned on
the Moon and Mars along with the need to operate them continuously in a safe, reliable, and possibly au-
tonomous manner while ensuring very efficient utilization of all resources will require careful monitoring
and integrated control of the system. As NASA begins to work toward longer and more distant missions,
the complexity of this task will escalate. This paper adopts an integrated system health management
focus and uses this to establish the unique requirements of life support systems with respect to monitor-
ing and control. The different components of a life support systems are discussed, including Advanced
Life Support Systems (ALSS) that are designed to operate in a closed loop by regenerating and recycling
consumables to reduce launch mass. We present a high-level ISHM architecture for life support and some
recent results in implementing the architecture. Finally, the life support monitoring and control issues
for the Crew Exploration Vehicle (CEV) and for lunar and martian habitats are discussed and compared.

1 Introduction

Environmental Control and Life Support (ECLS) systems are among the most vital of all manned spacecraft
systems. They are designed to sustain life under the harshest environmental conditions in space and on
lunar and planetary surfaces that are very different from what we experience on Earth. Thus, the reliability,
dependability, and efficient operation of ECLS systems is vital to the health and survival of the crew, and
to the overall success of the mission. Depending on the duration and the distance (from Earth) of the
mission, ECLS systems can vary greatly in complexity depending on the length of the manned missions.
Some of the complexity can be attributed to the highly nonlinear behavior of the individual subsystems
that make up the ECLS. The complexity is further magnified by the number of interacting subsystems that
make up the system, and the fact that these systems have to operate with limited resources in unpredictable
environments. The simpler ECLS systems that are currently used for the shorter missions that operate close
to the Earth are open loop, i.e., all of the essential consumables, such as oxygen, water, and food, are stored
and then released into the astronaut working and living areas to ensure these spaces are habitable, and all of
the by-products and waste generated, such as carbon dioxide, urine, and solid waste, are removed from the
astronaut living areas and either dumped or stored for later disposal. As the duration of the missions (e.g.,
Space Station) and distance from Earth increase (e.g., lunar and Mars missions), the corresponding ECLS
systems (often called Advanced Life Support (ALS) systems) are designed to be closed loop and regenerative,
i.e., the goal is to reclaim or regenerate the essential consumables from the waste products continually so
that the total amount of resources required for the duration of the mission is greatly reduced. In addition
to conserving resources, this approach has the big advantage that it can significantly reduce launch weight,
a very important factor in determining the feasibility and cost of the overall mission. To further elaborate,
two reasons why closed loop systems are essential for extended human space flight are:
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Figure 1: A proposed ISHM architecture for life support systems.

1. the amount of consumable resources required for a long mission (air, water, and food) would far exceed
the payload that current propulsion technology is capable of launching; and

2. resupply of resources during the mission is not a feasible alternative.

Autonomy (or at least human-supported autonomy) for ECLS (and ALS) systems, which have to operate
continuously at high efficiency to ensure safety, keep energy consumption low, and prevent loses in con-
sumables is also an important consideration in such systems. There is no doubt that as mission durations
and distances increase, managing of complex ECLS systems in a safe and reliable manner using current
technology and methodologies will become very hard to achieve.

Integrated Systems Health Management (ISHM) refers to a collection of techniques that provide the
functionality for maintaining system health and performance over the life of a system. This is illustrated
in Figure 1. ISHM requires an integrated approach to monitoring, control, fault diagnosis, adaptation, and
maintenance. In all systems that operate for long periods, components in the system are bound to suffer
degradations in performance, and sometimes fail. Therefore, for autonomous and human-in-the-loop systems,
ISHM schemes must have the ability to detect these degradations from deviations in system behavior, analyze
performance and resource usage, and use this information to determine when maintenance is necessary to
preserve system functionality and minimize downtime.

The two interacting loops in Figure 1 illustrate this concept. The lower loop includes the traditional
monitoring, diagnosis, and feedback control systems. The introduction of a supervisory controller in this
loop enables a choice between autonomous fault-adaptive control approaches to mitigate or compensate for
the effects of degradations and faults, and the activation of the second loop, where monitors inform the
human operators or crew about the status of the system as a whole, and the humans make decisions on when
to schedule maintenance operations, and, in some cases, to alter the goals of the mission, because the loss
of functionality and/or resources will not allow for previous goals to be accomplished in a safe manner.

Comprehensive ISHM must involve interacting multiple control strategies. At the fast time scales, robust
control can be employed to make the functionality of the system independent of the disturbance to the
system [32]. At this level, the degradations and fault magnitudes are small, and a robust controller can
compensate for discrepancies without noticeable changes in system behavior. The field of robust control is
well developed, and capabilities and limitations of these approaches are well understood [32]. At the next
level, Fault Adaptive Control (FAC) [9] goes beyond disturbance handling by changing the system control
strategy to adapt the system structure and/or functionality to mitigate the fault effects. Examples of the
FAC approach are:
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1. model-predictive control techniques, where diagnosis schemes are applied to compute parameter value
changes due to faults and degradations, and update the system models used for online control [1]; and

2. supervisory schemes for reconfiguring system structure to nullify fault effects [11].

ISHM for ECLS systems, but especially for ALS systems, poses several significant and unique issues that
include:

• Interacting subsystems: Life support systems contain many interacting subsystems. As described
in the next section, air, water, food, and waste systems all generate and consume shared resources,
such as electrical power, water, and oxygen. Life support systems also cover a variety of domains, from
physiological and biological processes to physical processes that include fluid, mechanical, thermal,
electrical, and pneumatic systems.

• Sensing: Sensing for life support systems is particularly challenging because of the wide variety of
sensors required. Moreover, current state of the art sensors in these domains, often produce noisy
output []. Biological elements that include humans, are difficult to monitor. In-line sensing of water
and air quality is difficult, and the current state-of-the-art often requires that samples be analyzed
offline in a laboratory to get reliable estimates. Besides, the different subsystems operate at very
different rates, so monitoring and data analysis schemes have to accommodate multi-rate analysis.

• Decision-making: There are several decision-making loops in integrated health management for life
support systems (see Figure 1). There are short-term loops that operate in continuous time that are
involved in regulating and feedback control of the life support processes. Intermediate loops respond to
events (typically fault events) and deal with fault-adaptive control and reconfiguration decisions. The
long-duration upper loop usually includes humans as decision makers aided by software tools that are
involved in monitoring and making duration of mission predictions on scarce, consumable resources.
To build effective ISHM systems, these loops must be integrated.

• Human involvement: Humans are not only a part of the system in that they produce and consume
life support resources, but they may need to be a part of the decision-making process at all levels, i.e.,
in both the lower and upper loops in Figure 1. This places significant requirements on an integrated
health management system – requirements that may not be necessary in other domains.

This paper presents an overview of integrated health management schemes for ECLS systems. We begin
by describing the unique attributes of an ECLS system. We do this by looking at the various modules
that comprise an ECLS system and the connections between these modules. Next we discuss modeling of
life support systems, which is at the core of our ISHM approach. Then we present a high-level integrated
health management architecture for ECLS systems and describe some recent results using the architecture.
Some of this work is futuristic, however, the diagnostic techniques that we present have already been applied
to a number of real-life applications [19, 7]. We demonstrate the effectiveness of the diagnostic techniques
by showing results we have obtained for degradation and fault analysis in aircraft fuel transfer systems.
Finally, we look at future integrated health management needs for life support systems including the Crew
Exploration Vehicle (CEV) and Lunar and Martian habitats.

1.1 Life support systems

Figure 2 shows a complete and connected ECLS system. Simpler ECLS systems for short missions will not
have several of these components, and they may not operate in a completely connected closed loop form.
For example, there may be no biomass or food processor module in a two week manned mission of the CEV,
only a food store with sufficient food to last the astronauts for the duration of the mission. A more complete,
regenerative system shown in the figure is essential for long duration human missions, such as trip to the
surface of Mars, which would last 15-18 months and have limited resupply opportunities. Typically, most
missions allocate thin margins for mass, energy and buffers for each system of the spacecraft, and this requires
optimization during the design phase, and tight control during operations to keep the systems within their
desired range of behavior, i.e., providing the necessary output while ensuring resource consumption does not
exceed pre-specified limits. Since advanced life support systems have many interconnected subsystems all of
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Figure 2: The various subsystems and recovery systems (RS) and their connections that comprise an envi-
ronmental control and life support system.

which share resources and interact in predictable and unpredictable ways, the design and control optimization
tasks become quite difficult, especially if one has to consider the dynamic behavior of the system. In other
work [1] we have shown that using dynamic models (as opposed to static models) during the design phase and
integrating controller and system design, leads to much smaller buffer sizes (therefore, Equivalent Systems
Mass) for the ECLS system.

In this section, we briefly review the different components of an environmental control and life support
system. We briefly describe the various, interacting subsystems of ALS using Figure 2 as a reference config-
uration. While each subsystem can be self-contained subsystems also interact in terms of sharing different
resources. This section provides sufficient background for readers to become aware of issues that are unique
to ISHM design of ECLS systems. For detailed documentation on advanced life support systems see [31] or
go to: http://advlifesupport.jsc.nasa.gov.

One of the key issues that one has to take into account is that the human crew are very much a part of
the physical and biological processes that define the life support systems, and at the same time they play
an important role in controlling the operations and managing the working of the system. When developing
autonomy by automating the ISHM, control, and resource management functions, interesting issues arise
in the interactions between the humans in the control loop and autonomous systems. These issues are
discussed in other papers [1, 5], However, we do take into account biological models of the crew and crew
activity models as part of the overall ECLSS system.

1.1.1 Crew

The crew as a subsystem places demands on the life support system for various resources necessary to sustain
life. Equations that capture human consumption models are available in many papers (e.g., [15]). These
models are parameterized by the number, gender, age and weight of the crew and their typical activity
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profiles for the particular mission. An integrated monitoring and control system for the ECLS system would
track crew resource use(oxygen, water, food, etc.) over time. This would require a variety of sensors, such as
those that monitor air flow in and out of the crew living and working chambers, its contents (percentage of
oxygen and carbon dioxide, water vapor, and trace contaminants), and its pressure and temperature, while at
the same time monitoring the stores of the consumable resources associated with the air, such as the amount
of oxygen, and the amount of chemical filters for available for carbon dioxide removal. In a closed loop
system, there will be additional subsystems, which replenish the consumable resources, and these processes
have to be monitored so that the control system can maintain the proper balance between consumption and
replenishment, while ensuring that other resource constraints, such as available power, are not violated. A
more advanced life support controller may take into account the biological crew models and their activities,
and provide a tool for scheduling crew activities and accommodating crew requests in a way that resource
constraints are not violated [5].

1.1.2 Water

The water recovery subsystem converts dirty and waste water into potable and grey water (i.e., water
that can be used for washing but not drinking). An example water recovery system from a recent NASA
JSC test consists of four subsystems that process the water[10]. The biological water processing (BWP)
subsystem removes organic compounds. Then the water passes to a reverse osmosis (RO) subsystem, which
removes inorganic and particulate matter by pushing the water through a membrane. About 85% of the
dirty water passing through the RO subsystem is converted into grey water. The 15% of water remaining
from the RO (called brine) is passed to the air evaporation subsystem (AES), which recovers the rest by
an evaporation/condensation process. These two streams of grey water (from the RO and the AES) are
combined and passed through a post-processing subsystem (PPS) to remove bacterial traces and generate
potable water. This system can run in various configurations. For example, the BWP can operate with
the pump running at various speeds. The RO is more sophisticated in that it has four modes of operation:
(i) a primary mode, where the water circulates on a longer path, (ii) a secondary mode where the water
path is shortened so it speeds up and pushes harder against the membrane, (iii) a purge mode, where the
brine is transferred to the AES system, and (iv) a clean mode, where the membrane is cleaned of particulate
matter by creating a reverse flow through the membrane. The different modes of operation help the system
maintain desired levels of throughput without exceeding energy consumption constraints. The WRS has an
external controller that can turn on or off various subsystems (e.g., if needed all the water can be passed
through the AES, but then the purification process has a high energy cost). In other work, we have designed
sophisticated model-predictive controllers that have fault-adaptive properties, and they operate to maintain
a tradeoff between energy consumption, throughput, and water quality.

1.1.3 Air

The air subsystem takes in exhalant carbon dioxide CO2 and produces oxygen O2 as long as there is sufficient
energy being provided to the system. An example Air Revitalization System (ARS) from a test at NASA
JSC [22] consists of three interacting air subsystems: the Carbon Dioxide Removal System (CRS) in which
CO2 is removed from the air stream; the Carbon Dioxide Reduction Assembly (CDRA), which uses water
to break CO2 down into methane (CH4) and water (H2O); and the Oxygen Generation System (OGS) in
which O2 is added to the air stream by breaking water down into hydrogen and oxygen. It is important to
note that both the removal of CO2 and the addition of O2 are required for human survival.

1.1.4 Biomass

The biomass subsystem is where crops are grown. It consumes water, energy (light) and CO2 and produces
biomass, which can be turned into food, and O2. Models of crop growth and crop resource consumption can
be found in [17]. This subsystem is optional for all but the longest missions as food can be carried on-board
fairly cheaply if it is dehydrated. However, many mid-term missions could benefit from salad crops (lettuce,
tomatoes, carrots) to provide the psychological benefits of eating fresh food. Crops can also be viewed as
redundant air and water processors. When one considers the entire ALS configuration, one notes that the
time constants involved in the biomass system vary greatly from the air and water systems.
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1.1.5 Food processing

Before biomass can be consumed by the crew it must be converted to food. The input to the food processing
subsystem is biomass, energy, and crew time, and the output is food and solid waste. Unless significant
automation is provided, this is a labor intensive process.

1.1.6 Waste

The waste subsystem consumes energy, O2 and solid waste and produces CO2. Some tests have used an
incinerator to burn solid waste [28]. There are many other forms of waste recycling besides incineration that
might be used. Most short duration missions will simply dispose of waste by leaving it behind or packaging
it for return back to earth.

1.1.7 Power

While not just a part of the life support system, power is a common thread that enables all of the life support
subsystems. It also one of the factors that defines the interactions among these subsystems. An integrated
monitoring and control system for ECLS will need to monitor and control power consumption to both stay
within power budgets and react to reductions in available power.

2 Modeling

We adopt a model-based approach to ISHM The basic idea is that well-constructed models capture the
relationships between the variables in the system, and between variables and components. These relation-
ships form the basis for designing powerful to diagnosis, fault-adaptive control, and prognosis in a common
framework [6].

In its basic form, a model is an executable software representation of a system that can be used to
simulate system behavior. A number of different modeling forms for physical processes have been proposed
by design engineers, operations specialists, and maintenance personnel. Integrated health management
systems for most complex systems, such as the ALS, requires models for analysis of dynamic system behavior
at different levels of detail. Attempting to build a comprehensive detailed first-principles model of the
system is very difficult and time consuming, and analysis with that kind of a model will most likely be
computationally intractable. Therefore, is important to build models at the right level of detail to support
the tasks for which they are to be used for. For example, a model for diagnosis should have an explicit
representation for the components that are under diagnostic scrutiny. Models for diagnosis and control also
need to capture the dynamic behaviors that influence system functionality and performance. On the other
hand, tracking the interactions between subsystems and tracking of system performance may be accomplished
by higher level functional models that focus on interactions that are governed by material balance, energy
transfer, and resource consumption, but these models do not need to include details of individual component
dynamics. To develop ISHM applications for the ALS, we build the two kinds of models: (i) those that
model subsystem behavior by composing component dynamic behaviors using principles of enegy transfer
and energy conservation [18, 24], and (ii) higher level models that define subsystem interactions in terms of
material and energy balance and resource consumption [21].

From another perspective, these models correspond to ones that apply to the control loop, and the ones
that apply to the decision-making loop in Figure 1. Our approach to building models for diagnosis and control
is to develop physics-based component models using the bond graph [18] and hybrid bond graphs [24] for
continuous and hybrid system behaviors, respectively. The decision-making loop models are resource-based
and operate as discrete-time and discrete-event models using very coarse time scales [21]. We discuss our
approach to the two modeling paradigms next.

2.1 Physics-based modeling

We develop our physics-based component models and compose them into subsystem and system models us-
ing well-defined component interfaces defined by our modeling environment toolset [19, 23, 30], The toolset

6



includes component-oriented model libraries of physical processes. Each component has well-designed inter-
faces to allow for construction of subsystem and system-level models by composition. The toolset also allows
for designing sensor and actuator interfaces for plant models, and software-based controllers for managing
plant behavior.

Modeling physical system dynamics is based on bond graphs, a methodology that captures multi-domain
system dynamics into an integrated, homogeneous, energy-based compositional modeling framework [18].
The Hybrid Bond Graph (HBG) paradigm is an extension that allows discrete switching between modes of
behavior to capture both continuous and discrete behaviors of a system [24]. The discrete changes may be
attributed to control actions that turn system components on and off or change system parameter settings,
and autonomous changes that flip on-off switches when state variables of the system cross pre-specified
threshold values. In a HBG, mode changes are implemented by switching bond graph junctions off and
on using signals that are computed by parameterized decision functions. Nonlinear systems are modeled
by components that have time-varying parameters, i.e., the parameter values are defined by modulation
functions, whose arguments are again system variables. Parameters for both the decision and modulation
functions can be system variables and external signals.

The FACT toolset includes translators that can generate simulation test beds for diagnosis and control
applications [23, 4]. Convenient user interfaces allow the user to enter faults with pre-defined profiles at
specific times into the simulation, and the fault data generated can be used for testing diagnosis and health
management routines.

Figures 3 and 4 illustrate the component-oriented models for an air revitalization system (ARS) and a
bio-regenerative water recovery system (WRS) system, respectively. The WRS system model corresponds to
the physical system test-bed described in [10]. The ARS model is a preliminary model of an advanced ARS
that incorporates CO2 removal and reduction and O2 generation.

The models capture the main sub-systems as components, and provide interfaces (ports) for both actuator
and sensor signals, and energy flows. For example, the principal energy flows through the WRS are potable
and waste water flows (grey water is not explicitly captured in this model). The component model of the
reverse osmosis (RO) subsystem is illustrated in Figure 5. The physical system modeling technique and
diagnosis experiments for this subsystem were reported previously [7].

Hierarchical refinement of the component models to the lowest level results in HBG model fragments
that are drawn from a library of standard (e.g., pumps, pipes, and valves) as well as custom components
for this application domain. The HBG model of the membrane, a custom component of the RO subsystem,
is illustrated in Figure 6. This lumped parameter model adjusts the flow resistance through the membrane
based on the computed conductivity value of the water in the recirculation loop of the system

Simulation tools are essential for developing the right models of complex systems. Through an iterative
process, system behavior generated by simulating the models allows the the designer to refine the models by
comparing against actual system measurements, and then using parameter estimation techniques to improve
model accuracy. The simulation environment provides added functionality in that it allows modelers to insert
parametric faults into system components at user-specified times during system operation, with a chosen
fault profile and fault magnitude. This provides a powerful tool for testing fault-adaptive performance
of the system in a simulation environment. The model interpreter constructs an abstract block diagram
representation of the HBG model, and then synthesizes a MATLAB/Simulink representation for the hybrid
model.

A Graphical User Interface allows easy scenario construction. The simulation consists of two main
components: (i) the Simulink block diagram, and (ii) a causality assignment (SCAP) algorithm. These
two components contain all the information described in the HBG as well as the Input/Output aspect
information of the model. HBG components are implemented as a library of Simulink blocks. The Simulink
model preserves the component-based hierarchy of the system model. The simulation models generated by
the interpreter have formed the basis for running most of the ISHM studies described in this paper.

2.2 Resource-based modeling

A more abstract view of a life support system looks upon its subsystems as consumers of some resources and
producers of other resources and waste products. This includes the human elements of the system, who are
modeled as biological systems that consume oxygen, water and food depending on their metabolism and the
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Figure 3: Component-oriented model of an Air Revitalization System.
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Figure 4: Component-oriented model of a Water Recovery System.
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RO subsystem: Conductivity calculation decoupled from system 
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activities (see Section 1.1.1). Subsystems of the ALS are modeled as producers and consumers of resources.
The underlying technologies, the individual component dynamics and the particular configuration of valves,
pumps, blowers, and other components within the subsystem is unimportant for these kinds of analyses,
and, therefore, not included in the models.

Over the last several years NASA JSC has been developing a resource-based model of life support systems
called BioSim [20, 21]. BioSim consists of all of the life support components described in Section 1.1 and
shown in Figure 2. Readers interested in experimenting with monitoring or controlling life support systems
can obtain the simulation from http://www.traclabs.com/biosim.

BioSim is a discrete event simulation with a variable time step that is currently set to one hour. In
simulation, each time step is mapped onto a simulation “tick.” Each module has a local counter that
advances that module’s state from t to t + 1, i.e., advances its state one hour in the default setting. While
each module is run sequentially, data is cached so that all modules use data generated from the previous
tick, which effectively makes all modules run in parallel.

When modeling life support systems we need to consider nominal and off-nominal situations. BioSim
models malfunctions in each module and has an application programmer’s interface (API) to introduce
those malfunctions at any time in the simulation. Each module can have malfunctions of varying degrees of
severity and temporal length. For simplicity, the malfunctions have been divided into two categories: length
(permanent and temporary) and severity (low, medium and high). These malfunctions are interpreted
differently by each module. For example, a temporary but severe malfunction in the potable water store
would be a large water leak. A permanent but low severity malfunction in the power production module
would be the loss of a small part of a solar array.

BioSim also models stochastic processes. Because real life support systems are not deterministic, neither
is the simulation. For example, the exact amount of air that is breathed in by a crew member is different
with every breath. This is modeled using a Gaussian function with adjustable parameters. The Gaussian
can be set to zero to produce a deterministic simulation.
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3 System architecture

An ISHM architecture for life support systems will require many interacting components. Figure 1 shows a
potential architecture for an ISHM system for life support. Parts of this architecture have been implemented
in various life support systems over the past ten years. We will describe each component of the architecture
in turn and discuss experimental results.

3.1 Behavior monitors and diagnoser

Model-based approaches to fault detection, isolation and identification (FDII) include many different ap-
proaches that have been developed over the past decades [12]. Our focus in this area has been on physical
system component faults, rather than sensor or actuator faults. These faults result in transient behavior in
the system response, and analysis of the transient is at the core of the fault isolation algorithms[19, 26, 27].

Our approach to diagnosis explicitly separates the fault detection task from the fault isolation and identi-
fication tasks. A numeric observer is realized using an extended Kalman filter-based [14] state estimator [19].
Fault detection is realized through a sliding window hypothesis testing scheme in the time domain using a
bank of Z-test detectors [8], and in the time-frequency domain [23] using an energy-based scheme. The
energy-based scheme explicitly utilizes the properties of the energy in a fault transient response to design
a statistical test that is tuned to trade sensitivity to faults versus likely false alarms. For faults that do
not manifest with distinctive transient behaviors, i.e., incipient or degradation faults, our work exploits the
results in the literature on change detection to design fault detection filters that are based on likelihood ratio
derived techniques [16].

Fault isolation and identification is implemented as a two-stage process. The first stage uses an qualitative
fault isolation engine that operates on a symbolic transformation of the residual [25, 26]. This generates
a potential candidate list and fault signatures that predict measurement fault dynamics after the fault
occurrence. As time progresses and additional measurement deviations are observed, the fault isolation
scheme removes spurious candidates from that initial candidate set. Qualitative symbolic analysis is fast
but the loss of information in the transformation can result in multiple candidates. At an appropriate time,
the system switches from fault isolation to fault identification [8, 26]. Fault identification uses a search
method to perform quantitative parameter estimation with multiple candidate hypotheses. Once reliable
estimates are obtained, a minimum square error technique is employed to determine the unique candidate
and its estimated parameter value [8]. The fault isolation and identification scheme, initially developed for
continuous systems, has been extended to diagnosis of hybrid systems [26]. We illustrate the application of
our fault diagnosis scheme for two realistic applications: (i) detection, isolation, and identification of faults
and degradation in fuel transfer systems of fighter aircraft (an aerospace application), and (ii) detection,
isolation, and identification of faults in the RO system of the water system described in Section 1.1.2 [7].
The two projects used actual data provided by Boeing and a NASA JSC RO system test, respectively.

3.1.1 Diagnosis of component faults in the Fuel Transfer System

The generic fuel transfer system for fighter aircraft is illustrated in Figure 7. The system is designed to
provide an uninterrupted supply of fuel at a constant rate to the aircraft engines while maintaining the
center of gravity of the aircraft. The system is symmetrically divided into left and right parts (top and
bottom in the schematic). The four supply tanks (Left Wing (LWT), Right Wing (RWT), Left Transfer
(LTT), and Right Transfer (RTT)) are full initially, and so are the two receiving tanks (Left Feed (LFT)
and Right Feed (RFT)) that directly feed the engine. During engine operation, fuel is transferred from the
supply tanks through a common manifold to the two feed tanks in a sequence determined by the fuel system
controller. The controller generates on/off signals for the pumps in the supply tanks and the valves in the
pipes to achieve different flow configurations.

Table 1 illustrates the results of a set of diagnosis experiments that we ran for a set of faults using the
HBG scheme. In the experiments, we varied the fault size and amount of measurement noise in the signal.
In designing the experiments, we had to set parameters for the Kalman filter, fault detector, and symbol
generator. A high fidelity simulator (from Boeing PhantomWorks in St. Louis, MO) was used to generate
the data for the experimental runs, and measurement noise was added to the simulated data. Ten runs
were conducted for each noise level and fault size, and the mean values of the detection and isolation times,
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Figure 7: Fuel Transfer System of fighter aircraft.

Faults Performance Parameters

Fault
Type

Fault
Size

Fault Detection Fault Isolation Final Candidate Parameter Estimation

Time (seconds) Time (seconds) Set (number) Error (percent)

2% 3% 2% 3% 2% 3% 2% 3%

LTT-Pump
Efficiency Drop

33% 422 555 225 398 3 4 2.19% 5.43%

60% 182 183 144 240 4 4 1.28% 1.79%

80% 134 134 124 197 4 5 0.88% 1.49%

RWT-Pump
Efficiency Drop

33% 117 285 170 211 4 4 2.15% 6.11%

60% 83 93 139 183 4 4 1.52% 1.67%

80% 5 5 55 106 3 4 0.68% 0.68%

RLCV Valve
Block

× 1.5 63 65 97 103 2 2 0.62% 0.5%

× 1.75 51 58 86 398 2 1 0.28% 0.46%

× 2.0 51 52 46 79 1 2 0.2% 0.2%

Leg 21 Pipe
Block

× 1.5 99 100 136 150 3 3 1.58% 1.65%

× 1.75 95 95 90 303 2 3 0.78% 1.57%

× 2.0 93 93 76 202 2 2 0.19% 0.34%

Table 1: Fuel System Experiments with different fault magnitudes and noise levels.

the candidates generated by qualitative fault isolation, and the parameter value error after least squares
estimation are reported in the table. Note that the results of the qualitative fault isolation are ambiguous
and they produce multiple fault candidates. The quantitative parameter estimation procedure reduces the
fault hypotheses to a single candidate, and also estimates the magnitude of change in the parameter as a
result of the fault or degradation in the particular component. The results indicate that as the noise levels
in the measurements increase and the fault magnitudes become smaller the time to detection, isolation, and
identification (i.e., parameter estimation) increase, and the parameter estimation error increases. Further
details of the fuel system models and diagnosis experiments can be found in [26].
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3.1.2 Diagnosis of component faults in the Reverse Osmosis system

Similar health monitoring studies were conducted on the Reverse Osmosis (RO) subsystem mentioned earlier.
The WRS and RO system models illustrated in Figure 4 and Figure 5 capture the physical flow thourgh the
system. Input water from the previous subsystem, a Biological Waste Processor (BWP) is pushed at high
pressure through the membrane. Clean water (permeate) leaves the system, and the remaining water (with
a larger concentration of brine) is recirculated in a feedback loop.

As a result, the concentration of impurities in the recirculating water increases with time. The system
cycles through three operating modes, which are set by the 4-way multi-position valve. The feed pump,
which is on in all modes, pulls effluent from the BWP and creates a flow into the system through a coiled
pipe, which acts as a tubular reservoir. In the primary mode (valve setting 1), the input flow is mixed
with the water in the primary recirculation loop. The recirculation pump boosts the liquid pressure as it
flows into the membrane. The flow through causes dirt to accumulate in the membrane, which increases
the resistance to the flow through it, thus causing the outflow from the system to decrease with time. At
a predetermined fluid pressure value at the membrane, the system switches to the secondary mode (valve
setting 2), and the recirculating fluid is routed back to the membrane in a smaller secondary loop. This
causes the liquid velocity (and, therefore, flowrate) to increase, and as a result the outflow from the system
does not keep decreasing as sharply as it does in the primary loop.

As clean water leaves the system, the concentration of brine in the residual water in the RO loop keeps
increasing. At some point the increasing concentration plus the collection of impurities in the membrane
decreases the output flow significantly, and again at a predetermined pressure value the RO switches to the
purge mode (valve setting 3), where the recirculation pump is turned off, and concentrated brine is pushed
out to the next subsystem, the Air Evaporation System (AES). Following the purge operation, the system
goes back to primary mode.

For the health monitoring experiments, we used five of the measurements (see Figure 5): (i) the pressure
immediately after the recirculation pump, Ppump, (ii) the pressure of the permeate at the membrane, Pmemb

(iii) the pressure of the liquid in the return path of the recirculation loop, Pback, (iv) the flow rate of the
effluent, Fperm, and the conductivity of liquid in the return path of the recirculation loop, K.

Simulation experiments were run on a number of fault scenarios. Empirical information on sensor noise
was not available, so we simulated measurement noise as Gaussian white noise with a noise power level set
at 2% of the average signal power for each measurement. Fault scenarios were created that correspond to
abrupt faults in the pump (loss of efficiency and increased friction in the bearings), membrane (clogging),
and the connecting pipes (blocks). Table 2 presents the comprehensive results for selected faults in the RO
system. For each scenario, the qualitative fault isolation scheme reduces the initial candidate set considerably,
and parameter estimation converges to the correct fault candidate. The estimated parameter values were
also quite acceptable for all scenarios. This demonstrated the effectiveness of the health monitoring, faults
isolation, and fault identification methodology.

3.2 Fault-adaptive controller

The Fault Adaptive Control scheme is designed as a hierarchical limited look-ahead control scheme [2, 3],
where the overall control scheme tries to satisfy given specifications (e.g., throughput for the WRS system)
by continuously monitoring the system state and selecting input from a finite control set that will best meet
the given specifications. In addition, the controller is required to keep the system stable within the domain
that satisfies the specifications.

In this setting, the controller is simply an agent that generates a sequence of events to achieve a given
objective. This objective is typically expressed as a multi-attribute utility function that takes the form∑

i Vi(Pi), where each Vi corresponds to a value function associated with performance parameter, Pi. The
parameters, Pi, can be continuous or discrete-valued, and they are derived from the system state variables,
x(t), i.e., Pi(t) = pi(x(t)). The value functions employed have been simple weighted functions of the form
Vi(Pi) = wi · Pi, where the weights, wi ∈ [−1, 1] represent the importance of the parameter in the overall
operation of the system. For example, the utility function for the RO system is given by

V (k) =
k+N∑
i=k

aK(
K(i)

KMAX
) + af (

f(i)
fMAX

) + aSV
.SV + aP (

P (i)
PMAX

),
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Fault t − tf Step Symbolic Candidate set + parameter estimation
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tf : 20000
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memb
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fp
, I−ep, R−

brine
, TF+, R−

pipe
, R+

memb
, R+

fp
, R−ep, GY −

7200 1 Pback(e1) : (+, ·) I−
fp

, TF+, R−
pipe

, R+
memb

, R+
fp

, R−ep

8280 2 Pmemb(e16) : (+, ·) R−
pipe

, R+
memb

, R−ep

parameter estimation selects R+
memb

, indicates change by 1.042

GY −, 5%
tf : 17500

200 0 Ppump(e37) : (−, ·) C+
c , C+

memb
, I+

fp
, I+

ep, R−
brine

, TF+, R−
pipe

, R−
memb

, C+
k

, R+
fp

, R+
ep, GY −

880 1 Fperm(f25) : (−, ·) I+
fp

, I+
ep, R−

brine
, TF+, R+

fp
, R+

ep, GY −

1240 2 Pback(e1) : (−, ·) I+
ep, R−

brine
, R+

ep, GY −

1960 3 K(e35) : (−, ·) I+
ep, R+

ep, GY −

parameter estimation: GY − changed by 0.934

R+
ep, 35%

tf : 20000

88 0 Ppump(e37) : (−, ·) C+
c , C+

memb
I+

fp
, I+

ep, R−
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k
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ep, GY −
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fp
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ep, R−

brine
, TF+, R+

fp
, R+

ep, GY −

720 2 Pback(e1) : (−, ·) I+
ep, R−

brine
, R+

ep, GY −

960 3 Ppump(e37) : (−,−) R−
brine

, R+
ep

4640 4 K(e35) : (−, ·) R+
ep

parameter estimation: R+
ep changed by 0.374

R+
pipe
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tf : 18000

640 0 Pback(e1) : (−, ·) C−c , C−
memb
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, I+
ep, R−

brine
, TF+, R+

pipe
, R+

memb
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k
, R−

fp
, R+

ep, GY +

800 1 Pmemb(e16) : (−, ·) R−
brine

, TF+, R+
pipe

, R+
ep,

parameter estimation: R+
pipe

changed by 1.134

C−
memb

, 10%

tf : 19600

360 0 Fperm(f25) : (−, ·) C−c , C−
memb

I−
fp

, I+
ep, R+

brine
, TF+, R+

pipe
, R−

memb
, C+

k
, R−

fp
, R+

ep, GY +

480 1 Pback(e1) : (−, ·) C−
memb

R+
brine

, TF+, GY +

8680 2 Pmemb(e16) : (−, ·) C−
memb

R+
brine

, GY +

parameter estimation: C−
memb

changed by 0.856

Table 2: RO diagnosis results for selected faults.

where K(i) represents the conductivity of the water in the RO loop at time step i(conductivity is a measure
of the concentration of brine in the water), f(i) represents the flow rate of clean water out of the membrane,
SV is a measure of the cumulative number of valve switches that occur in the RO, and P (i) is a measure of
the power consumed by the RO subsystem. This utility function trades off power consumed and switching
on the one hand against the conductivity (dirtiness) of the water in the RO, and out flowrate of clean water
from the RO. The relative weights and sign of the contribution to the utility function are determined by the
magnitude and sign of the coefficient weights, aK , af , aSV

, and aP . For the RO, aSV
and aP are negative,

whereas aK and af are assigned positive values. During operation the weights could be adjusted to handle
situations where there are power restrictions to situations where high outflow are required. The utility-based
controller also helps maintain desired performance under degraded anf faulty conditions.

A set of simulation experiments were conducted to illustrate multi-level fault adaptive control of the RO
system. Figure 8 shows the behavior of the system under online control in the presence of fault. A block
in a pipe (resulting in 35% increases its resistance) was introduced at time t = 400 sec and was isolated at
time t = 430 sec using the model-based FDI scheme described in the previous section. The online controller
managed to compensate for the fault by increasing the time spent in the primary loop of RO operation.
The overall average utility in this case was only 0.93% less than the utility in the non-faulty situation. In
Figure 8 the original system output (no failure) is shown as a dotted line for comparison.

3.3 Supervisory controller

The supervisory controller extends hybrid and fault adaptive control of individual subsystems to the control
of interacting distributed subsystems that operate under resource constraints [1]. The supervisory controller
uses a plug and play computational architecture, where the higher-level global controller acts more as a
resource manager and scheduler, whereas the lower level controllers can take on one of two forms: (i) a
model-predictive controller based on decision theoretic utility functions as described in Section 3.2, and (ii)
a procedure-based execution component. The global controller reasons over resources, system configurations,
and desired system output. The latter executes pre-defined scripts that place the system into different modes,
respond to specific events and allow for direct human interaction. We discuss each of these in turn.
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Figure 8: System Performance with Utility-based controller under fault conditions.

3.3.1 Supervisory Controller

Since a detailed behavioral model of the underlying distributed system may be very complex, reasoning at
this level uses an abstract (simplified) model to describe the composite behavior of the system components
that is relevant to the overall requirements and operational constraints. The abstract model uses a set of
global variables that are related by the input-output interactions between the individual systems. Moreover,
the global controller’s decisions are based on aggregate behaviors, which are determined over longer time
frames compared to the individual systems. The global model is represented by y(k+1) = g(y(k), v(k), µ(k)),
where y(k) is the global state vector, v(k) ∈ V and V is the set of global control inputs which represent a
set of local control settings for the local modules, and µ(k) are the global environmental inputs. The map
g defines how the global state variables respond to relevant changes in environment inputs with respect to
the global control inputs. The objective of the model-based reasoner is to minimize a given cost function
over the operation span of the system. We assume here also that the cost function takes the form of the
set point specification. The global specifications are communicated to the procedure-based executor for
implementation.

3.3.2 Procedure-based execution

Procedures are standardized methods for operating a system. They are pre-defined by system engineers.
They typically involve a sequence of commands given to the system to move it from one configuration to
another. They can be initiated by automation or by a human. In previous life support applications we
have used the Reactive Action Packages (RAP) system [13] for procedure representation and procedure
execution [10]. Each procedure in the RAP system consists of a set of preconditions (conditions that must
be true before the procedure can be executed), a set of commands to be executed and a set of succeed
conditions (conditions that are true after executing the procedure). The set of commands can be ordered in
various ways (e.g., parallel, sequential) and controlled via timing relationships between the steps. Procedures
cannot be created on-the-fly but are all pre-defined and available for execution. Automation or humans can
request that a procedure be executed. In addition, procedures can be triggered automatically by specific
external events.
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Figure 9: Drawing of the proposed Northrop Grumman/Boeing CEV.

3.4 Resource monitors

Resources are vital to the success of any space mission and to life support systems specifically. The ability to
manage resources directly affects the mass of a space vehicle which directly affects its cost. For life support
systems, resources include gases (such as oxygen, nitrogen and carbon dioxide), water, food, waste (liquid
and solid), power, storage tanks and any spare parts such as filters. Resource monitors are responsible for
predicting the need for a particular resource over the length of the mission and for allocating and optimizing
resource usage. Resource monitors provide an absolute constraint on the supervisory controller described
above.

3.5 Planner and scheduler

Life support activities, including crew activities that impact life support systems such as exercise, need to be
scheduled so as to balance system and crew activities. In current space mission operations this is primarily
a manual process done by ground controllers. In ground tests we have begun experimenting with automated
planning and scheduling of life support activities. For example, in a space habitat test in 1998 an automated
planner was used to schedule solid waste incineration [29].

4 Future NASA life support applications

NASA is embarking on a new exploration vision that will take it to the Moon and beyond. A new set of
vehicles and spacecraft is currently being designed to achieve this mission. Each vehicle or spacecraft will
require different kinds of life support systems and, therefore, different kinds of health management systems
for life support.

4.1 Crew exploration vehicle

The Crew Exploration Vehicle (CEV) will be NASA’s successor to the Space Shuttle and will carry humans
to the International Space Station by 2012 and back to the Moon by 2018. Because it will primarily be
used for short-duration flights it will not have complex, regenerative life support systems. However, there
will still be a need for integrated system health management for both the CEV and the ECLS system of
the CEV. Most of this will focus on the air subsystem, i.e., those components that create oxygen, remove
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carbon dioxide and detect trace contaminants. System health management for CEV will encompass more
than just fault detection. It will need to be proactive in allocating resources (especially power), scheduling
ECLS activities and assessing the life support system’s state and capabilities.

The current NASA lunar exploration architecture states that the CEV will be uncrewed in lunar orbit
while astronauts explore the lunar surface. Some scenarios envision uncrewed operation for nearly six months.
Such uncrewed activities will pose significant system health management requirements – the crew on the
surface needs to know that they are returning to a habitable spacecraft. The life support systems will either
need to shut down and be restarted or will need to operate during the uncrewed periods. These systems will
need to be checked out or restarted before the crew returns.

4.2 Lunar habitats

A long-term lunar habitat will require significantly more complex life support systems because of the cost of
resupplying resources. In particular, regenerative life support systems will be required especially for air and
water. Such life support systems will need even more complicated and integrated system health managers.
Planning and scheduling will become more prominent with long-duration missions. Resource monitoring and
management will extend mission life at lower costs.

4.3 Mars habitats

Mars habitats will require significant regeneration of resources, possibly including food. Because of the
significant time delays these life support systems will have to be almost entirely autonomous. Adding crops
into a life support systems adds redundancy (crops can produce oxygen, consume carbon dioxide and clean
water) in addition to providing food. However, being entirely biological, crops pose significant problems to
integrated health management. They are difficult to model and almost impossible to control. Crop planting
and harvesting must be planned and scheduled and is driven by a variety of constraints.

5 Conclusions

Integrated health management for life support systems poses several interesting challenges mostly because
of the human’s impact on the life support system. In most other vehicle systems (propulsion, guidance,
navigation and control, power, etc.) the human impact is minimal. In life support systems the human
impact is substantial. Humans are producers and consumers of life support system resources. This leads to
modeling challenges, human-interaction challenges and control challenges. In this paper, we have outlined a
potential approach to building an integrated health management system for life support systems for long-
duration missions. Pieces of this approach have already been tested in simulation and in hardware tests. We
have briefly described some of our previous work in applying diagnosis and fault-adaptive control techniques
to aircraft and ALSS subsystems. For NASA to realize its human exploration vision, additional development
and testing of health management for life support systems needs to be done. An important decision that
needs to be made is that for economic and practical reasons, it is best that the ISHM design be incorporated
into the early design phase of the CEV and future mission spacecraft systems.
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