
Theoretical Computer Science 336 (2005) 209–234
www.elsevier.com/locate/tcs

Combining test case generation and
runtime verification

Cyrille Arthoa,1, Howard Barringerb,2, Allen Goldbergc,
Klaus Havelundc,∗, Sarfraz Khurshidd,3, Mike Lowrye,

Corina Pasareanuf , Grigore Roşug, Koushik Seng,4, Willem Visserh,
Rich Washingtonh

aComputer Systems Institute, ETH Zurich, Switzerland
bSchool of Computer Science, University of Manchester, UK

cKestrel Technology, USA
dUT ARISE, University of Texas at Austin, USA

eNASA Ames Research Center, USA
fKestrel Technology, NASA Ames Research Center, USA

gDepartment of Computer Science, Univ. of Illinois at Urbana-Champaign, USA
hRIACS, NASA Ames Research Center, USA

Abstract

Softwaretesting is typically an ad hoc process where human testers manually write test inputs and
descriptions of expected test results, perhaps automating their execution in a regression suite. This
process is cumbersome and costly. This paper reports results on a framework to further automate this
process. The framework consists of combining automated test case generation based on systematically
exploring the input domain of the program with runtime verification, where execution traces are
monitored and verified against properties expressed in temporal logic. Capabilities also exist for
analyzing traces for concurrency errors, such as deadlocks and data races. The input domain of
the program is explored using a model checker extended with symbolic execution. Properties are

∗Corresponding author.
E-mail address:havelund@kestreltechnology.com(K. Havelund).

1Cyrille Artho is grateful to QSS for the partial support provided to conduct this research.
2HowardBarringer is grateful toRIACS/USRAand theUK’sEPSRCunder grantGR/S40435/01for the partial

support provided to conduct this research.
3Sarfraz Khurshid is grateful to RIACS/USRA for the partial support provided to conduct this research.
4Koushik Sen is grateful to RIACS/USRA for the partial support provided to conduct this research.

0304-3975/$ - see front matter © 2004 Published by Elsevier B.V.
doi:10.1016/j.tcs.2004.11.007

http://www.elsevier.com/locate/tcs
mailto:havelund@kestreltechnology.com

210 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

formulated in an expressive temporal logic. A methodology is advocated that automatically generates
properties specific to each input rather than formulating properties uniformly true for all inputs. The
paper describes an application of the technology to a NASA rover controller.
© 2004 Published by Elsevier B.V.

Keywords:Automated testing; Test case generation; Model checking; Symbolic execution; Runtime verification;
Temporal logic; Concurrency analysis; NASA rover controller

1. Introduction

Aprogram is typically tested bymanually creating atest suite, which in turn is a set oftest
cases. An individual test case is a description of a singletest inputto the program, together
with a description of thepropertiesthat the corresponding output is expected to have.
This manual procedure may be unavoidable since for real systems writing test cases is an
inherently innovative process requiring human insight into the logic of the application being
tested. However, we believe that a non-trivial part of the testing workcanbe automated.
Evidence is found inaprevious casestudy,wherean8000-line Javaapplicationwas testedby
different student groups using different testing techniques[12]. It was observed that the vast
majority of faults that were found in this system could have been found in a fully automatic
way. We suggest a framework for generating and executing test cases in an automated way
as illustrated by Fig. 1. For a particular application to be tested, one establishes a test harness
consisting of two modules: atest case generatorand anobserver.
The test case generator takes as input a model of the input domain of the application to be

tested. Themodel furthermore describes amapping from input values to properties: for each
input element, the model defines what properties an execution on that input should satisfy.
The test case generator automatically generates inputs to the application. For each generated
input a set of properties is generated. The input is fed to the program, which executes,
generating an execution trace. The observer module checks the trace against the generated
set of properties. Hence, it takes the execution trace and the set of generated properties
as input. The program itself must be instrumented to report events that are relevant for
monitoring that the properties are satisfied on a particular execution. This instrumentation
can in some cases be automated. In the rest of this paper the termtest case generationis used
to refer to test input generation and property generation and the termruntime verification
is used to refer to instrumentation as well as observation.
Test cases are generated using the JAVA PATHFINDERmodel checker extended with tech-

niques for symbolic execution and the properties generated are expressed in the EAGLE

temporal logic, capable of embedding most temporal logics. The framework described is
being applied to a case study, a multi-threaded NASA rover controller written in C++
(35,000 lines of code), which interprets and executes complicated activity plans. The in-
dividual techniques, model checking with symbolic execution and runtime verification in
EAGLE, have been described elsewhere, respectively in [37,8]. The contribution of this paper
is to demonstrate their combination on a realistic case study. A special characteristic is that
the properties to be verified are generated automatically from the inputs to the program to
be tested.

C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234 211

Application trace Observerinput
generator
Test case

Model
input/output

Properties

Fig. 1. Test case generation and runtime verification.

The paper is organized as follows. Section2 outlines our technology for test case gener-
ation: symbolic execution and model checking. Section 3 describes the runtime verification
techniques: temporal logic monitoring and concurrency analysis. Section 4 describes the
case study, where these technologies are applied to a planetary rover controller. Section 5
outlines some related work. Section 6 concludes the paper and outlines how this work will
be continued.

2. Test case generation

This section presents the test case generation framework. As mentioned earlier,
test case generation is considered as consisting oftest input generationand property
generation.

2.1. Test input generation

2.1.1. Model-based testing
In practice today, thegenerationof test inputs for aprogramunder test is a time-consuming

and mostly manual activity. However, test input generation lends itself to automation and
therefore has been the focus of much research attention—recently it has also been adopted
in industry [50,66,16,26]. There are two main approaches to generating test inputs auto-
matically: a static approach that generates inputs from some kind of model of the system,
also called model-based testing, and a dynamic approach that generates tests by executing
the program repeatedly, while employing criteria to rank the quality of the tests produced
[40,65]. The dynamic approach is based on the observation that test input generation can be
seen as an optimization problem, where the cost function used for optimization is typically
related to code coverage, e.g. statement or branch coverage. Themodel-based test input (test
case) generation approach is used more widely, e.g. the TGV tool [64] for the generation of
conformance test suites for protocols, and the AGEDIS tool [1] for automated generation
and execution of test suites for distributed component-based software; see also Hartman’s
survey of the field [30]. The model used for model-based testing is typically a model of
expected system behavior and can be derived from a number of sources, namely, a model
of the requirements, use cases, design specifications of a system [30]—even the code itself

212 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

can be used to create a model, e.g. approaches based on symbolic execution[39,50]. As
with the dynamic approach, it is most typical to use some notion of coverage of the model
to derive test inputs, i.e., generate inputs that cover all transitions, or branches, etc., in the
model. Constructing a model of the expected system behavior can be a costly process. On
the other hand, generating test inputs just based on a specification of the input structure and
input pre-conditions can be very effective, while typically less costly. This is the approach
pursued in the following.
In [37] a framework is presented that combinessymbolic executionand model checking

techniques for the verification of Java programs. The framework can be used for test input
generation forwhite-boxandblack-boxtesting. For white-box test input generation, the
framework model checks the program under test. A testing coverage criterion, e.g. branch
coverage, is encoded in a temporal logic specification.Counter-examples to the specification
represent paths that satisfy the coverage criterion. Symbolic execution, which is performed
during model checking, computes a representation, i.e., a set of constraints, of all the inputs
that execute those paths. The actual testing requires solving the input constraints in order to
instantiate test inputs that can be executed. The framework can also be used for black-box
test input generation. In this case, the inputs to the program under test are described by a
Java input specification, i.e., a Java program, annotated with special instructions to model
non-determinism and to encode constraints, for symbolic execution. The framework is then
used to check this Java specification, i.e., to systematically explore the input domain of
the program under test and to generate inputs according to this specification. It is in this
latter context (black-box) that we use the framework from [37] in this paper. Note that for
black-box test input generation, only the input specification is required to be expressed in
Java; the program under test can be written in another language, e.g. C++ as it is the case
for this paper. Note that in writing input specifications, we can take full advantage of the
expressive power of the Java language and thus we can easily express inputs with complex
structure, e.g. linked lists, red-black search trees, executive plans.
Usingsymbolicexecution for test inputgeneration isawell-knownapproach,but typically

only handles sequential code with simple data. In [37], this technique has been extended to
handle complex data structures, e.g. lists and trees, concurrency as well as linear constraints
on integer data. Symbolic execution of a program path results in a set of constraints that
define program inputs that execute the path; these constraints are then solved using off-the-
shelf decision procedures to generate concrete test inputs. When the program represents an
executable input specification, symbolic executionof the specificationenablesus to generate
inputs that give us, for instance, full specification coverage. Note that these specifications
are typically not very large—no more than a few thousand lines, in our experience—and
hence will allow efficient symbolic execution.

2.1.2. Symbolic execution
The enabling technology for black-box test input generation from an input specification

is the use of symbolic execution. In fact, the same techniques can be applied for white box
testing. The main idea behind symbolic execution [39] is to use symbolic values, instead
of actual data, as input values and to represent the values of program variables as symbolic
expressions. The state of a symbolically executed program includes, in addition to the
symbolic values of program variables and the program counter, a path condition. The path

C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234 213

int x, y;

read x,y;

1: if (x > y) {

2: x = x + y;

3: y = x - y;

4: x = x - y;

5: if (x > y)

6: assert(false);

}

x: Y, y: X
PC: X>Y

x: X+Y, y: X
PC: X>Y

x: X+Y, y: Y
PC: X>Y

x: X, y: Y
PC: X>Y

x: X, y: Y
PC: true

x: X, y: Y
PC: X<=Y

PC: X>Y & Y<=X
x: Y, y: X

FALSE!
PC: X>Y & Y>X
x: Y, y: X

5 5

4

3

2

1 1

Fig. 2. Code for swapping integers and corresponding symbolic execution tree.

condition is a quantifier-free Boolean formula over the symbolic inputs; it accumulates
constraints which the inputs must satisfy in order for an execution to follow the particular
associatedpath.Asymbolic execution tree characterizes theexecutionpaths followedduring
the symbolic execution of a program. The nodes represent program states and the arcs
represent transitions between states.
Consider as an example, taken from[37], the code fragment in Fig. 2, which swaps

the values of integer variablesx andy , whenx is greater thany . Fig. 2 also shows the
corresponding symbolic execution tree. Initially, the path condition,PC, is trueandx and
y have symbolic valuesX andY, respectively. At each branch point,PC is updated with
assumptions about the inputs according to the alternative possible paths. For example, after
the execution of the first statement, boththen andelse alternatives of theif statement
are possible andPCis updated accordingly. If the path condition becomesfalse, i.e., there is
no set of inputs that satisfy it, it means that the symbolic state is not reachable and symbolic
execution does not continue for that path. For example, statement(6) is unreachable. In
order to find a test input to reach branch statement(5) one needs to solve the constraint
X > Y, e.g. make inputsx andy , 1 and 0, respectively.
Symbolic execution traditionally arose in the context of sequential programs with a fixed

number of integer variables. We have extended this technique [37] to handle dynamically
allocated data structures, e.g. lists and trees, complex preconditions, e.g. lists that have to be
acyclic, other primitive data, e.g. strings, and concurrency.A key feature of our algorithm is
that it starts the symbolic execution of a procedure onuninitialized inputs and it useslazy
initialization to assign values to these inputs, i.e., it initializes parameters when they are
first accessed during symbolic execution of the procedure. This allows symbolic execution
of procedures without requiring an a priori bound on the number of input objects. Procedure
preconditions are used to initialize inputs only with valid values.

214 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

 Model
checking

Decision
procedures

path condition (data)
heap configuration

test coverage
criterion

test suite
[constraints on inputs]

state
input specification

continue/backtrack

Fig. 3. Framework for test input generation.

2.1.3. Framework for test input generation
Our symbolic execution-based framework is built on top of the JAVA PATHFINDER (JPF)

model checker[67]. JPF is an explicit-state model checker for Java programs that is built
on top of a custom-made Java virtual machine (JVM). It can handle all of the language
features of Java and in addition treats non-deterministic choice expressed in annotations of
the program being analyzed. JPF has been extended with a symbolic execution capability
which is described in detail in [37].
Fig. 3 illustrates our framework for test input generation. The input specification is given

as a non-deterministic Java program that is instrumented to add support for manipulat-
ing formulas that represent path conditions. The instrumentation enables JPF to perform
symbolic execution. Essentially, the model checker explores the symbolic state space of
the program, for example, the symbolic execution tree in Fig. 2. A symbolic state includes
information about the heap configuration and the path condition on integer variables.When-
ever a path condition is updated, it is checked for satisfiability using an appropriate decision
procedure; currently our system uses the Omega library [52] that manipulates linear integer
constraints. If the path condition is unsatisfiable, the model checker backtracks. A testing
coverage criterion is encoded in the property the model checker should check for. This
causes the model checker to produce a counter-example trace, that represents a path that
satisfies the coverage criterion. The model checker also outputs the input constraints for
this path. Finding a solution to these constraints will allow a valid set of test data to be
produced. Currently a simple approach is used to find these solutions: only the first solution
is considered, using an off-the-shelf constraint solver. In future work we will refine the
solution discovery process to also consider characteristics such as boundary cases.
Currently, themodel checker is not required to perform statematching, since statematch-

ing is, in general, undecidable when states represent path conditions on unbounded data.
Note that symbolic execution performed on programs with loops can explore infinite exe-
cution trees, hence symbolic execution might not terminate. Therefore, for systematic state
space exploration, limited depth-first search or breadth-first search is used; our framework
also supports various heuristic search strategies, for example, based on branch coverage [27]
or random search.

C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234 215

2.2. Property generation

Any verification activity is in essence a consistency check between two artifacts. In the
framework presented here the check is between the execution of the program on a given
input and an automatically generated specification for that given input, consisting of a
set of properties about the corresponding execution trace. In other contexts it may be a
check of the consistency between the program and a complete specification of the program
under all inputs. This redundancy of providing a specification in addition to the program is
expensive but necessary. The success of a verification technology partly depends on the cost
of producing the specification. The hypothesis of this work is twofold. First, focusing on
the test effort itself and writing “testing-oriented” properties, rather than a complete formal
specification, may be a cheaper development process. Second, automatically generating the
specification from the input may be easier than writing a specification for all inputs.
More precisely, the artifact produced here is a program that takes an input to the program

under test and generates a set of properties representing the test oracle. The properties are
assertions in temporal logic, which are then checked against the program execution using
the runtime verification tools described in Section3.
This approach leverages the runtime verification technology to great effect, just as test

casegeneration leveragesmodel checkingandsymbolicexecution. Inaddition,weanticipate
the development of property generation tools specific to a domain or class of problems. The
software under test in our case study is an interpreter for a plan execution language. In this
circumstance, the program to generate properties uses the grammar of the plan language.
Several of NASA’s software systems have an interpreter structure and it is anticipated that
this testing approach can be applied to several of these as well.

3. Runtime verification

Runtime verification is divided into two parts:instrumentationandevent observation. A
monitor receives events from the executing program, emitted by event generators inserted
during instrumentation, and dispatches them to a collection of algorithms, each of which
performs a specialized trace analysis.We consider two kinds of such algorithms: the EAGLE

temporal logicmonitor and three concurrency analyzers, that can detect deadlock potentials,
as well as two kinds of data race potentials. The concurrency analyzers are currently not
yet fully integrated in the presented testing environment, but are mentioned since they form
an interesting addition to temporal logic monitoring, experiments have been made and the
intention is to integrate them.
Instrumentation can be achieved by code instrumentation or code wrapping. In the code

instrumentation approach, code that generates the event stream is manually or automati-
cally inserted into source or object code. In the wrapping approach, calls to system library
functions within user-defined methods are replaced with calls to wrapper functions that
generate the event stream and make the system calls. As an example, Purify [53] uses code
instrumentation to check against illegal reads (whether e.g.*p accesses a valid address),
and uses wrapping to trace memory allocations and deallocations.
Our experiments have used manual source code instrumentation as well as manual wrap-

ping. The source code instrumentation approach is used to generate events for the temporal

216 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

logic monitoring. The wrapping approach is used to generate events for the deadlock con-
currency analysis, where POSIX thread[48] lock andunlockmethods are wrapped and
instrumented. In other work, we describe an instrumentation package, named JSpy [24],
that automatically instruments Java bytecode. However, this could not be applied here as
the code to be tested is written in C++. An automated instrumentation is necessary in order
to perform data race analysis since all accesses to shared variables need to be monitored.

3.1. Temporal logic monitoring withEAGLE

Many different languages and logics have been proposed for specifying and analyzing
properties of program state or event traces, each with characteristics that make it more or
less suitable for expressing various classes of trace properties; they range from stream-
based functional, state chart, single-assignment and dataflow languages, through pattern-
matching languages based on regular (and extended regular) expressions, to a whole host
of modal and, in particular, linear-time temporal logics (LTL). In Section 5, such languages
and logics that have been applied directly to runtime verification are discussed more fully.
Since for runtime verification one is interested in analyzing traces, the framework of LTL
[51] appeared most appropriate for our own work, but none of the proposed temporal
logics for runtime verification, of which we were aware, provided the right combination of
expressivity, naturalness, flexibility, effectiveness and ease of use we desired. Of course,
more often than not, it can be observed that the greater the expressivity of the property
specification logic, the higher the computational cost for its analysis. As a consequence
this has led us in the past to research efficient algorithms for the evaluation of restricted
sub-logics, e.g. pure past-time LTL, pure future-time LTL, extended regular expressions,
metric temporal logic (MTL) and so forth. But we were dissatisfied that (i) we had no
unifying base logic from which these different temporal logics could be built and (ii) we
were overly restrictive on the way properties could be expressed, e.g. forcing pure past, or
pure future, etc. Our research thus led us to develop and implement a core, discrete temporal
logic, EAGLE, that supports recursively defined formulas, parameterizable by both logical
formulas and data expressions, over a set of four primitive modalities corresponding to
the “next”, “previous”, “concatenation” and “sequential temporal composition” operators.
The logic, whilst simple, is expressively rich and enables users to define their own set of
more complex temporal predicates tuned to the particular needs of the run-time verification
application. Indeed, in [8] it is shownhowa rangeof finite-tracemonitoring logics, including
future-time and past-time temporal logic, extended regular expressions, real-time andMTL,
interval logics, forms of quantified temporal logics and context free temporal logics, can be
embedded within EAGLE. However, in order to be truly fit for purpose, the implementation
of EAGLE must ensure that “users only pay for what they use”.

3.2. Syntax ofEAGLE

The syntax of EAGLE is shown in Fig. 4. A specificationSconsists of a declaration partD
andanobserver partO.Thedeclarationpart,D, comprises zeroormore ruledefinitionsRand
similarly, the observer part,O, comprises zero ormoremonitor definitionsM, which specify
the properties that are to be monitored. Both rules and monitors are named (N), however,

C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234 217

S ::= D O

D ::= R∗
O ::= M∗
R ::= {max | min } N(T1 x1, . . . , Tn xn) = F

M ::= monN = F

T ::= Form | primitive type
F ::= True | False | xi | expression

¬F | F1 ∧ F2 | F1 ∨ F2 | F1 → F2 | F1 ↔ F2
©F | ⊙

F | F1 · F2 | F1; F2 | N(F1, . . . , Fn)

Fig. 4. Syntax of EAGLE.

rulesmaybe recursively defined,whereasmonitors are simply non-recursive formulas. Each
rule definitionRis preceded by a keywordmaxormin, indicatingwhether the interpretation
given to the rule is either maximal or minimal. Rules may be parameterized; hence a rule
definition may have formal arguments of typeForm, representing formulas, or of primitive
type int , long, float, etc., representing data values.
An atomic formula of the logic is either a logical constantTrue or False, or a Boolean

expression over the observer state, or a type correct formal argumentxi , i.e., of typeForm or
of primitive typebool. Formulas can be composed in the usual way through the traditional
set of propositional logic connectives,¬,∧,∨,→ and↔. Temporal formulas are then built
using the two monadic temporal operators,©F (in the next stateF holds) and

⊙
F (in

the previous stateF holds) and the dyadic temporal operators,F1 · F2 (concatenation) and
F1; F2 (sequentially compose). Importantly, a formulamay also be the recursive application
of a rule to some appropriately typed actual arguments. That is, an argument of typeForm
can be any formula, with the restriction that if the argument is an expression, it must be of
Boolean type; an argument of a primitive type must be an expression of that type.
The body of a rule/monitor is thus a (Boolean-valued) formula of the syntactic category

Form (with meta-variablesF, etc.). We further require that any recursive call on a rule is
strictly guarded by a temporal operator.

3.3. Semantics ofEAGLE

The models of our logic are execution traces. An execution trace� is a finite sequence of
observed program states� = s1s2 · · · sn, where|�| = n is the length of the trace. Note that
the ith statesi of a trace� is denoted by�(i) and the term�[i,j] denotes the sub-trace of
� from positioni to positionj, both positions being included. The semantics of the logic is
then defined in terms of a satisfaction relation between execution traces and specifications.
That is, given a trace� and a specificationD O, satisfaction is defined as follows:

��D O iff ∀ (monN = F) ∈ O . �,1�DF.

A trace satisfies a specification if the trace, observed from position 1 — the index of the
first observed program state — satisfies each monitored formula. The definition of the
satisfaction relation�D ⊆ (Trace×nat)×Form, for a set of rule definitionsD, is defined
inductively over the structure of the formula and is presented in Fig.5. First of all, note
that the satisfaction relation�D is actually defined for the index range 0� i� |�| + 1 and

218 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

�, i �Dexp iff 1 � i � |�| andevaluate(exp)(�(i)) == true
�, i �D True
�, i � �D False
�, i �D¬F iff �, i � �DF

�, i �DF1 ∧ F2 iff �, i �DF1 and�, i �DF2
�, i �DF1 ∨ F2 iff �, i �DF1 or �, i �DF2
�, i �DF1 → F2 iff �, i �DF1 implies�, i �DF2
�, i �DF1 ↔ F2 iff �, i �DF1 is equivalent to�, i �DF2
�, i �D © F iff i � |�| and�, i + 1�DF

�, i �D

⊙
F iff 1 � i and�, i − 1�DF

�, i �DF1 · F2 iff ∃ j s.t.i �j � |�| + 1 and
�[1,j−1], i �DF1 and�[j,|�|],1�DF2

�, i �DF1; F2 iff ∃ j s.t.i < j � |�| + 1 and
�[1,j−1], i �DF1 and�[j−1,|�|],1�DF2

�, i �DN(F1, . . . , Fm) iff




if 1� i � |�| then:
�, i �DF [x1 �→ F1, . . . , xm �→ Fm]
where (N(T1 x1, . . . , Tm xm) = F) ∈ D

otherwise, ifi = 0 or i = |�| + 1 then:
ruleN is defined asmax in D

Fig. 5. Definition of�, i �DF for 0� i � |�| + 1 for some trace� = s1s2 · · · s|�|.

thus provides a value for a formula before the start of observations and also after the end
of observations. This approach was taken to fit with our model of program observation and
evaluationofmonitoring formulas.Theobserver only knows theendwhen it hasbeenpassed
and no more observation states are forthcoming. It is at that point that a final value for the
formula needs to be determined. At these boundary points, expressions involving reference
to the observation state (where no state exists) are trivially false.A next-time (resp. previous-
time) formula also evaluates false at the point beyond the end (resp. before the beginning).A
rule, however, has its valueat suchpoints determinedbywhether it ismaximal, inwhich case
it is true, orminimal, in which case it is false. Indeed, there is a correspondence between this
evaluation strategy andmaximal (minimal) fixed point solutions to the recursive definitions.
Thus, for example, referring to the first three rules defined below in Section3.4 formula
Always (F) will evaluate to true on an empty trace — sinceAlways is defined maximal,
whereas formulasEventually (F) andPreviously (F) will evaluate to false on an
empty trace — as they are defined as minimal.
The propositional connectives are given their usual interpretation. The next-time and

previous-time temporal operators are as expected. The concatenation and sequential tem-
poral composition operators are, however, not standard in linear temporal logics, although
the sequential temporal composition is often featured in interval temporal logics and can
also be found in process logics. A concatenation formulaF1 · F2 is true if and only if the
trace� can be split into two sub-traces� = �1�2, such thatF1 is true on�1, observed from
the current positioni andF2 is true on�2 from position 1 (relative to�2). Note that the
first formulaF1 is not checked on the second trace�2 and, similarly, the second formula
F2 is not checked on the first trace�1. Also note that either�1 or �2 may be an empty
sequence. The sequential temporal composition differs from concatenation in that the last
state of the first sequence is also the first state of the second sequence. Thus, formulaF1; F2

C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234 219

class State extends EagleState {
public int kind;

// 1=start, 2=end, 3=fail
public String action;
public int time;

public boolean start(){
return kind == 1;

}

public boolean end(){
return kind == 2;

}

public boolean fail(){
return kind == 3;

}

public boolean start(String a){
return start() && action.equals(a);

}

public boolean end(String a){
return end() && action.equals(a);

}

public boolean fail(String a){
return fail() && action.equals(a);

}
}

Fig. 6. The state in which EAGLE Java expressions are evaluated.

is true if and only if trace� can be split into two overlapping sub-traces�1 and�2 such
that� = �[1,|�1|−1]

1 �2 and�1(|�1|) = �2(1) and such thatF1 is true on�1, observed from
the current positioni, andF2 is true on�2 from position 1 (relative to�2). This operator
captures the semantics of sequential composition of finite programs.
Finally, applying a rule within the trace, i.e., positions 1. . . n, consists of replacing the

call by the right-hand side of its definition, substituting the actual arguments for formal
parameters. At the boundaries (0 andn + 1) a rule application evaluates to true if and only
if it is maximal.

3.4. Programming inEAGLE

To illustrate EAGLE we describe the framework for the case study to be presented in
Section4. Consider a controller for an autonomous mobile robot, referred to as arover,
that executes actions according to a given plan. The goal is to observe that actions start and
terminate in an expected order and within expected time periods. Actions can either end
successfully, or they can fail. The rover controller is instrumented to emit events containing
an event kind (start, end, or fail), an action name (a string) and a time stamp (an integer)—the
number of milliseconds since the start of the application.

<event> ::= <kind> <string> <int>
<kind> ::= start | end | fail

As events are received by themonitor, they are parsed and stored in a state, which the EAGLE

formulas can refer to. The state is an object of a user-defined Java class and an example
is given in Fig.6. The class defines the state and a set of methods observing the state,
which can be referred to in EAGLE formulas. To illustrate the use of formulas as parameters
to rules, the following EAGLE fragment defines three rules,Always , Eventually and

220 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

Previously —corresponding to the usual temporal operators for “always in the future”,
“eventually in the future” and “previously in the past”.

max Always (Form f) = f ∧ ©Always (f)

min Eventually (Form f) = f ∨ ©Eventually (f)

min Previously (Form f) = f ∨ ⊙
Previously (f)

The following two monitors check that every observed start of the particular action “turn”
is matched by a subsequent end of that action and conversely, that every end of the action
is preceded by a start of the action.

monM1= Always (start(“ turn”) → Eventually (end (“ turn”)))
monM2= Always (end(“ turn”) → Previously (start (“ turn”)))

To illustrate data parameterization, consider the more generic property: “for any action,
if it starts it must eventually end” and conversely for the past-time case. This is stated as
follows.

min EventuallyEnd (String a) = Eventually (end (a))

min PreviouslyStart (String a) = Previously (start (a))

monM3= Always (start() → EventuallyEnd (action))
monM4= Always (end() → PreviouslyStart (action))

Consider the following properties about real-time behavior, such as the property “when the
rover starts a turn, the turn should end within10–30 s”. For this, a real-timed version of the
Eventually operator is needed. The formulaEventuallyWithin (f, l, u) monitors
thatf occurs within the relative time boundsl (lower bound) andu (upper bound), measured
in seconds. It is defined with the help of the auxiliary ruleEventuallyAbs , which is an
absolute-timed version.

min EventuallyAbs (Form f, int al, int au) =
time�au ∧

((f ∧ time�al) ∨
(¬f ∧ ©EventuallyAbs (f, al, au)))

min EventuallyWithin (Form f, int l, int u) =
EventuallyAbs (f, time+ (l ∗ 1000), time+ (u ∗ 1000))

Note that variabletimeis defined in the state and contains the latest time stamp in millisec-
onds since the start of the application. The property “when the rover starts a turn, the turn
should end within10–30 s” can now be stated as follows:

monM5= Always (start(“ turn”)
→ EventuallyWithin (end (“ turn”),10,30))

3.5. Online evaluation algorithm

A monitoring algorithmfor EAGLE determines whether a trace� models a monitoring
specificationD O. Our algorithm operates in an online fashion. That is, it is applied sequen-

C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234 221

tially at each state of� and does not refer back to prior states or forward to future states.
This allows the algorithm to be used in online-monitoring contexts.
Ideally, if a monitoring specification is expressible in a more restricted logic, e.g. LTL,

then the EAGLE algorithm should perform about as well as an efficient algorithm for the
restricted logic. We have for example proved this for LTL[7].
The algorithm employs a functioneval(F, s) that examines a state,s, and transforms a

monitorF into a monitorF ′ such thats � �,1�D F iff s � �,2�DF ′.
The algorithm is, where possible, a direct implementation of the definition of the EAGLE

semantics. So for example ifDmonitors a formulaF1∨F2, then (with a slight overloading
of the notation)

eval(F1 ∨ F2, s) = eval(F1, s) ∨ eval(F2, s).

Furthermore,

eval(©F, s) = F.

However, an online algorithm that examines a trace in temporal order cannot treat the
previous-state operator so easily. Thus the algorithm maintains an auxiliary data structure
used byevalon sub-formulas headed by the

⊙
operator, that records the result of (partially)

evaluating the formula in the previous state.
This is illustrated as follows:

min R(int k) = ⊙
(y + 1== k)

monM= Eventually (R(x))

This monitor will be true if somewhere in the trace there are two successive states such
that the value ofy in the first state is one less than the value ofx in the second state. More
generally, notice that the combination of parameterizing ruleswith data values and use of the
next and previous state operators enable constraints that relate the values of state variables
occurring in different states.
Sinceevalrecursively decomposes the formulas, eventuallyevalwill be called on

⊙
(y+

1 == k). Note the state variabley refers to the value ofy in the previous state, while the
formal parameterk is bound to the value ofx in the current state. Since the previous
state is unavailable, in the prior step the algorithm must take some action to record relevant
information.Our algorithmpre-evaluates and caches the evaluation of any formulaPheaded
by a previous-state operator, in this case formulay + 1== k. However, since the value of
kwill not be known at that point, the evaluation is partial. In particular note that the atomic
formulas and the underlying expression language (in our case this is Java expressions),
must be partially evaluated.5 Also note that since formulaP can be arbitrarily complex, in
particular another previous-state operator may be nested within, the pre-evaluation is done
by a recursive call toeval.
This is basic idea of the algorithm. One subtle point is that the sub-formulas that must

be pre-evaluated must be identified and properly initialized prior to processing the first

5A simpler alternative to partial evaluation is to forma closure and do the complete evaluationwhen all variables
are bound.

222 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

state. This is done by expanding monitor formulas by unfolding rule definitions, while
avoiding infinite expansion due to recursive rule definitions.At the end of the trace, function
valueis called yielding a truth value as the final result of evaluating each monitor over the
trace. Functionvalueimplements the EAGLE semantics with respect to boundary conditions
regarding the end of the trace.
Functionevalyields a formula that may be simplified without altering the correctness of

the algorithm. Indeed the key to efficient monitoring and provable space bounds is adequate
simplification. In our implementation, formulas are represented in disjunctive normal form
where each literal is an instance of negation, the previous, next, concatenation or sequential
composition operator or a rule application. Subsumption, i.e., simplifying(a ∧ b) ∨ a to a,
is essential.

3.6. Complexity ofEAGLE

It is evident from the semantics given in Section3.3 that, in theory, EAGLE is a highly
expressive and powerful language; indeed, given the unrestricted nature of the data types
and expression language, it is straightforward to see it is Turing-complete. However, what
is of interest is the performance of EAGLE on special cases, i.e., for arbitrary monitors
defined over fixed rule sets that implement standard temporal logics. Furthermore one must
distinguish complexity due to any data computation ascribed to methods defined for state
update and predicate evaluation from the evaluation of the purely temporal aspects of the
logic. An alternative way of viewing this is to show that our algorithm can meet known
optimal bounds for various sub-logics embedded within Eagle. To that end, there are some
initial complexity results that are of interest.
Our first result relates to an embedding of propositional LTL, over both future and past.

In [7], we show that the step evaluation for an initial LTL formula of sizem has an upper
time complexity bound of O(m422m log2m) and a space bound of O(m22m logm), thus
showing that the evaluation at any point is not dependent on the length of the history, i.e.,
the input seen so far. The result is close to the lower bound of O(2

√
m) for monitoring LTL

given in [59].
For MTL where time constants are stated as natural numbers, embedded in EAGLE, it can

be shown that the time and space complexity of monitoring of a formula is 2O(m) where
m is the size of the monitored formula plus the sum of all time constants that appear in
the formula. Note that the bound, although exponential, is independent of the length of the
trace. The proof for this complexity bound is similar to the proof of the same result in [63].
For real-time logic where time constants are stated as real numbers, embedded in EAGLE,

the time and complexity bound, although independent of the length of the trace, is dependent
on the minimum of all time differences between any two events in the trace. The bound
is given by 2O(mt/�) wherem is the size of the formula,t is the sum of all time constants
appearing in the formula and� is the minimum time difference between any two events in
the trace monitored.

3.7. A Java library for monitoringEAGLE properties

The EAGLE monitoring engine implements the EAGLE monitoring algorithm as a Java
library. The library provides three basic methods,parse , eval , andvalue , that can

C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234 223

be called by any client program for the purpose of monitoring. The first methodparse
takes a file containing a specification involving several monitors (sets of monitored for-
mulas) written in EAGLE and compiles them internally into data structures representing
monitors. After compilation, the client program calls the methodeval iteratively with an
observer state. This call internally modifies the monitors according to the definition ofeval
in Section3.5. If a monitored formula becomes false during this modification, it calls a
methoderror which the client program is expected to implement. Similarly, if a formula
becomes true the methodsuccess is called. It is up to the client program to define the
observer state. The client program also modifies the observer state at every event. Once
all the events are consumed the client program calls the methodvalue to check if the
monitored formulas are satisfied by the sequence of observer states. If a formula is not
satisfied the methodwarning implemented by the client is called; otherwise, the method
nowarning is invoked.

3.8. Concurrency analysis

A scheduler may schedule the different threads in a multi-threaded program, such as the
rover controller, in a non-deterministic manner, causing the order in which threads access
shared objects to differ among different executions on the same input. This may lead to
different observed execution traces, causing temporal logic specifications to be violated
in some traces while not being violated in others. Consequently one cannot infer that a
temporal property holds forall traces (that is, holds for the program on some particular
input) based on the observation that it holds onsometrace. The ideal solution would be a
framework for transforming temporal properties to stronger properties that when checked
will be less sensitive to the non-determinism of traces. Ideally one would like to be able
to infer that if the property holds on some trace then with high probability it holds on all
traces. Or perhaps more importantly: if the property is violated on some trace then it is
violated with high probability on any trace, thereby increasing our chance of detecting the
problem on a random trace. Although this may appear a very difficult problem to solve for
the general case, it actually can be done for certain properties that are generally desirable
for concurrent programs: deadlock freedom and data race freedom.
Deadlocks can occur when two or more threads acquire locks in a cyclic manner. As an

example of such a situation consider two threadsT1 andT2 both acquiring locksA andB.
ThreadT1 acquires firstA and thenB before releasingA. ThreadT2 acquiresB and then
A before releasingB. This situation poses a deadlock potential since threadT1 can acquire
A where upon threadT2 can acquireB, resulting in a deadlocked situation. Potentials for
such deadlocks can be detected by identifying cycles in lock graphs [10]. Another main
issue for programmers of multi-threaded applications is to avoiddata raceswhere several
threads access a shared object simultaneously. If all threads utilize the same lock when
accessing an object, mutual exclusion is guaranteed, otherwise data races are possible. The
Eraser algorithm [56] can detect such data races bymaintaining a so-called lock set for each
monitored variable. Recent work [3] has identified another kind of data races, termedhigh-
level data races, that are not detectable by the Eraser algorithm. These races can occur when
sets of fields are accessed incorrectly. Monitors have been developed for analyzing traces
for the three above-mentioned concurrency problems and automated instrumentation has

224 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

been done for Java. For C++, manual instrumentation for deadlock analysis has been done
using wrapping as mentioned earlier. For the two kinds of data race analysis, automated
instrumentation of C++ remains to be done.
Although the above-mentioned concurrency algorithms have been implemented as spe-

cialized programs, one can well imagine using EAGLE for specifying such properties. As an
experiment, the deadlock detection algorithm has been encoded in EAGLE as described in
[7], although restricted to the detection of deadlocks between pairs of threads. The general
algorithm described in [10] can detect deadlock potentials between any number of threads.
Further work will integrate the concurrency algorithms and EAGLE fully.

4. Case study: a planetary Rover controller

The subject of the case study described here is a controller for the K9 planetary rover,
developed at NASA Ames Research Center. A full account of this controller is described
in [12]. The case study was done in collaboration with the programmer of the controller.
First we present a description of the rover controller, including a description of the plan
language (the input to the controller). Then, an outline is given of how plans (test inputs) and
associated temporal logic properties can be automatically generated usingmodel checking.

4.1. The Rover controller

The rover controller is a multi-threaded system (35,000 lines of C++ code) that receives
flexible plans from a planner, which it executes according to a plan language semantics. A
plan is a hierarchical structure of actions that the rover must perform. Traditionally, plans
are deterministic sequences of actions. However, increased rover autonomy requires added
flexibility. The plan language therefore allows for branching based on conditions that need
to be checked and also for flexibility with respect to the starting time and ending time of an
action.
This section gives a short presentation of the (simplified) language used in the description

of the plans that the rover executive executes.

4.1.1. Plan syntax
A plan is anode; a node is either atask, corresponding to anaction to be executed,

or a block, corresponding to a logical group of nodes. Fig. 7 (left) shows the grammar
for the plan language. All node attributes, with the exception of theid of the node, are
optional. Each node may specify a set ofconditions, e.g. thestart condition(that must be
true at the beginning of node execution) and theend condition(that must be true at the
end of node execution). Each condition includes information about a relative or absolute
time window, indicating a lower and an upper bound on the time. Flagcontinue-on-failure
indicates what the behavior will be when an node failure is encountered. Attributeduration
specifies the duration of the action. Fig. 7 (right) shows a plan that has one block with two
tasks (drive1 anddrive2). The time windows here are relative (indicated by the ‘+’
signs in the conditions).

C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234 225

Plan → Node
Node → Block| Task
Block → (block

NodeAttr
:node-list (NodeList))

NodeList → Node NodeList| �
Task → (task

NodeAttr
:action Symbol
:duration DurationTime)

NodeAttr → :id Symbol
[:start-condition Condition]
[:end-condition Condition]
[:continue-on-failure]

Condition→ (time StartTime EndTime)

(block
:id plan
:continue-on-failure
:node-list (

(task
:id drive1
:start-condition (time +1 +5)
:end-condition (time +1 +30)
:action BaseMove1
:duration 20

)
(task
:id drive2
:end-condition (time +10 +16)
:action BaseMove2
:duration 20

)))

Fig. 7. Plan grammar (left) and an example of a plan (right).

4.1.2. Plan semantics
For every node, execution proceeds through the following steps:

• Wait until the start condition is satisfied; if the current time passes the end of the start
condition, the node times out and this is a node failure.

• The execution of ataskproceeds by invoking the corresponding action (e.g. a routine that
interactswith the rover hardware).Theaction takes the timespecified in the:duration
attributewhen thesoftware is run in simulationmode,withahardwaresimulator.The task
succeeds or fails, for example depending on whether the time window is respected. The
execution of ablocksimply proceeds by executing each of the nodes in thenode-list
in order.

• If time exceeds the end condition, the node fails. On anode failure, when execution
returns to the sequence, the valueof flagcontinue-on-failureof the failednode is checked.
If true, execution proceeds to the next node in the sequence. Otherwise the node failure
is propagated to any enclosing node. If the node failure passes out to the top level of the
plan, the remainder of the plan is aborted.

4.2. Test input generation

Fig. 8 shows part of the Java code, referred to as theuniversal planner, that is used to
generateplans (i.e., test inputs for theexecutive)andproperties (i.e., test oracles, asdiscussed
in the next section). The framework described in Section 2 is used to generate test inputs
from a specification written as an annotated Java program. Model checking with symbolic
execution generates the inputs. The input plans are specified using non-deterministic choice
(choose methods) over the structures allowed in the grammar presented in Fig. 7 and
constraints over the integer variables in the input structure (updates to the path condition
_pc). For brevity, only a small sample set of constraints is shown here (stating that the
time points are proper positive values defining intervals and the end time is larger than the
start time of an interval). The actual testing requires solving these constraints in order to

226 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

class UniversalPlanner { ...
static int nNodes; /*max number of nodes*/
static void Plan(int nn) {

nNodes = nn;
Node plan = UniversalNode();
print(plan);
compute_and_print_properties(plan);
assert(false);

}
static Node UniversalNode() {

if (nNodes == 0) return null;
if (chooseBool()) return null;
if (chooseBool())

return UniversalTask();
return UniversalBlock();

}
static Node UniversalTask() {

int id = nNodes; nNodes--;
UniversalAttributes();
Task t = new Task(id, start, end,

continueOnFailure,duration);
return t;

}
static Node UniversalBlock() {

int id = nNodes; nNodes--;
ListOfNode s l = new ListOfNodes();
for (Nod e n = UniversalNode();n != null;

n = UniversalNode()) l.add(n);
UniversalAttributes();
Bloc k b = new Block(id, l, start, end,

continueOnFailure);
return b;

}

static TimeCondition start, end;
static int duration;
static boolean continueOnFailure;

static UniversalAttributes() {
id = new Symbol();
SymInt sTime1 = new SymInt();
SymInt sTime2 = new SymInt();
SymInt eTime1 = new SymInt();
SymInt eTime2 = new SymInt();
SymInt d = new SymInt();

/* constraints */
SymInt._pc._add_GE(sTime1,0);...
SymInt._pc._add_LT(sTime1,sTime2);
SymInt._pc._add_LT(eTime1,eTime2);
SymInt._pc._add_LE(sTime1,eTime1);
...
duration = d.solution();
start = new TimeCondition(sTime1.solution(),

sTime2.solution());
end = new TimeCondition(eTime1.solution(),

eTime2.solution());
continueOnFailure = chooseBool();

} }

Fig. 8. Code that generates input plans and properties.

class SymInt { ...
static PathCondition _pc;
...
int solution() { ... }

}

class PathCondition { ...
Constraints c;
void _add_LT(SymInt e1, SymInt e2){
c.add_constraint_LT(e1,e2);
if (!c.is_satisfiable())

backtrack();
return;

}
}

Fig. 9. Library classes for symbolic execution.

instantiate input plans that can be then executed (methodsolution). To illustrate the
flexibility of our approach, some of the variables are considered concrete inputs, e.g. the
maximum allowed number of nodes in a generated structure (nNodes) and yet others, e.g.
the boolean values, are generated using non-deterministic choice.
The assertion in the program, at the end of thePlan method, specifies that it is not

possible to create a “valid” plan (i.e., executions that reach this assertion generate valid
plans). JPFmodel checks the universal planner and is thus used to explore the state space
of the input plans that have up tonNodes nodes. Different search strategies find multiple
counter-examples; for each counter-example (representing a valid plan), a set of properties
associated with the plan is computed. The generated plan and properties are printed to files
that are then used for testing the rover.
Fig.9 gives part of the library classes that enable JPFto performsymbolic execution.Class

SymInt supports manipulation of symbolic integers. Thestatic field SymInt._pc

C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234 227

stores the (numeric) path condition. Method_add_LT updates the path condition with
a constraint encodinge1 less-thane2 . Methodis_satisfiable uses the Omega li-
brary to check if the path condition is infeasible (in which case, JPFwill backtrack). The
solution method first solves the constraints and then returns one solution for a symbolic
integer.

4.3. Property generation

For each generated plan, a set of properties formulated in the EAGLE temporal logic is
automatically generated, according to the semantics of the planning language. Note that
such a set of properties is generated for each plan and monitored during the execution of
that specific plan. In generating these properties, the following predicates are used: start(id)

(true immediately after the start of the execution of the node with the correspondingid),
end(id) (true when the execution of the node ends successfully) and fail(id) (true when the
execution of the node ends with a failure). The code has been instrumented to monitor these
predicates and the validity of the generated properties is checked on execution traces. As
an example, some of the generated properties for the plan from Fig.7 (right) are shown in
Fig. 10.
The set of generated properties does not fully represent the semantics of the plan. As

an example, the illustrated properties do not state the fact thatdrive1 should only start
once. A complete specification of the plan semantics would require a more elaborate set
of formulas. This would be possible since EAGLE is a very expressive logic. However, the
current set of properties generated for a plan seems appropriate to catch many kinds of
errors. The effort invested in designing what properties to be generated for a particular plan
was minimal and likely so due to the fact that not all the plan semantics is modeled. The
properties could be inferred very directly from the informal plan semantics communicated
by the engineer that programmed the system.

4.4. Results

The tool is fully automated after setup and does not require any input from the user to run.
The tool generates a set of test cases, each consisting of a plan (input) and a set of properties
(expected of the output). A script will execute each test case, first by running the controller,
together with a rover hardware simulator, on the input plan and then calling EAGLE to verify
that the generated execution trace satisfies the properties. Due to the automated nature of
the process, the developer of the K9 rover controller is capable of running it himself. All
test results used in the process have been generated by the developer running the tool.
The automated testing system found (in the first application) a missing feature that had

been overlooked by the developers: the lower bounds on execution duration were not en-
forced. Hence, where a certain generated temporal logic formula predicted failure, the
execution in fact wrongly succeeded, and this was detected as a violation of the temporal
property. The error was not corrected immediately after its detection, and showed up later
during actual rover operation in a field test before it was corrected. A preliminary version
of the testing environment, not using automated test case generation, found a deadlock
and a data race. The data race, involving access to a shared variable used to communicate

228 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

• M1 = Eventually(start("plan"))
i.e., the initial nodeplan should eventually start.

• M2 = Always(start("plan") -> Eventually(end("plan")))
i.e., ifplan starts, then it should eventually terminate successfully.

• M3 = Always(start("plan") -> EventuallyWithin(start("drive1"),1,5))
i.e., ifplan starts, thendrive1 should start within 1 and 5 time units.

• M4 = Always((end("drive2") \/ fail("drive2")) ->
Eventually(end("plan")))

i.e., successful or failed termination ofdrive2 implies successful termination
of the whole plan (due tocontinue-on-failure flag).

• M5 = Always(start("drive1") ->
(EventuallyWithin(end("drive1"),1,30) \/

Eventually(fail("drive1"))))
i.e. if drive1 starts, then it should end successfully within 1 and 30 time units or
it should eventually terminate with a failure.

• M6 = Always(fail("drive1") -> ∼ Eventually(start("drive2")))
i.e., ifdrive1 fails, thendrive2 should not start.

• M7 = Always(end("drive1") -> Eventually(start("drive2")))
i.e., ifdrive1 ends successfully, thendrive2 should eventually start.

• M8 = Always(start("drive2") -> Eventually(fail("drive2")))
i.e., ifdrive2 starts, then it should eventually fail (due to the time conditions).

Fig. 10. Properties representing partial semantics of plan in Fig.7.

between threads, was suspected by the developer, but had not been confirmed in code. The
trace analysis allowed the developer to see the read/write pattern clearly and redesign the
communication.
The K9 rover controller, essentially an interpreter, seemed to be very well suited for this

kind of testing framework. It was in particular simple to determinewhat temporal properties
should be generated for a plan. This is, however, not as easy in general for other kinds of
applications.Another drawback is the fact that only events of the formstart, endandfail are
monitored. Hence, failures which can only be detected by monitoring sub-events between
these events cannot be observed.

5. Related work

5.1. Test case generation

In Section2, we have already discussed some of the related work on specification-based
testing. Here we link our approach to test input generation tools.
The idea of using constraints to represent inputs dates back at least three decades

[36,15,39,54]; the idea has been implemented in various tools including EFFIGY [39],
TESTGEN [41] and INKA [25]. Most of this work has been focused on solving constraints
on primitive data, such as integers and booleans.
Some recent frameworks, most notably TestEra [45] and Korat [11,44], do support gen-

eration of complex structures. TestEra generates inputs from constraints given in Alloy, a
first-order declarative language based on relations. TestEra uses off-the-shelf SAT solvers

C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234 229

to solve constraints. Korat generates inputs from constraints given as Java predicates. The
Korat algorithm has recently been included in the AsmL Test Generator[21] to enable
generation of structures. TestEra and Korat focus on solving structural constraints. They do
not directly solve constraints on primitive data as we do in our framework. Instead, they
systematically try all primitive values within given bounds, which may be inefficient.
The first version of AsmLT Test Generator [26] was based on finite-state machines

(FSMs): an AsmL [29] specification is transformed into an FSM and different traversals
of the FSM are used to construct test inputs. Korat adds structure generation to generation
based on finite-state machines [26]. AsmLT was successfully used for detecting faults in a
production-quality XPath compiler [62].
Several researchers have investigated the use of model checking for test input generation

(see [35] for a good survey). Gargantini andHeitmeyer [22] use amodel checker to generate
tests that violate known properties of a specification given in the SCR notation. Ammann
and Black [2] combine model checking and mutation analysis to generate test cases from
a specification. Rayadurgam et al. use a structural coverage-based approach to generate
test cases from specifications given in RSML−e by using a model checker [34]. Hong et
al. formulate a theoretical framework for using temporal logic to specify data-flow test
coverage in [35]. These approaches cannot handle structurally complex inputs.
There are many tools that produce test inputs from a description of tests. QuickCheck

[14] is a tool for testing Haskell programs. It requires the tester to write Haskell functions
that can produce valid test inputs; executions of such functions with different random seeds
produce different test inputs. Our work differs in that it requires only a specification that
characterizes valid test inputs and then uses a general-purpose search to generateall valid
inputs up to a certain size. DGL [47] and lava [61] generate test inputs from production
grammars. Theywere usedmostly for random testing, although they can also systematically
generate test inputs. However, they cannot easily represent inputs with complex structure,
as we do by using Java as a specification language.

5.2. Runtime verification

The EAGLE logic and its implementation for runtime monitoring has been significantly
influenced by earlier work on the executable, trace-generating as well as trace-checking,
temporal logic METATEM [6]. In the parallel work [43] a framework is described where
recursive equations are used to implement a real-time logic. Although this is a similar
approach to the one presented in this paper, EAGLE goes much further and provides the
language of recursive equations to the user, supporting a mixture of future-time and past-
time operators and treating real time as a special case of data values, hence allowing a more
general logic.
The most directly case study specific related work is presented in [9], which for the same

rover application describes a framework for generating timedautomata fromplans. From the
timed automata, monitors are generated that can monitor the plan execution. Since EAGLE

can embed timed automata, EAGLE can be seen as a more general framework, that also
allows for more partial temporal logic specifications. The main difference in approach is
that [9] defines the full semantics of a plan, whereas the temporal logic approach presented
here defines a partial semantics.

230 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

At a more general level, several runtime verification systems have recently been devel-
oped, a collection of which have been presented at a series of runtime verification (RV)
workshops[20]. LTL [51] has been core to several of these attempts. The MaC tool [38]
supports a past-time interval temporal logic. Real-time is modeled by introducing an ex-
plicit state in the specification, containing explicit clock variables, which get updated when
new events arrive. The commercial tools Temporal Rover and DBRover [16,17], support
future-time and past-time LTL properties, annotated with real-time and data constraints.
Alternating automata algorithms to monitor LTL properties are proposed in [19] and a
specialized LTL collecting statistics along the execution trace is described in [18]. Vari-
ous algorithms to generate testing automata from temporal logic formulas are discussed in
[55,49]. Complexity results for testing a finite trace against temporal formulas expressed in
different temporal logics are investigated in [46]. A technique where execution events are
stored in an SQL database at runtime is proposed in [42]. These events are then analyzed
by queries derived from interval logic temporal formulas after the program terminates. The
PET tool [28] uses a future-time temporal logic formula to guide the execution of a pro-
gram for debugging purposes. The model-based specification languageAsmL is being used
for runtime verification [5], as well as for test case generation (see Section 5.1). AsmL
is a very comprehensive general-purpose specification language for abstractly specifying
computation steps. It does not directly support temporal logic.
Our own related work includes the development of several algorithms for monitoring

with temporal logic, such as generating dynamic programming algorithms for past-time
logic [33], using a rewriting system for monitoring future-time logic [32,31], or generating
Büchi-automata-inspired algorithms adapted to finite-trace LTL [23]. A logic based on
extended regular expressions is described in [58]. Java MultiPathExplorer [60] is a tool
which checks a past-time LTL safety formula against a partial order extracted online from
an execution trace. POTA [57] is another partial-order trace analyzer system. Java-MoP [13]
is a generic logic monitoring tool encouraging “monitoring-oriented programming”. JNuke
[4] is a framework that combines runtime verification and model checking. It is written in
C, achieving scalability through high performance and low memory usage.

6. Conclusions and future work

A framework for testing based on automated test case generation and runtime verification
has been presented. This paper proposed and demonstrated the use of model checking and
symbolic execution for test case generation using the JAVA PATHFINDER tool, and the use of
temporal logic monitoring in EAGLE during the execution of the test cases. The framework
requires construction of a test input and property generator for the application. From that,
a large test suite can be automatically generated, executed and verified to be in conformity
with the properties. For each input a set of EAGLE properties is generated that must hold
when the program under test is executed on that input. The program is instrumented to
emit an execution log of events. An observer checks that the event log satisfies the set of
properties.
We take the position that writing test oracles as temporal logic formulas is both natural

and leverages algorithms that efficiently check if execution on a test input conforms to

C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234 231

the properties. Due to EAGLE’s expressive power, properties can furthermore be stated
in combinations of different sub-logics and notations, such as for example temporal logic,
regular expressionsandstatemachines.Whilepropertydefinition ingeneral often isdifficult,
an effective approach for some domains may be to write a property generator, rather than
a universal set of properties that are independent of the test inputs. Note also that the
properties need not completely characterize correct execution. Instead, a user can choose
among a spectrum of weak but easily generated properties to strong properties that may
require construction of complex formulas.
In the near future, we will be exploring how to improve the quality of the generated test

suite by altering the search strategy of the model checker and by improving the symbolic
execution technology. We will also investigate improvements to the EAGLE logic and its
engine. Experiments will be made combining different specification paradigms, such as
temporal logic, regular expressions and state machines, all currently expressible in EAGLE

within a single framework. Furthermore, an attempt will be made to integrate the concur-
rency analysis algorithms for deadlock and data race analysis fully into EAGLE. We are
continuing the work on instrumentation of Java bytecode and will extend this work to C and
C++. Our research group has done fundamental research in other areas, such as software
model checking (model checking the application itself and not just the input domain) and
static analysis. In general, our ultimate goal is to combine the different technologies into a
single coherent framework.

References

[1] AGEDIS—model based test generation tools,http://www.agedis.de.
[2] P. Ammann, P. Black, A specification-based coverage metric to evaluate test sets, in: Proc. Fourth IEEE

Internat. Symp. on High Assurance Systems and Engineering, November 1999, pp. 239–248.
[3] C. Artho, K. Havelund, A. Biere, High-level data races, Journal on Software Testing, Verification and

Reliability (STVR) 13 (4) (2003).
[4] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, B. Zweimüller, JNuke: efficient dynamic analysis for

Java, in: Proc. CAV’04: Computer Aided Verification, Lecture Notes in Computer Science, Springer, Berlin,
2004.

[5] M. Barnett, W. Schulte, Contracts, components, and their runtime verification, Technical Report MSR-TR-
2002-38, Microsoft Research, April 2002, Download:http://research.microsoft.com/fse.

[6] H. Barringer, M. Fisher, D. Gabbay, G. Gough, R. Owens, METATEM: an introduction, Formal Aspects
Comput. 7 (5) (1995) 533–549.

[7] H.Barringer,A.Goldberg,K.Havelund,K.Sen,ProgrammonitoringwithLTL inEAGLE, in:Proc.Workshop
on Parallel and Distributed Systems: Testing and Debugging (PADTAD’04), Santa Fe, New Mexico, USA,
April 2004.

[8] H. Barringer, A. Goldberg, K. Havelund, K. Sen, Rule-based runtime verification, in: B. Steffen, G. Levi
(Eds.), Proc. Fifth Internat. Conf. on Verification, Model Checking and Abstract Interpretation, Lecture
Notes in Computer Science, Vol. 2937, Springer, Berlin, January 2004, pp. 44–57.

[9] S. Bensalem, M. Bozga, M. Krichen, S. Tripakis, Testing conformance of real-time software by automatic
generation of observers, in: Proc. RV’04: Fourth Internat. Workshop on Runtime Verification, Electronic
Notes in Theoretical Computer Science, vol. 113, Barcelona, Spain, Elsevier Science, Amsterdam, 2004.

[10] S. Bensalem, K. Havelund, Deadlock analysis of multi-threaded Java programs, Kestrel Technology, NASA
Ames Research Center, CA, October 2002.

[11] C. Boyapati, S. Khurshid, D. Marinov, Korat: automated testing based on Java predicates, in: Proc. Internat.
Symp. Software Testing and Analysis (ISSTA), July 2002, pp. 123–133.

http://www.agedis.de
http://research.microsoft.com/fse

232 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

[12] G. Brat, D. Giannakopoulou, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu, A. Venet, W. Visser,
Experimental evaluation of verification and validation tools on Martian rover software, in: SEI Software
Model Checking Workshop, 2003, extended version, J. Formal Methods System Design, 25 (2) (2004).

[13] F. Chen, G. Ro¸su, Towards monitoring-oriented programming: a paradigm combining specification and
implementation, in: Proc. RV’03: the Third Internat. Workshop on Runtime Verification, Electronic Notes in
Theoretical Computer Science, Boulder, USA, Vol. 89(2), Elsevier Science, Amsterdam, 2003.

[14] K. Claessen, J. Hughes, Testing monadic code with QuickCheck, in: Proc. ACM SIGPLAN Workshop on
Haskell, 2002, pp. 65–77.

[15] L.A. Clarke,A system to generate test data and symbolically execute programs, IEEETrans. Software Engrg.
SE-2 (1976) 215–222.

[16] D. Drusinsky, The temporal rover and theATG rover, in: Proc. SPIN’00: SPINModel Checking and Software
Verification, Lecture Notes in Computer Science, Vol. 1885, Stanford, CA, USA, Springer, Berlin, 2000, pp.
323–330.

[17] D. Drusinsky, Monitoring temporal rules combined with time series, in: Proc. CAV’03: Computer Aided
Verification, Lecture Notes in Computer Science, Vol. 2725, Boulder, USA, Springer, Berlin, 2003, pp.
114–118.

[18] B. Finkbeiner, S. Sankaranarayanan, H. Sipma, Collecting statistics over runtime executions, in: Proc. RV’02:
The Second Internat.Workshop on RuntimeVerification, Electronic Notes in Theoretical Computer Science,
Vol. 70(4), Paris, France, Elsevier Science, Amsterdam, 2002.

[19] B. Finkbeiner, H. Sipma, Checking finite traces using alternating automata, Formal Methods System Design
24 (2) (2004) 101–128.

[20] First, Second, Third and Fourth Workshops on Runtime Verification (RV’01–RV’04), ENTCS, Vol. 55(2),
70(4), 89(2), 113, Elsevier Science, Amsterdam, 2001, 2002, 2003, 2004.

[21] Foundations of Software Engineering, Microsoft Research, The AsmL test generator tool.
http://research.microsoft.com/fse/asml/doc/AsmLTester.html.

[22] A. Gargantini, C. Heitmeyer, Using model checking to generate tests from requirements specifications, in:
Proc. Seventh European Engineering Conf. Held Jointly with the Seventh ACM SIGSOFT Internat. Symp.
Foundations of Software Engineering, Springer, Berlin, 1999, pp. 146–162.

[23] D. Giannakopoulou, K. Havelund, Automata-based verification of temporal properties on running programs,
in: Proc. ASE’01: Internat. Conf. onAutomated Software Engineering, Institute of Electrical and Electronics
Engineers, Coronado Island, CA, 2001, pp. 412–416.

[24] A.Goldberg,K.Havelund, Instrumentationof Javabytecode for runtimeanalysis, in: Proc. FormalTechniques
for Java-like Programs, Technical Reports from ETH Zurich, Vol. 408, Switzerland, ETH Zurich, 2003.

[25] A. Gotlieb, B. Botella, M. Rueher, Automatic test data generation using constraint solving techniques, in:
Proc. Internat. Symp. SoftwareTesting andAnalysis (ISSTA), Clearwater Beach, FL,March 1998, pp. 53–62.

[26] W. Grieskamp, Y. Gurevich, W. Schulte, M. Veanes, Generating finite state machines from abstract state
machines, in: Proc. Internat. Symp. Software Testing and Analysis (ISSTA), July 2002, pp. 112–122.

[27] A. Groce,W.Visser, Model checking Java programs using structural heuristics, in: Proc. 2002 Internat. Symp.
Software Testing and Analysis ISSTA, ACM Press, NewYork, July 2002, pp. 12–21

[28] E. Gunter, D. Peled, Tracing the executions of concurrent programs, in: Proc. of RV’02: Second
Internat. Workshop on Runtime Verification, Electronic Notes in Theoretical Computer Science, Vol. 70(4),
Copenhagen, Denmark, Elsevier Science, Amsterdam, 2002.

[29] Y. Gurevich, Evolving algebras 1993: lipari guide, in: Specification and Validation Methods, Oxford
University Press, Oxford, 1995, pp. 9–36.

[30] A. Hartman, Model based test generation tools,http://www.agedis.de/documents/
ModelBasedTestGenerationTools _cs.pdf.

[31] K. Havelund, G. Ro¸su, Monitoring programs using rewriting, in: Proc. of the Internat. Conf. Automated
Software Engineering (ASE’01), IEEECSPress, Coronado Island, CA, 2001, pp. 135–143, extended version
to appear in J. Automat. Software Engrg.

[32] K. Havelund, G. Ro¸su, An overview of the runtime verification tool Java PathExplorer, Formal Methods
System Design 24 (2) (2004) 189–215.

[33] K. Havelund, G. Ro¸su, Synthesizingmonitors for safety properties, in: Tools andAlgorithms for Construction
andAnalysis of Systems (TACAS’02), Lecture Notes in Computer Science,Vol. 2280, Springer, Berlin, 2002,
pp. 342–356, extended version in Internat. J. Software Tools Technol. Transfer 6 (2) (2004) 158–173.

http://research.microsoft.com/fse/asml/doc/AsmLTester.html
http://www.agedis.de/documents/ModelBasedTestGenerationToolsprotect LY1	extunderscore cs.pdf
http://www.agedis.de/documents/ModelBasedTestGenerationToolsprotect LY1	extunderscore cs.pdf

C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234 233

[34] M.P.E. Heimdahl, S. Rayadurgam,W.Visser, D. George, J. Gao,Auto-generating test sequences using model
checkers: a case study, in: Proc. Third Internat. Workshop on Formal Approaches to Testing of Software
(FATES), Lecture Notes in Computer Science, Vol. 2931, Montreal, Canada, Springer, Berlin, October 2003,
pp. 42–59.

[35] H.S. Hong, I. Lee, O. Sokolsky, H. Ural, A temporal logic based theory of test coverage and generation, in:
Proc. Eighth Internat. Conf. on Tools and Algorithms for Construction and Analysis of Systems (TACAS),
Lecture Notes in Computer Science, Vol. 2280, Grenoble, France, Springer, Berlin, April 2002, pp. 327–341.

[36] J.C. Huang, An approach to program testing, ACM Comput. Surv. 7 (3) (1975).
[37] S. Khurshid, C. Pasareanu, W. Visser, Generalized symbolic execution for model checking and testing, in:

Proc. TACAS’03: Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science, Vol. 2619, Warsaw, Poland, April 2003.

[38] M. Kim, M. Viswanathan, S. Kannan, I. Lee, O. Sokolsky, Java-MaC: a run-time assurance tool for Java,
Formal Methods System Design 24 (2) (2004) 129–156.

[39] J.C. King, Symbolic execution and program testing, Comm. ACM 19 (7) (1976) 385–394.
[40] B. Korel, Automated software test data generation, IEEE Trans. Software Engrg. 16 (8) (1990) 870–879.
[41] B. Korel, Automated test data generation for programs with procedures, in: Proc. Internat. Symp. Software

Testing and Analysis (ISSTA), San Diego, CA, 1996, pp. 209–215.
[42] D. Kortenkamp, R. Simmons, T. Milam, J. Fernandez, A suite of tools for debugging distributed autonomous

systems, Formal Methods System Design 24 (2) (2004) 157–188.
[43] K. Jelling Kristoffersen, C. Pedersen, H.R. Andersen, Runtime verification of timed LTL using disjunctive

normalized equation systems, in: Proc. RV’03: Third Internat.Workshop on RuntimeVerification, Electronic
Notes in Theoretical Computer Science, Vol. 89(2), Boulder, USA, Elsevier Science, Amsterdam, 2003.

[44] D. Marinov, Testing using a solver for imperative constraints, Ph.D. Thesis, Computer Science andArtificial
Intelligence Laboratory, Massachusetts Institute of Technology, 2004, to appear.

[45] D. Marinov, S. Khurshid, TestEra: a novel framework for automated testing of Java programs, in: Proc. 16th
IEEE Internat. Conf. Automated Software Engineering ASE, San Diego, CA, November 2001, pp. 22–34.

[46] N. Markey, P. Schnoebelen, Model checking a path (preliminary report), in: Proc. CONCUR’03: Internat.
Conf. Concurrency Theory, Lecture Notes in Computer Science, Vol. 2761, Marseille, France, Springer,
Berlin, August 2003, pp. 251–265.

[47] P.M. Maurer, Generating test data with enhanced context-free grammars, IEEE Software 7 (4) (1990) 50–55.
[48] B. Nichols, D. Buttlar, J.P. Farrell, Pthreads Programming, O’Reilly, 1998.
[49] T. O’Malley, D. Richardson, L. Dillon, Efficient specification-based oracles for critical systems, in: Proc.

California Software Symp., 1996.
[50] Parasoft,http://www.parasoft.com.
[51] A. Pnueli, The temporal logic of programs, in: Proc. 18th IEEE Symp. Foundations of Computer Science,

1977, pp. 46–77.
[52] W. Pugh, A practical algorithm for exact array dependence analysis, Comm. ACM 35 (8) (1992) 102–114.
[53] Purify: Fast Detection of Memory Leaks and Access Errors, January 1992.
[54] C.V. Ramamoorthy, Siu-Bun F. Ho, W.T. Chen, On the automated generation of program test data, IEEE

Trans. Software Engrg. 2 (4) (1976) 293–300.
[55] D.J. Richardson, S.L. Aha, T.O. O’Malley, Specification-based test oracles for reactive systems, in: Proc.

ICSE’92: Internat. Conf. Software Engineering, Melbourne, Australia, 1992, pp. 105–118.
[56] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson, Eraser: a dynamic data race detector for

multithreaded programs, ACM Trans. Comput. Systems 15 (4) (1997) 391–411.
[57] A. Sen, V.K. Garg, Partial order trace analyzer (POTA) for distributed programs, in: Proc. RV’03: the Third

Internat. Workshop on Runtime Verification, Electronic Notes in Theoretical Computer Science, Vol. 89(2),
Boulder, USA, Elsevier Science, Amsterdam, 2003.

[58] K. Sen, G. Ro¸su, Generating optimal monitors for extended regular expressions, in: Proc. RV’03: Third
Internat. Workshop on Runtime Verification, Electronic Notes in Theoretical Computer Science, Vol. 89(2),
Boulder, USA, Elsevier Science, Amsterdam, 2003.

[59] K.Sen,G.Ro¸su,G.Agha,Generatingoptimal linear temporal logicmonitorsbycoinduction, in:V.A.Saraswat
(Ed.), Proc. Eighth Asian Computing Science Conf. (ASIAN’03), Lecture Notes in Computer Science, Vol.
2896, December 2003, pp. 260–275.

http://www.parasoft.com

234 C. Artho et al. / Theoretical Computer Science 336 (2005) 209–234

[60] K. Sen, G. Ro¸su, G. Agha, Runtime safety analysis of multithreaded programs, in: Proc. ESEC/FSE’03:
European Software Engineering Conf. and ACM SIGSOFT Internat. Symp. on the Foundations of Software
Engineering, ACM, Helsinki, Finland, September 2003, pp. 337–346.

[61] E.G. Sirer, B.N. Bershad, Using production grammars in software testing, in: Proc. SecondConf. on Domain-
specific languages, 1999, pp. 1–13.

[62] K. Stobie, Advanced modeling, model based test generation, and abstract state machine language AsmL,
http://www.sasqag.org/pastmeetings/asml.ppt, 2003.

[63] P.Thati,G.Ro¸su,Monitoringalgorithms formetric temporal logic, in:Proc.RV’04:Fourth Internat.Workshop
on Runtime Verification, Electronic Notes in Theoretical Computer Science, vol. 113, Barcelona, Spain,
Elsevier Science, Amsterdam, 2004.

[64] The test sequence generator TGV,http://www-verimag.imag.fr/∼async/TGV.
[65] N. Tracey, J. Clark, K. Mander, The way forward for unifying dynamic test-case generation: the optimisation-

basedapproach, in: Internat.WorkshoponDependableComputing and ItsApplications (DCIA), IFIP, January
1998, pp. 169–180.

[66] T-VEC,http://www.t-vec.com .
[67] W. Visser, K. Havelund, G. Brat, S.-J. Park, F. Lerda, Model checking programs, Automat. Software Engrg.

J. 10 (2) (2003) 203–232.

http://www.sasqag.org/pastmeetings/asml.ppt
http://www-verimag.imag.fr/async/TGV
http://www.t-vec.com

