GENETIC Programming

(WHY BOTHER?

EH-2000 CONFERENECE

FRIDAY JULY 14, 2000

PALO ALTO

John R. Koza

Consulting Professor (Medical Informatics)

Department of Medicine

School of Medicine

Consulting Professor

Department of Electrical Engineering

School of Engineering

Stanford University

Stanford, California 94305

E-MAIL: koza@stanford.edu
http://www.smi.stanford.edu/people/koza/
http://www.genetic-programming.org

 HYPERLINK "http://www.genetic-programming.com"

http://www.genetic-programming.com

THERE ARE MANY SUCCESSFUL APPLICATIONS OF EVOLVABLE HARDWARE BASED ON GENETIC ALGORITHMS (GA), EVOLUTION STRATEGIES (ES), AND OTHER EVOLUTIONARY ALGORITHMS (EP, ETC.)

GENERAL APPEARANCE OF ONE POSSIBLE CHROMOSOME ENCODING USED TO SOLVE A CIRCUIT PROBLEM USING THE GENETIC ALGORITHM (GA) OPERATING ON FIXEd-LENGTH CHARACTER STRINGS

EXAMPLE 4-COMPONENT CIRCUIT WITH 2-LEADED COMPONENTS

[image: image1.wmf]
 1st Component | 2nd Component | 3rd Component | 4th Component

L
.220
2
3
C
403.
3
6
L
.528
6
9
L
.041
9
0

MANY DIFFERENT GA/ES ENCODINGS HAVE BEEN SUCCESSFULLY USED

A mixture of real-valued variables, integer-valued variables, and categorical variables are encoded in the chromosome

L
.220
2
3
C
403.
3
6
L
.528
6
9
L
.041
9
0

(Bit-string chromosome

Resistor | 2.5 (| Node 3 | Node 6

0
1
0
0
1
0
1
0
0
0
0
1
1
1
1
0

(The component type (a categorical variable) is encoded as 2 bits (01 = resistor, etc.)

(The component value (real-valued number) is encoded as 8 bits

(The node (integer-valued variable) to which the component's 1st lead is connected is encoded by 3 bits

(The node (integer-valued variable) to which the component's 2nd lead is connected is encoded by 3 bits

(Note that the number of nodes is capped at 8 (or assumed to be 8)

STRONG INDICATIONS FOR USING GENETIC ALGORITHM (GA) OR EVOLUTION STRATEGIES (ES)

(The size and shape of the solution is known or fixed

(Ascertaining numerical parameters is the major issue

(Simplicity is a major consideration

(On-chip evolution the algorithm's logic is implemented on the chip in hardware

INDICATIONS FOR CONSIDERING GENETIC PROGRAMMING (GP)

(The size and shape of the solution is a major part of the problem

(Reuse of substructures

(Passing of parameters to substructures

(Amount and kind of reuse (architecture-altering operations)

(Free variables (inputs) and alternative conditional actions based on free variables

(Development

The size and shape of the solution is a major part of the problem

Automatic Synthesis of a YAGI-UDA Wire Antenna USING GENETIC ALGORITHM (LINDEN 1997)

[image: image2.wmf]
BBB2390
(When the genetic algorithm (GA) operating on fixed-length character strings was used to synthesize a particular Yagi-Uda wire antenna by Linden (1997), the chromosome was based on

(a particular number of reflectors (one) and

(a particular number of directors.

The chromosome encoded

(the spacing between the parallel wires

(the length of each of the parallel wires

Automatic Synthesis of a YAGI-UDA Wire Antenna USING GENETIC ALGORITHM (LINDEN 1997) (CONTINUED

(When the genetic algorithm (GA) operating on fixed-length character strings was used to synthesize a Yagi-Uda wire antenna (Linden 1997), the following decisions were made by the human user prior to the start of the run:

(1) the number of reflectors (one),

(2) the number of directors,

(3) the fact that the driven element, the directors, and the reflector are all single straight wires,

(4) the fact that the driven element, the directors, and the reflector are all arranged in parallel,

(5) the fact that the energy source (via the transmission line) is connected only to single straight wire (the driven element) (that is, all the directors and reflectors are parasitically coupled

(Characteristics (3), (4), and (5) are essential characteristics of the Yagi-Uda antenna, namely an antenna with multiple parallel parasitically coupled straight-line directors, a single parallel parasitically coupled straight-line reflector, and a straight-line driven element. That it, the GA run assumed that the answer would be a Yagi-Uda antenna.

Automatic Synthesis of a Wire Antenna

EXAMPLE OF TURTLE FUNCTIONS USED TO CREATE WIRE ANTENNA

1 (PROGN3

2 (TURN-RIGHT 0.125)

3 (LANDMARK

4 (REPEAT 2

5 (PROGN2

6 (DRAW 1.0 HALF-MM-WIRE)

7 (DRAW 0.5 NO-WIRE)))

8 (TRANSLATE-RIGHT 0.125 0.75))

[image: image3.wmf]
BBB2400
1st Example of a Best-of-Node Antenna from Generation 0

(FITNESS OF -2.03

[image: image4.wmf]
2nd Example of a Best-of-Node Antenna from Generation 0

(FITNESS OF -3.82

[image: image5.wmf]
3rd Example of a Best-of-Node Antenna from Generation 0

(FITNESS OF -4.43

[image: image6.wmf]
Best-of-Generation Antenna from Generation 2

 (FITNESS OF -5.18

[image: image7.wmf]
Best-of-Generation Antenna from Generation 9

(FITNESS OF -7.58

[image: image8.wmf]
Best-of-Generation Antenna from Generation 47

(FITNESS OF -14.13

[image: image9.wmf]
Best-of-Run Antenna from Generation 90

(FITNESS OF-16.04

[image: image10.wmf]
(The GP run discovered

(1) the number of reflectors (one),

(2) the number of directors,

(3) the fact that the driven element, the directors, and the reflector are all single straight wires,

(4) the fact that the driven element, the directors, and the reflector are all arranged in parallel,

(5) the fact that the energy source (via the transmission line) is connected only to single straight wire (the driven element) (that is, all the directors and reflectors are parasitically coupled

(Characteristics (3), (4), and (5) are essential characteristics of the Yagi-Uda antenna, namely an antenna with multiple parallel parasitically coupled straight-line directors, a single parallel parasitically coupled straight-line reflector, and a straight-line driven element.

EVOLVED CAMPBELL FILTER

(7-RUNG LADDER)

[image: image11.wmf]
(This genetically evolved circuit infringes on U. S. patent 1,227,113 issued to George Campbell of American Telephone and Telegraph in 1917 (claim 2):

An electric wave filter consisting of a connecting line of negligible attenuation composed of a plurality of sections, each section including a capacity element and an inductance element, one of said elements of each section being in series with the line and the other in shunt across the line, said capacity and inductance elements having precomputed values dependent upon the upper limiting frequency and the lower limiting frequency of a range of frequencies it is desired to transmit without attenuation, the values of said capacity and inductance elements being so proportioned that the structure transmits with practically negligible attenuation sinusoidal currents of all frequencies lying between said two limiting frequencies, while attenuating and approximately extinguishing currents of neighboring frequencies lying outside of said limiting frequencies."

Evolved Zobel filter

(Infringes on U. S. patent 1,538,964 issued in 1925 to Otto Zobel of American Telephone and Telegraph Company for an “M-derived half section” used in conjunction with one or more “constant K” sections.

(One M-derived half section (C2 and L11)

(Cascade of three symmetric T-sections

[image: image12.wmf]
BBB2081
IT IS OFTEN POSSIBLE TO USE THE GENETIC ALGORITHm (GA) OR EVOLUTION STRATEGIES EVEN WHEN THE SIZE AND SHAPE OF THE SOLUTION IS A MAJOR ISSUE

(Variable-length genetic algorithm (VGA)

(Maintain constraints

Chromosome #1

 1st Component | 2nd Component

L
.220
1
2
C
403.
2
0

Chromosome #2

 1st Component | 2nd Component

R
250.
0
1
C
100.
1
2

Nominal Offspring #1 is invalid

1st Component | 2nd Component

L
.220
1
2
C
100.
1
2

(Penalize (in fitness measure)

(Delete

(Repair (most common method)

(Inundate

Reuse of substructures

A COMPUTER PROGRAM

[image: image13.wmf]
BBB121
(Subroutines provide one way to REUSE code (possibly with different instantiations of the dummy variables (formal parameters)

LAWN MOWER PROBLEM

(LAWN SIZE 64)

[image: image14.wmf]
296-POINT SOLUTION WITHOUT ADF'S FOR LAWN SIZE 64 (FROM GENERATION 34)

(V8A (V8A (V8A (FROG (PROGN (PROGN (V8A (MOW) (MOW)) (FROG #(3 2))) (PROGN (V8A (PROGN (V8A (PROGN (PROGN (MOW) #(2 4)) (FROG #(5 6))) (PROGN (V8A (MOW) #(6 0)) (FROG #(2 2)))) (V8A (MOW) (MOW))) (PROGN (V8A (PROGN (PROGN #(0 3) #(7 2)) (FROG #(5 6))) (PROGN (V8A (MOW) #(6 0)) (FROG #(2 2)))) (V8A (MOW) (MOW)))) (PROGN (FROG (MOW)) (PROGN (PROGN (PROGN (V8A (MOW) (MOW)) (FROG (LEFT))) (PROGN (MOW) (V8A (MOW) (MOW)))) (PROGN (V8A (PROGN #(0 3) #(7 2)) (V8A (MOW) (MOW))) (PROGN (V8A (MOW) (MOW)) (PROGN (LEFT) (MOW))))))))) (V8A (PROGN (V8A (PROGN (PROGN (MOW) #(2 4)) (FROG #(5 6))) (PROGN (V8A (MOW) #(6 0)) (FROG #(2 2)))) (V8A (MOW) (MOW))) (V8A (FROG (LEFT)) (FROG (MOW))))) (V8A (FROG (V8A (PROGN (V8A (PROGN (V8A (MOW) (MOW)) (FROG #(3 7))) (V8A (PROGN (MOW) (LEFT)) (V8A (MOW) #(5 3)))) (PROGN (PROGN (V8A (PROGN (LEFT) (MOW)) (V8A #(1 4) (LEFT))) (PROGN (FROG (MOW)) (V8A (MOW) #(3 7)))) (V8A (PROGN (FROG (MOW)) (V8A (LEFT) (MOW))) (V8A (FROG #(1 2)) (V8A (MOW) (LEFT)))))) (PROGN (V8A (FROG #(3 1)) (V8A (FROG (PROGN (PROGN (V8A (MOW) (MOW)) (FROG #(3 2))) (FROG (FROG #(5 0))))) (V8A (PROGN (FROG (MOW)) (V8A (MOW) (MOW))) (V8A (FROG (LEFT)) (FROG (MOW)))))) (PROGN (PROGN (PROGN (PROGN (LEFT) (MOW)) (V8A (MOW) #(3 7))) (V8A (V8A (MOW) (MOW)) (PROGN (LEFT) (LEFT)))) (V8A (FROG (PROGN #(3 0) (LEFT))) (V8A (PROGN (MOW) (LEFT)) (FROG #(5 4)))))))) (PROGN (FROG (V8A (PROGN (V8A (PROGN (PROGN (V8A (PROGN (PROGN (MOW) #(2 4)) (FROG #(5 6))) (PROGN (V8A (MOW) #(1 2)) (FROG #(2 2)))) (V8A (MOW) (MOW))) (FROG #(3 7))) (V8A (PROGN (PROGN (MOW) #(2 4)) (FROG #(5 6))) (PROGN (V8A (MOW) #(6 0)) (FROG #(2 2))))) (PROGN (PROGN (V8A (FROG (MOW)) (V8A #(1 4) (LEFT))) (PROGN (FROG (MOW)) (V8A (MOW) #(3 7)))) (V8A (PROGN (FROG (MOW)) (V8A (LEFT) (MOW))) (V8A (FROG #(1 2)) (V8A (MOW) (LEFT)))))) (PROGN (V8A (PROGN (FROG #(2 4)) (V8A (MOW) (MOW))) (V8A (FROG (MOW)) (LEFT))) (PROGN #(3 0) (LEFT))))) (FROG (V8A #(7 4) (MOW)))))) (V8A (V8A (PROGN (MOW) #(4 3)) (V8A (LEFT) #(6 1))) (MOW)))

PARTIAL TRAJECTORY (FOR STEPS 0 THROUGH 30) OF 296-POINT BEST-OF-RUN PROGRAM FROM GENERATION 34 WITHOUT ADF'S – LAWN SIZE 64

[image: image15.wmf]0

1

2

3

4

5

6

7

8

9

10

13

14

15

16

17

18

22

23

24

26

25

27

28

29

30

21

12

19

20

11

AVERGAGE-SIZED (78-POINT) SOLUTION WITH ADF'S – LAWN SIZE 64

(8-WAY DECOMPOSITION WITH HIERARCHICAL CALLS)

(progn

(defun ADF0 ()

(values (V8A (PROGN (V8A (V8A (LEFT) #(6 5)) (PROGN (MOW) (LEFT))) (V8A (PROGN (MOW) (MOW)) (V8A (MOW) (MOW)))) (V8A (PROGN (V8A #(1 4) (MOW)) (PROGN #(3 1) (MOW))) (PROGN (PROGN #(3 1) (MOW)) (PROGN (LEFT) (LEFT)))))))

(defun ADF1 (ARG0)

(values (V8A (PROGN (FROG (PROGN ARG0 (ADF0))) (V8A (PROGN (MOW) (ADF0)) (V8A (V8A (ADF0) #(3 4)) (V8A (ADF0) ARG0)))) (V8A (FROG (FROG (MOW))) (PROGN (PROGN (MOW) #(3 5)) (PROGN (MOW) (MOW)))))))

(values (V8A (ADF1 (ADF1 (V8A #(7 1) (LEFT)))) (V8A (V8A (PROGN (LEFT) (LEFT)) (V8A #(7 0) (LEFT))) (FROG (V8A (ADF0) (MOW)))))))

TRAJECTORY OF AVERGAGE-SIZED (78-POINT) SOLUTION WITH ADF'S

(8-WAY DECOMPOSITION)

[image: image16.wmf]
COMPARISON OF AVERAGE STRUCTURAL COMPLEXITY OF SOLUTIONS FOR LAWN SIZES OF 32, 48, 64, 80, AND 96 WITH AND WITHOUT ADF'S

32
48
64
80
96

[image: image17.wmf]S

without

145.0
217.6
280.8
366.1
408.8

[image: image18.wmf]S

with

66.3
69.0
76.9
78.8
84.9

[image: image19.wmf]0

32

48

64

80

96

0

250

500

S

Problem Size

Without Defined Functions

With Defined Functions

WITHOUT ADF'S

S = 13.2 + 4.2L
Correlation R of 1.00

WITH ADF'S

 S = 56.4 + 0.29L
Correlation R of 0.99

COMPARISON OF COMPUTATIONAL EFFORT FOR LAWN SIZES OF 32, 48, 64, 80, AND 96 WITH AND WITHOUT ADF'S

32
48
64
80
96

[image: image20.wmf]E

without

19,000
56,000
100,000
561,000
4,692,000

[image: image21.wmf]E

with

5,000
9,000
11,000
17,000
20,000

[image: image22.wmf]32

48

64

80

96

0

2,500,000

5,000,000

Without Defined Functions

With Defined Functions

Problem Size

E

WITHOUT ADF'S

E = –2,855,000 + 61,570L
Correlation R of 0.77

E = 944.2 * 10 0.362 L
Correlation R of 0.98

WITH ADF'S

E = –2,800 + 2.37L
Correlation R of 0.99

10 fitness-cases showing the value of the dependent variable, D, associated with the values of the six independent variables, L0, W0, H0, L1, W1, H1

Fitness case
L0
W0
H0
L1
W1
H1
Dependent variable D

1
3
4
7
2
5
3
54

2
7
10
9
10
3
1
600

3
10
9
4
8
1
6
312

4
3
9
5
1
6
4
111

5
4
3
2
7
6
1
–18

6
3
3
1
9
5
4
–171

7
5
9
9
1
7
6
363

8
1
2
9
3
9
2
–36

9
2
6
8
2
6
10
–24

10
8
1
10
7
5
1
45

SOLUTION WITHOUT AUTOMATICALLY DEFINED FUNCTIONS (ADFs, SUBROUTINES)
(- (* (* W0 L0) H0)

 (* (* W1 L1) H1))

D = W0*L0*H0 – W1*L1*H1

[image: image23.wmf]W0

H0

*

L0

*

*

L1

H1

*

W1

–

[image: image24.wmf]L1

W1

H1

L0

W0

H0

IF WE ADD TWO NEW VARIABLES FOR VOLUME (V0 ANDV1), The 6-dimensional non-linear regression problem becomes an 8-dimensional PROBLEM

Fitness case
L0
W0
H0
L1
W1
H1
V0
V1
D

1
3
4
7
2
5
3
84
30
54

2
7
10
9
10
3
1
630
30
600

3
10
9
4
8
1
6
360
48
312

4
3
9
5
1
6
4
135
24
111

5
4
3
2
7
6
1
24
42
–18

6
3
3
1
9
5
4
9
180
–171

7
5
9
9
1
7
6
405
42
363

8
1
2
9
3
9
2
18
54
–36

9
2
6
8
2
6
10
96
120
–24

10
8
1
10
7
5
1
80
35
45

(However, the problem can now be approached as a 2-dimensional LINEAR regression problem.

AUTOMATICALLY DEFINED FUNCTIONS (ADFs, SUBROUTINES)
TOP-DOWN VIEW OF THREE STEP HIERARCHICAL PROBLEM-SOLVING PROCESS

DIVIDE AND CONQUER

[image: image25.wmf]
BBB012
(Decompose a problem into subproblems

(Solve the subproblems

(Assemble the solutions of the subproblems into a solution for the overall problem

AUTOMATICALLY DEFINED FUNCTIONS (ADFs, SUBROUTINES)
BOTTOM-UP VIEW OF THREE STEP HIERARCHICAL PROBLEM-SOLVING PROCESS

[image: image26.wmf]
BBB013
(Identify regularities

(Change the representation

(Solve the overall problem

AN OVERALL COMPUTER PROGRAM CONSISTING OF ONE FUNCTION-DEFINING BRANCH (ADF, SUBROUTINE) AND ONE RESULT-PRODUCING BRANCH (MAIN PROGRAM)

(progn

(defun volume (arg0 arg1 arg2)

(values

(* arg0 (* arg1 arg2))))

(values
(- (volume L0 W0 H0)

(volume L1 W1 H1))))

[image: image27.wmf]progn

(ARG0 ARG1

ARG2)

defun

ARG0

*

ARG2

ARG1

*

values

VOLUME

–

values

L1

W1

H1

VOLUME

W0

H0

L0

VOLUME

AUTOMATICALLY DEFINED FUNCTIONS (ADFs, SUBROUTINES)
(In generation 0, we create a population of programs, each consisting of a main result-producing branch (RPB) and one or more function-defining branches (automatically defined functions, ADFs, subroutines)

(Different ingredients for RPB and ADFs

(The terminal set of an ADF typically contains dummy arguments (formal parameters), such as ARG0, ARG1, …

(The function set of the RPB contains ADF0, …

(ADFs are private and associated with a particular individual program in the population

(The entire program is executed and evaluated for fitness

(Genetic operation of reproduction is the same as before

(Mutation operation starts (as before) by picking a mutation point from either RPB or an ADF and deleting the subtree rooted at that point. As before, a subtree is then grown at the point. The new subtree is composed of the allowable ingredients for that point (so that the result is a syntactically valid executable program.

(Crossover operation starts (as before) by picking a crossover point from either RPB or an ADF of one parent. The choice of crossover point in the second parent is then restricted (e.g., to the RPB or to the ADF) (so that when the subtrees are swapped, the result is a syntactically valid executable program.

8 MAIN POINTS FROM BOOK

Genetic Programming II: Automatic Discovery of Reusable Programs (Koza 1994)

(ADFs work.

(ADFs do not solve problems in the style of human programmers.

(ADFs reduce the computational effort required to solve a problem.

(ADFs usually improve the parsimony of the solutions to a problem.

(As the size of a problem is scaled up, the size of solutions increases more slowly with ADFs than without them.

(As the size of a problem is scaled up, the computational effort required to solve a problem increases more slowly with ADFs than without them.

(The advantages in terms of computational effort and parsimony conferred by ADFs increase as the size of the problem is scaled up.

LOWPASS FILTER USING ADFs
GENERATION 0 – ONE-RUNG LADDER

[image: image28.wmf]
BEHAVIOR IN FREQUENCY DOMAIN

[image: image29.wmf]
LOWPASS FILTER USING ADFs
GENERATION 9 - TWO-RUNG LADDER

[image: image30.wmf]
TWICE-CALLED TWO-PORTED ADF0
[image: image31.wmf]
BEHAVIOR IN FREQUENCY DOMAIN

[image: image32.wmf]
LOWPASS FILTER USING ADFs
GEN 16 – THREE-RUNG LADDER

[image: image33.wmf]
THRICE-CALLED TWO-PORTED ADF0
[image: image34.wmf]
BEHAVIOR IN FREQUENCY DOMAIN

[image: image35.wmf]
LOWPASS FILTER USING ADFs
GEN 20 – FOUR-RUNG LADDER

[image: image36.wmf]
QUADRUPLY-CALLED TWO-PORTED ADF0
[image: image37.wmf]
BEHAVIOR IN FREQUENCY DOMAIN

[image: image38.wmf]
LOWPASS FILTER USING ADFs
GENERATION 31 (TOPOLOGY OF CAUER (ELLIPTIC) FILTER

[image: image39.wmf]
QUINTUPLY-CALLED THREE-PORTED ADF0
[image: image40.wmf]
BEHAVIOR IN FREQUENCY DOMAIN

[image: image41.wmf]
BEST-OF-RUN PROGRAM TREE FROM GENERATION 35 USING ADFs

[image: image42.wmf]
BBB197
DOUBLE-BANDPASS FILTER (WITH ADFs AND ARCHITECTURE-ALTERING OPERATIONS)

GENERATION 89 – FREQUENCY DOMAIN BEHAVIOR OF THE BEST-OF-RUN CIRCUIT

[image: image43.wmf]
[image: image44.wmf]
GENERATION 89 – BEST-OF-RUN CIRCUIT

THREE-PORTED QUADRUPLY-CALLED ADF0
[image: image45.wmf]
THREE-PORTED ADF1
[image: image46.wmf]
FOUR-PORTED TWICE-CALLED ADF3
[image: image47.wmf]
GENETICALLY EVOLVED 10 DB AMPLIFIER FROM GENERATION 45

SHOWING THE VOLTAGE GAIN STAGE AND DARLINGTON EMITTER FOLLOWER SECTION

[image: image48.wmf]Voltage Gain Stage

Darlington

Emitter-

Follower

Stage

Twelve instances IN GENETIC PROGRAMMING III BOOk (1999) where genetic programming appears to have infringed Darlington's patent (2,663,806)

Figure
Circuit
Transistors
Patent claim

45.16
96 dB amplifier
Q5 and Q25
1

45.16
96 dB amplifier
Q53, Q32
3

47.6
Squaring computational
Q101, Q119
1

47.6
Squaring computational
Q29, Q88
4

47.10
Cubing computational
Q27, Q46
3

47.10
Cubing computational
Q46, Q35
3

47.11
Cubing computational
Q35, Q49
3

47.12
Square root computational
Q120, Q155
2

47.15
Cube root computational
QNC19, QNC24
2

47.16
Cube root computational
QNC73, QNC74
1

47.16
Cube root computational
QNC74, QNC48
2

47.17
Logarithmic computational
Q22, Q66
4

Darlington emitter-follower section from the best circuit of generation 86 of a 96 dB amplifier problem

[image: image49.wmf]
CUBE ROOT COMPUTATIONAL CIRCUIT FROM GENERATIONS 60

[image: image50.wmf]
EVOLVED SQUARE ROOT COMPUTATIONAL CIRCUIT

[image: image51.wmf]
EVOLVED SQUARING COMPUTATIONAL CIRCUIT

[image: image52.wmf]
EVOLVED CUBING COMPUTATIONAL CIRCUIT

[image: image53.wmf]
PASSING A PARAmETER TO A SUBSTRUCTURE

PASSING A PARAmETER TO A SUBSTRUCTURE

(The set of potential terminals for each construction-continuing subtree of an automatically defined function, Tccs-adf-potential, is

Tccs-adf-potential = {ARG0}

Emergence of a Parameterized Argument in a Circuit Substructure

Hierarchy of Branches for the best-of-run circuit- from generation 158

 EMBED Word.Picture.8

BBB320
PASSING A PARAmETER TO A SUBSTRUCTURE

Best-of-run circuit from generation 158

 EMBED Word.Picture.8

Three-ported automatically defined function ADF3 of the best-of-run circuit from generation 158

ADF3 contains capacitor C39 parameterized by dummy variable ARG0

 EMBED Word.Picture.8

BBB322
The first result-producing branch, RPB0, calling ADF3
(PARALLEL0 (L (+ (– 1.883196E-01 (– -9.095883E-02 5.724576E-01)) (– 9.737455E-01 -9.452780E-01)) (FLIP END)) (SERIES (C (+ (+ -6.668774E-01 -8.770285E-01) 4.587758E-02) (NOP END)) (SERIES END END (PARALLEL1 END END END END)) (FLIP (SAFE_CUT))) (PAIR_CONNECT_0 END END END) (PAIR_CONNECT_0 (L (+ -7.220122E-01 4.896697E-01) END) (L (– -7.195599E-01 3.651142E-02) (SERIES (C (+ -5.111248E-01 (– (– -6.137950E-01 -5.111248E-01) (– 1.883196E-01 (– -9.095883E-02 5.724576E-01)))) END) (SERIES END END (adf3 6.196514E-01)) (NOP END))) (NOP END)))

Automatically defined function ADF3
(C (+ (– (+ (+ (+ 5.630820E-01 (– 9.737455E-01 -9.452780E-01)) (+ ARG0 6.953752E-02)) (– (– 5.627716E-02 (+ 2.273517E-01 (+ 1.883196E-01 (+ 9.346950E-02 (+ -7.220122E-01 (+ 2.710414E-02 1.397491E-02)))))) (– (+ (– 2.710414E-02 -2.807583E-01) (+ -6.137950E-01 -8.554120E-01)) (– -8.770285E-01 (– -4.049602E-01 -2.192044E-02))))) (+ (+ 1.883196E-01 (+ (+ (+ (+ 9.346950E-02 (+ -7.220122E-01 (+ 2.710414E-02 1.397491E-02))) (– 4.587758E-02 -2.340137E-01)) 3.226026E-01) (+ -7.220122E-01 (– -9.131658E-01 6.595502E-01)))) 3.660116E-01)) 9.496355E-01) (THREE_GROUND_0 (C (+ (– (+ (+ (+ 5.630820E-01 (– 9.737455E-01 -9.452780E-01)) (+ (– (– -7.195599E-01 3.651142E-02) -9.761651E-01) (– (+ (– (– -7.195599E-01 3.651142E-02) -9.761651E-01) 6.953752E-02) 3.651142E-02))) (– (– 5.627716E-02 (– 1.883196E-01 (– -9.095883E-02 5.724576E-01))) (– (+ (– 2.710414E-02 -2.807583E-01) (+ -6.137950E-01 (+ ARG0 6.953752E-02))) (– -8.770285E-01 (– -4.049602E-01 -2.192044E-02))))) (+ (+ 1.883196E-01 -7.195599E-01) 3.660116E-01)) 9.496355E-01) (NOP (FLIP (PAIR_CONNECT_0 END END END)))) (FLIP (SERIES (FLIP (FLIP (FLIP END))) (C (– (+ 6.238477E-01 6.196514E-01) (+ (+ (– (– 4.037348E-01 4.343444E-01) (+ -7.788187E-01 (+ (+ (– -8.786904E-01 1.397491E-02) (– -6.137950E-01 (– (+ (– 2.710414E-02 -2.807583E-01) (+ -6.137950E-01 -8.554120E-01)) (– -8.770285E-01 (– -4.049602E-01 -2.192044E-02))))) (+ (+ 7.215142E-03 1.883196E-01) (+ 7.733750E-01 4.343444E-01))))) (– (– -9.389297E-01 5.630820E-01) (+ -5.840433E-02 3.568947E-01))) -8.554120E-01)) (NOP END)) END)) (FLIP (adf2 9.737455E-01))))

ADF3 does three things

(The structure that develops out of ADF3 includes a capacitor C112 whose value (5,130 uF) is not a function of its dummy variable, ARG0.

(The structure that develops out of ADF3 has one hierarchical reference to ADF2. As previously mentioned, the invocation of ADF2 is done with a constant (9.737455E-01) so this invocation of ADF2 produces a 259 H inductor.

(Most importantly, the structure that develops out of ADF3 creates a capacitor (C39) whose sizing, F(ARG0), is a function of the dummy variable, ARG0, of automatically defined function ADF3. Capacitor C39 has different sizing on different invocations of automatically defined function ADF3.

(The combined effect of ADF3 is to insert the following three components:

• an unparameterized 5,130 uF capacitor,

• a parameterized capacitor C39 whose component value is dependent on ARG0 of ADF3, and

• a parameterized inductor (created by ADF2) whose sizing is parameterized, but which, in practice, is called with a constant value.

Amount and kind of reuse (architecture-altering operations)

ARCHITECTURE-ALTERING OPERATORS

SPECIALIZATION – REFINEMENT – CASE SPLITTING

(Branch duplication

(Argument duplication

(Branch creation

(Argument creation

GENERALIZATION

(Branch deletion

(Argument deletion

program with 1 two-argument automatically defined function (ADF0) and 1 result-producing branch – argument map of {2}

 EMBED Word.Picture.8

Program with argument map of {2, 2} created using the operation of branch duplication

Program with argument map of {3} created using the operation of argument duplication

 EMBED Word.Picture.8

Emergence of a Parameterized Argument in a Circuit Substructure

Hierarchy of Branches for the best-of-run circuit- from generation 158

 EMBED Word.Picture.8

BBB320
FREE VARIABLE (INPUT) AND CONDITIONALS

SOLVING A QUADRATIC EQUATION USING THE genetic algorithm (GA)

(Suppose we want the 2 roots of the quadratic equation

[image: image54.wmf]0

2

3

1

2

=

+

-

x

x

(Using the genetic algorithm (GA) operating on a fixed-length character string, we can search a space of encodings using an alphabet size of 2 (i.e., binary) of length, say, 16 representing two real numbers (each with, say, 4 bits to left of the "decimal" point). After running the GA, a solution is

 (| (
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0

 1.0 2.0

(Alternatively, we could use a "floating point" genetic algorithm (GA) to search a space of 2-part encodings. A solution is

1.0
2.0

(In either case, the result is a solution to ONE INSTANCE of the quadratic equation problem.

SOLVING A QUADRATIC EQUATION USING genetic programming (GP)

(Using genetic programming (GP), we can solve the general, parameterized quadratic equation

[image: image55.wmf]0

2

=

+

+

c

bx

ax

by searching the space of computer programs for a program that takes a, b, and c as inputs

[image: image56.wmf]
BBB121
(The result is a solution to ALL INSTANCES of the quadratic equation problem

GENERAL APPEARANCE OF ONE POSSIBLE CHROMOSOME ENCODING USED TO SOLVE ONE INSTANCE OF A CIRCUIT PROBLEM USING THE GENETIC ALGORITHM (GA) OPERATING ON FIXEd-LENGTH CHARACTER STRINGS

EXAMPLE CIRCUIT

[image: image57.wmf]
 1st Component | 2nd Component | 3rd Component | 4th Component

L
.220
2
3
C
403.
3
6
L
.528
6
9
L
.041
9
0

THE GENERAL APPEARANCE OF EXPRESSIONS USED TO SOLVE ONE INSTANCE OF A CIRCUIT PROBLEM USING GENETIC PROGRAMMING (GP) IN GENETIC PROGRAMMING III (1999)

[image: image58.wmf]
(LIST (C (– 0.963 (– (– -0.875 -0.113) 0.880)) (series (flip end) (series (flip end) (L -0.277 end) end) (L (– -0.640 0.749) (L -0.123 end)))) (flip (nop (L -0.657 end)))))

EXAMPLE CIRCUIT (GEn 0)

[image: image59.wmf]
TWO APPROACHES TO VALUE-SETTING SUBTREES ASSOCIATED WITH A COMPONENT-CREATING FUNCTION

ARITHMETIC-PERFORMING SUBTREE

[image: image60.wmf]
SINGLE PERTURBABLE CONSTANT

[image: image61.wmf]
ADDING A FREE VARIABLE, SUCH AS F, TO AN ARITHMETIC PERFORMING

CREATES A VALUE-SETTING SUBTREE WITH A FREE VARIABLE

[image: image62.wmf]
(The constants can be perturbable during the run (preferred method) or fixed at generation 0 (older method).

3 APPROACHES

("Parameterized" lowpass filter using a free variable

("Generalized" low-pass/highpass filter using conditional developmental operators and 2 free variables

("Generalized" "parameterized" low-pass/highpass filter using conditional developmental operators and 2 free variables

"Parameterized" lowpass filter

(Passband to ends at frequencies F = 1,000, 1,780, 3,160, 5,620, 10,000, 17,800, 31,600, 56,200, 100,000 Hz
[image: image63.wmf]

[image: image64.wmf]f

L

7

10

0198

.

8

1

´

=

[image: image65.wmf](

)

(

)

(

)

f

f

f

f

f

f

f

f

L

ln

10

4451

.

2

ln

10

4636

.

3

10

3714

.

9

10

3331

.

1

10

7387

.

4

10

3406

.

1

2

8

12

2

5

16

12

8

+

´

»

+

+

´

+

´

+

´

+

´

´

=

-

[image: image66.wmf]f

f

L

ln

2

10

0262

.

2

3

8

+

´

=

[image: image67.wmf]f

L

7

10

7297

.

3

4

´

=

[image: image68.wmf]f

C

5

10

6786

.

1

1

´

=

[image: image69.wmf]f

C

5

10

6786

.

1

2

´

=

[image: image70.wmf]f

C

5

10

3552

.

1

3

´

=

[image: image71.wmf]f

C

5

10

4484

.

6

4

´

=

[image: image72.wmf]f

C

5

10

1056

.

1

5

´

=

"parameterized" lowpass filter (CONTINUED

behavior in the frequency domain from generation 78 for each of nine values of the free variable f
[image: image73.png]
BBB2292
"Generalized" LOWPASS/HIGHPASS FILTER

Best-of-run individual FROM GENERATION 47 FOR CASE when inputs call for lowpass filter (I. E., THE two free variables, F1 and F2, ARE (10,000, 20,000)

[image: image74.wmf]
Frequency domain behavior of best-of-run individual when inputs call for lowpass filter

[image: image75.wmf]
"Generalized" LOWPASS/HIGHPASS FILTER(CONTINUED

Best-of-run individual FROM GENERATION 47 FOR CASE when inputs call for highpass filter (I.E. THE two free variables, F1 and F2, ARE (20,000, 10,000)

[image: image76.wmf]
BBB2303
Frequency domain behavior of best-of-run individual when inputs call for highpass filter

[image: image77.wmf]
BBB2303

"Generalized" AND "PARAMETERIZED" LOWPASS/HIGHPASS FILTER

Best-of-run circuit FROM GENERATION 93 when inputs call for a highpass filter

[image: image78.wmf]
Frequency domain behavior

[image: image79.wmf]
Formulae for HIGHpass filter

(The following formulae (all of which have the frequency F1 in the denominator) represent the relationship between the component value and frequency for the highpass filter.

[image: image80.wmf]1

100

1

000

,

100

1

F

F

F

nF

C

m

=

=

[image: image81.wmf]1

2

.

57

1

200

,

57

4

,

2

F

F

F

nF

C

C

m

=

=

[image: image82.wmf]1

9

.

49

1

900

,

49

6

,

5

,

3

F

F

F

nF

C

C

C

m

=

=

[image: image83.wmf]1

3

.

56

1

000

,

300

,

56

5

,

4

,

3

,

2

,

1

F

H

F

H

L

L

L

L

L

=

=

m

[image: image84.wmf]1

113

1

000

,

000

,

113

6

F

H

F

H

L

=

=

m

(This inverse proportionality is exactly what you would expect as a means to make a filter scalable over a wide range of frequencies when the impedance (i.e., the load and source resistance here) is fixed (Van Valkenburg 1982).

(The equation above yields a value of 113,000 (H for L6 for F1= 1,000Hz, whereas table 1 shows a value of 100,000 (H. This slight discrepancy for L6 is an artifact of our limiting of component values in the final circuit to a prespecified range.

"Generalized" AND "PARAMETERIZED" LOWPASS/HIGHPASS FILTER

Best-of-run circuit FROM GENERATION 93 when inputs call for a lowpass filter

[image: image85.wmf]
Frequency domain behavior

[image: image86.wmf]
Formulae for lowpass filter

(Plots for the parameterized lowpass filter reveal that the component values for the six distinct components for all nine frequencies also lie along straight lines.

(The following formulae (all of which have the frequency F1 in the denominator) represent the relationship between the component value and frequency in the parameterized lowpass filter.

[image: image87.wmf]1

113

1

000

,

000

,

113

1

F

H

F

H

L

=

=

m

[image: image88.wmf]1

218

1

000

,

000

,

218

4

,

3

,

2

F

H

F

H

L

L

L

=

=

m

[image: image89.wmf]1

9

.

58

1

000

,

900

,

58

5

F

H

F

H

L

=

=

m

[image: image90.wmf]1

183

1

000

,

183

1

F

F

F

nF

C

m

=

=

[image: image91.wmf]1

219

1

000

,

219

3

,

2

F

F

F

nF

C

C

m

=

=

[image: image92.wmf]1

7

.

91

1

700

,

91

4

F

F

F

nF

C

m

=

=

Common Parameterized Controller FOR TWO FAMILIES OF PLANTS

(Family of n-lag plants (n = 3, 4, and 8)

[image: image93.wmf]n

s

s

G

)

1

(

1

)

(

+

=

(Family of plants ((= 0.2, 0.5, and 0.7)

[image: image94.wmf])

1

)(

1

)(

1

)(

1

(

1

)

(

3

2

s

s

s

s

s

G

a

a

a

+

+

+

+

=

Common Parameterized Controller FOR TWO FAMILIES OF PLANTS

(The numerical parameter value for each signal processing block possessing a parameter is established by an arithmetic-performing subtree

(The terminal set, Taps, for the arithmetic-performing subtrees is

Taps = {(, L, TR, KU, TU}

(((perturbable numerical values (from 10-3 and 103)

(Tr (time constant

(L (dead time

(Ku (ultimate gain (the minimum value of the gain in the feedback path to cause a system to oscillate

(Tu (ultimate period (the period of this lowest frequency oscillation

(The function set, Faps, for the arithmetic-performing subtrees is

Faps = {ADD_NUMERIC, SUB_NUMERIC, MUL_NUMERIC, DIV_NUMERIC, REXP, RLOG}

Common Parameterized Controller FOR TWO FAMILIES OF PLANTS

[image: image95.wmf]
BBB2280

[image: image96.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

s

T

L

K

e

K

K

s

T

K

s

T

s

T

s

U

u

u

K

T

u

u

r

u

u

r

u

r

1

334419

.

1

ln

1

ln

ln

1

ln

1

1

)

(

2

-

+

+

+

+

+

+

+

=

-

Coefficients of PID controller equivalent to the best-of-run controller from generation 217

[image: image97.wmf](

)

(

)

(

)

(

)

u

u

r

u

u

T

K

T

T

K

K

ln

1

ln

+

+

=

[image: image98.wmf](

)

r

u

d

T

K

K

ln

=

[image: image99.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

u

u

K

T

u

u

u

i

T

L

K

e

K

K

K

K

u

r

1

33419

.

1

ln

1

ln

ln

ln

1

ln

-

+

+

+

+

+

=

-

DEVELOPMENTAL GENETIC PROGAMMING

THE INITIAL CIRCUIT

(Initial circuit consists of embryo and test fixture

(Embryo has modifiable wires (e.g., Z0 AND Z1)
(Test fixture has input and output ports and usually has source resistor and load resistor. There are no modifiable wires (or modifiable components) in the test fixture.

(Circuit-constructing program trees consist of

(Component-creating functions

(Topology-modifying functions

(Development-controlling functions

(Circuit-constructing program tree has one result-producing branch for each modifiable wire in embryo of the initial circuit

(There is a writing head linking each modifiable wire (or modifiable component) with one point of the program tree

[image: image100.wmf]C

FLIP

LIST

1

2

3

-

DEVELOPMENT OF A CIRCUIT FROM A CIRCUIT-CONSTRUCTING PROGRAM TREE AND THE INITIAL CIRCUIT

(LIST (C (– 0.963 (– (– -0.875 -0.113) 0.880)) (series (flip end) (series (flip end) (L -0.277 end) end) (L (– -0.640 0.749) (L -0.123 end)))) (flip (nop (L -0.657 end)))))

[image: image101.wmf]
BBB088
RESULT OF THE C (2) FUNCTION

[image: image102.wmf]
(LIST (C (– 0.963 (– (– -0.875 -0.113) 0.880)) (series (flip end) (series (flip end) (L -0.277 end) end) (L (– -0.640 0.749) (L -0.123 end)))) (flip (nop (L -0.657 end)))))

NOTE: Interpretation of arithmetic value

RESULT OF THE FLIP (3) – IN 2nd RESULT-PRODUCING BRANCH

[image: image103.wmf]
(LIST (C (– 0.963 (– (– -0.875 -0.113) 0.880)) (series (flip end) (series (flip end) (L -0.277 end) end) (L (– -0.640 0.749) (L -0.123 end)))) (flip (nop (L -0.657 end)))))

RESULT OF SERIES (5) FUNCTION

[image: image104.wmf]
(LIST (C (– 0.963 (– (– -0.875 -0.113) 0.880)) (series (flip end) (series (flip end) (L -0.277 end) end) (L (– -0.640 0.749) (L -0.123 end)))) (flip (nop (L -0.657 end)))))

EVALUATION OF FITNESS OF A CIRCUIT

[image: image105.wmf]Program Tree

+

IN

OUT

z0

Embryonic Circuit

Fully Designed Circuit (NetGraph)

Circuit Netlist (ascii)

Circuit Simulator (SPICE)

Circuit Behavior (Output)

Fitness

EVOLVED CAMPBELL FILTER

(7-RUNG LADDER)

[image: image106.wmf]
(This genetically evolved circuit infringes on U. S. patent 1,227,113 issued to George Campbell of American Telephone and Telegraph in 1917 (claim 2)

AUTOMATIC Topology, Sizing, Placement, and Routing of Circuits

BEST OF GENERATION 0

[image: image107.wmf]L-LAYOUT

V1

PARALLEL-

LAYOUT-LEFT

FLIP

C-LAYOUT

FLIP

FLIP

FLIP

NOOP

END

-

FLIP

FLIP

END

-

+

0.656

-0.507

-0.463

-0.970

SERIES-

LAYOUT

C-LAYOUT

-0.776

END

VIA-TO-GROUND-

NEG-LEFT-LAYOUT

END

END

END

NOOP

L-LAYOUT

-0.765

END

LAYOUT (LOWPASS FILTER (RESULTS

Best circuit of generation 0 containing two inductors (L2 and L11) and two capacitors (C10 and C19)

[image: image108.wmf]RLOAD

(11.8,7.7)

1K

G

V0

L2

(1.2,7.7)

17uH

G

G

RSRC

(-7.8,7.7)

1K

L11

(5.2,4.7)

5.82uH

C19

(1.2,-3.2)

393nF

C10

(-2.7,4.2)

0.167nF

VOUT

LAYOUT (LOWPASS FILTER (RESULTS

Best circuit of generation 8 containing five inductors and three capacitors

[image: image109.wmf]L2

(-11.5,-6)

78800uH

RLOAD

(21,-6)

1K

RSRC

(-18.5,-6)

1K

L10

(14.5,-6)

158000uH

L11

(2.5,-6)

8.91uH

L12

(-5.5,-6)

78800uH

L13

(-11.5,8)

78800uH

C16

(8.5,8)

131nF

C18

(-1.5,-3)

1.18nF

G

V

G

G

C19

(5.5,2)

131nF

VOUT

LAYOUT (LOWPASS FILTER

100%-compliant CIRCUITS

generation 25 WITH 5 capacitors and 11 inductors (area of 1775.2

[image: image110.wmf]RLOAD

(39,-2.8)

1K

RSRC

(-38.5,-2.8)

1k

L2

(-24.5,-2.8)

90200uH

G

V0

C13

(-31.5,8.2)

8.91nF

L9

(17.5,-2.8)

90200uH

L10

(0.5,-2.8)

90200uH

L11

(-5.5,-2.8)

90200uH

L12

(-11.5,-2.8)

90200uH

L16

(-17.5,8.2)

42700uH

C19

(-25.5,8.2)

1.75nF

L23

(-5.5,-7.2)

90200uH

L26

(9.5,-2.8)

90200uH

C29

(5.5,4)

311nF

L31

(32.5,-2.8)

90200uH

L33

(17.5,8.2)

90200uH

L32

(23.5,-2.8)

90200uH

G

G

G

G

G

C17

(-21.5,4.2)

165nF

C40

(28.5,0.2)

295nF

VOUT

generation 30 WITH 10 inductors and 5 capacitors (area of 950.3

[image: image111.wmf]VOUT

RSRC

(-31.5,-3.2)

1K

G

V

L2

(16.5,-3.2)

127000uH

L9

(29.5,-3.2)

63500uH

L10

(8.5,-3.2)

63500uH

L11

(16.5,6.5)

63500uH

C13

(12.5,1)

0.317nF

C19

(23,0.8)

176uH

L22

(0.5,-3.2)

319000uH

C25

(4.5,0.9)

256nF

L28

(-26.5,-3.2)

96000uH

C32

(-3.5,0.9)

256nF

L34

(-20.5,-3.2)

96000uH

L35

(-6.5,-3.2)

288000uH

L37

(-14.5,-3.2)

0.214uH

C38

(-10.5,0.9)

256nF

L40

(-20.5,6.5)

96000uH

G

G

G

G

G

RLOAD

(36,-3.2)

1K

best-of-run circuit of generation 138 WITH 4 inductors and 4 capacitors (area of 359.4

[image: image112.wmf]RLOAD

(17.5,5.4)

1K

RSRC

(-16,5.4)

1K

L38

(11,5.4)

96100uH

V

G

G

C12

(-10,0.5)

155nF

G

C18

(-4,1)

256nF

G

L20

(-7,5.4)

253000uH

C27

(2,1.2)

256nF

G

L29

(-1,5.4)

319000uH

C34

(8,1.4)

256nF

G

L36

(5,5.4)

288000uH

VOUT

LAYOUT (60 dB Amplifier (USING TRANSISTORS)

(Fitness is the sum of the area of the bounding rectangle for the fully developed and laid-out circuit divided by 1,000,000 plus the amplification penalty, bias penalty, and two non-linearity penalties; however, if this sum is less than 0.1 (indicating a good amplifier), the fitness becomes simply the rectangle's area divided by 1,000,000.

(The first best-of-generation circuit delivering 60 dB of amplification appears in generation 65. This 27-component circuit occupies an area of 8,234 and has an overall fitness of 33.042583.

[image: image113.wmf]
LAYOUT (60 dB Amplifier (USING TRANSISTORS)

Best-of-run circuit from generation 101

[image: image114.wmf]
LAYOUT (60 dB Amplifier (USING TRANSISTORS)

Comparison of best-of-generation circuits from generations 65 and 101

Gen
Components
Area
Four penalties
Fitness

65
27
8,234
33.034348
33.042583

101
19
4,751
0.061965
0.004751

LAYOUT (60 dB Amplifier (USING TRANSISTORS) (RESULTS

best circuit of generation 101

X and Y coordinates for of the 19 components, component value (sizing) for each capacitor and resistor, the type (npn q2n3904or pnp q2n3904) for each transistor

Component
X coordinate
Y coordinate
Sizing / Type

Q8
-8.398678
21.184582
q2n3906

C10
-8.54565
31.121107
1.01e+02nf

R21
18.245857
-24.687471
1.48e+03k

R24
12.105233
-20.687471
5.78e+03k

R27
12.105233
-12.690355
3.61e+03k

R30
5.128666
-8.690355
8.75e+01k

R33
-3.398678
-4.690355
1.16e+03k

Q36
-3.398678
3.30961
q2n3906

Q39
-3.398678
13.309582
q2n3906

Q43
-18.472164
8.309597
q2n3904

Q45
-18.472164
-1.690355
q2n3904

Q46
-3.398678
21.184582
q2n3904

Q47
5.128666
21.184582
q2n3904

Q48
-18.472164
-17.687471
q2n3904

Q49
12.105233
21.184582
q2n3904

Q50
18.245857
21.184582
q2n3904

C52
-15.472164
31.121107
1.25e-01nf

C53
-15.472164
21.184582
7.78e+03nf

Q54
24.873787
31.121107
q2n3906

CONCLUSION

(The size and shape of the solution is a major part of the problem

(Reuse of substructures

(Passing of parameters to substructures

(Amount and kind of reuse (architecture-altering operations)

(Free variables (inputs) and alternative conditional actions based on free variables

(Development

12 Authored Books on Genetic Programming

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D. 1998. Genetic Programming - An Introduction. San Francisco, CA: Morgan Kaufman Publishers and Heidelberg, Germany: dpunkt.verlag.

Babovic, Vladan. 1996b. Emergence, Evolution, Intelligence: Hydroinformatics. Rotterdam, The Netherlands: Balkema Publishers.

Blickle, Tobias. 1997. Theory of Evolutionary Algorithms and Application to System Synthesis. TIK-Schriftenreihe Nr. 17. Zurich, Switzerland: vdf Hochschul Verlag AG and der ETH Zurich. ISBN 3-7281-2433-8.

Jacob, Christian. 1997. Principia Evolvica: Simulierte Evolution mit Mathematica. Heidelberg, Germany: dpunkt.verlag. In German. English translation forthcoming in 2000 from Morgan Kaufman Publishers.

Iba, Hitoshi. 1996. Genetic Programming. Tokyo: Tokyo Denki University Press. In Japanese.

Koza, John R. 1992. Genetic Programming:On the Programming of Computers by Means of Natural Selection. Cambridge, MA: The MIT Press.

Koza, John R. 1994a. Genetic ProgrammingII: Automatic Discovery of Reusable Programs. Cambridge, MA: The MIT Press

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1999a. Genetic Programming III: Darwinian Invention and Problem Solving. San Francisco, CA: Morgan Kaufmann Publishers.

Langdon, William B. 1998. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! Amsterdam: Kluwer Academic Publishers.

Nordin, Peter. 1997. Evolutionary Program Induction of Binary Machine Code and its Application. Munster, Germany: Krehl Verlag.

Ryan, Conor. 1999. Automatic Re-engineering of Software Using Genetic Programming. Amsterdam: Kluwer Academic Publishers.

Wong, Man Leung and Leung, Kwong Sak. 2000. Data Mining Using Grammar Based Genetic Programming and Applications. Amsterdam: Kluwer Academic Publishers.

7 Conference Proceedings on GP

Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E., Garzon, Max H., Honavar, Vasant, Jakiela, Mark, and Smith, Robert E. (editors). 1999. GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, July 13-17, 1999, Orlando, Florida USA. San Francisco, CA: Morgan Kaufmann. (NOTE: GP-99 IS PART OF GECCO).

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, and Fogarty, Terence C. 1998. Genetic Programming: First European Workshop. EuroGP'98. Paris, France. Lecture Notes in Computer Science. Volume 1391. Berlin, Germany: Springer-Verlag.

Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1996. Genetic Programming 1996: Proceedings of the First Annual Conference. Cambridge, MA: The MIT Press.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, Iba, Hitoshi, and Riolo, Rick L. (editors). 1997. Genetic Programming 1997: Proceedings of the Second Annual Conference. San Francisco, CA: Morgan Kaufmann.

Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and Riolo, Rick. (editors). 1998. Genetic Programming 1998: Proceedings of the Third Annual Conference. San Francisco, CA: Morgan Kaufmann.

Poli, Riccardo, Nordin, Peter, Langdon, William B., and Fogarty, Terence C. 1999. Genetic Programming: Second European Workshop. EuroGP'99. Goteborg, Sweden, May 1999. Lecture Notes in Computer Science. Volume 1598. Berlin, Germany: Springer-Verlag.

Poli, Riccardo, Banzhaf, Wolfgang, Langdon, William B., Miller, Julian, Nordin, Peter, and Fogarty, Terence C. 2000. Genetic Programming: European Conference, EuroGP 2000, Edinburgh, Scotland, UK, April 2000, Proceedings. Lecture Notes in Computer Science. Volume 1802. Berlin, Germany: Springer-Verlag. ISBN 3-540-67339-3.

3 Edited Advances in Genetic ProgramminG Books

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advances in Genetic Programming 2. Cambridge, MA: The MIT Press.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming. Cambridge, MA: The MIT Press.

Spector, Lee, Langdon, William B., O'Reilly, Una-May, and Angeline, Peter (editors). 1999. Advances in Genetic Programming 3. Cambridge, MA: The MIT Press.

3 videotapes on GP

Koza, John R., and Rice, James P. 1992. Genetic Programming: The Movie. Cambridge, MA: The MIT Press.

Koza, John R. 1994b. Genetic Programming II Videotape: The Next Generation. Cambridge, MA: The MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, Keane, Martin A., and Brave, Scott. 1999. Genetic Programming III Videotape: Human-Competitive Machine Intelligence. San Francisco, CA: Morgan Kaufmann Publishers.

for additional information on the GP field, VISIT

WWW.genetic-programming.org

(computer code in various programming languages (including C, C++, LISP)

(Links to William Langdon’s GP bibliography

(partial list of people active in genetic programming

(list of known completed PhD theses on GP

(list of students known to be working on PhD theses on GP

(Links to GP journal entitled Genetic Programming and Evolvable Machines from Kluwer Academic Publishers

(Links to Advances in Genetic Programming book series from MIT Press

(information on GP book series by Kluwer Academic Publishers (John Koza, consulting editor)

(information for instructors of university courses on genetic algorithms and genetic programming

(International Society for Genetic and Evolutionary Computation (ISGEC) (www.iseg.org)

GENETIC PROGRAMMING (GP) LIST

(To subscribe, send e-mail message to:

Genetic-Programming-Request@CS.Stanford.Edu
(Be sure to send to exactly this address, (which includes the word "Request")!

(The BODY of your message must consist of exactly the words:

subscribe genetic-programming
_1010228040.unknown

_1020579535.unknown

_1020579589.unknown

_1024375573.unknown

_1024375606.unknown

_1020579594.unknown

_1020579600.unknown

_1020579603.unknown

_1020579597.unknown

_1020579592.unknown

_1020579545.unknown

_1020579548.unknown

_1020579543.unknown

_1010228061.unknown

_1010228071.unknown

_1010228220.unknown

_1020579510.unknown

_1010228219.unknown

_1010228218.unknown

_1010228066.unknown

_1010228049.unknown

_1010228054.unknown

_1010228045.unknown

_974131196.unknown

_1010228007.unknown

_1010228028.unknown

_1009427232.unknown

_1009427249.unknown

_1010075262.unknown

_988038642.doc
[image: image1.bmp]

progn

(ARG0 ARG1 ARG2)

defun

ARG0

*

ARG2

ARG1

*

values

VOLUME

–

values

L1

W1

H1

VOLUME

W0

H0

L0

VOLUME

_970573910.doc
[image: image1.png]

_974131194.unknown

_974131195.unknown

_972825048.vsd

_968738079.unknown

_968738080.unknown

_968738077.unknown

