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Abstract

This paper describes the initial stage of an effort the goal of
which is to demonstrate the effectiveness of automated data
mining, learning and planning for the daily management of
Earth Science missions. Currently, data mining and machine
learning technologies are being used by scientists at research
labs for validating Earth science models. However, few if any
of these advanced techniques are currently being integrated
into daily mission operations. Consequently, there are sig-
nificant gaps in the knowledge that can be derived from the
models and data that are used each day for guiding mission
activities. The result can be sub-optimal observation plans,
lack of useful data, and wasteful use of resources. Recent ad-
vances in data mining, machine learning, and planning make
it feasible to migrate these technologies into the daily mission
planning cycle. This paper describes the design of a closed
loop system for data acquisition, processing, and flight plan-
ning that integrates the results of machine learning into the
flight planning process.

Introduction
Machine learning has been integrated with planning systems
in order to automatically extract knowledge from one prob-
lem to apply to future problems, thereby improving the per-
formance of the planning system. More specifically, knowl-
edge about the domain, search control strategies, or solution
quality, can often be refined or extended from the ”experi-
ence” of planning.

The work described in this paper fits into the overall idea
of ”learning to improve planning” but with an emphasis that
distinguishes it from the goals of other efforts. Specifically,
the ”experience” that improves the planning is gained from
(data acquired as the result of) theexecutionof previous
plans, or from other sources, rather than the experience of
planning (i.e. the search for a plan) itself. The application
here is the identification of useful or interesting observation
targets for an in-situ sensor mounted on an airborne obser-
vatory (a modified DC-8). Typically, targets are interest-
ing if they reveal discrepancies or anomalies in predictive
models used by Earth scientists to study processes related
to things like climate change or pollution. Further observa-
tions of such targets will quantify the errors in the predictive

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

models in order to improve their predictive accuracy or more
generally fill gaps in the knowledge about the process of in-
terest. Interesting observation targets become goals usedby
a flight planner to generate the next day’s observation activ-
ities. Furthermore, because the process under investigation
(e.g. a hurricane or pollution plume) may be changing daily,
a cycleof planning, observation, analysis of data acquired
from observation, and model revision and prediction, occurs
continuously throughout the course of anobservation cam-
paign(typically lasting weeks).

This paper presents the design of a system for integrating
planning and learning capabilities for use by human mis-
sion planners to improve the daily operations of what are
calledmixed observationmissions, i.e., missions that com-
bine observations from a number of heterogeneous ground,
airborne, or space-borne sensors. The next section offers an
example of such a mission and motivates the automation.
There follows sections on the learning and planning com-
ponents, and how they will be integrated into a system that
assists the human operator in the observation management
cycle. The paper closes with a discussion of broader issues
that could be addressed by automated planning and learning.

Background and Motivation
NASA and other international space agencies launch and op-
erate Earth observing systems for collecting remote sensing
measurements to support scientists in the pursuit of goals
related to understanding changes to the Earth’s ecosystem.
These data are combined with data collected fromin-situ
sensors mounted on airborne or ground platforms. Many sci-
entific goals require the combination of data acquired from
different sensors. For example, to expand the temporal and
spatial scale of airborne measurements, measurements from
remote sensors are obtained simultaneously with in-situ sen-
sors.

An example of such a mixed platform observation mis-
sion was INTEX-B (INTEX-B ), conducted from March 1
to April 30, 2006. INTEX-B was the second part of a two-
phase experiment that aimed to understand the transport and
transformation of gases and aerosols on transcontinental and
intercontinental scales and assess their impact on air qual-
ity and climate. INTEX-B science goals include quantifica-
tion of the outflow of pollutants and aerosols from North
America over the Atlantic to Europe; an improvement of



our understanding of the chemical and physical evolution
of these constituents; and an assessment of the impact of
pollution transported from mega-cities such as Mexico City.
High-priority measurements included long-lived greenhouse
gases, ozone and its precursors, and aerosols and their pre-
cursors.

Day-to-day DC-8 flight planning on INTEX-B was a pro-
cess of generating a set of flight legs between waypoints (the
flight plan). Plan generation was partly automated using var-
ious flight planning tools that assist the human user by adher-
ing to flight dynamics of the DC-8 and other constraints. Se-
lection of waypoints was guided by forecasts generated from
a set of models of different spatial scales. Near-real-timeob-
servations from a number of satellite instruments were used
to guide the selection of and to identify specific regions of
interest for in-situ sampling. Integration of aircraft andsatel-
lite measurements to address the mission objectives require
validation flights directed at establishing the consistency be-
tween the two data sets.

The focus of automation in the context of mixed observa-
tion missions such as INTEX is to improve the ability toas-
similatethe different data sources in order to generate way-
points; and secondly, to automate thesearchfor high quality
plans. The idea is that improved data assimilation will result
in a better understanding of the space of high quality flight
plans, a space which can be then explored more effectively
by automated planning methods. The next sections investi-
gate the approaches used for each of these capabilities.

Learning Problem
The high-level learning problem in this paper is to learn to
map measurements taken as part of a mission with other
relevant data and physical process models to scientifically
useful locations/times where new measurements should be
taken. Within this high-level learning problem, there are
several lower-level learning problems that we are investigat-
ing:

1. Physical process models such as MOZART (Brasseur
et al. 1998a; 1998b) represent expert knowledge. Situations
in which these models make unexpected or erroneous pre-
dictions are situations that need to be studied further, since
expert knowledge is unable to explain them. For example,
MOZART generates predictions of Carbon Monoxide (CO).
Several satellite instruments such as MOPITT and AIRS
as well as in-situ instruments onboard the DC-8 yield CO
measurements. Machine learning and data mining meth-
ods can be used to model the errors made by MOZART
as a function of the available measurements, measurement
locations, and/or background conditions (such as tempera-
ture and pressure). The methods would generate models
based on past data and then would be applied to forecasts
for the next day to generate predictions of where the errors
are likely to be highest (e.g., locations, temperature ranges).
These represent suggestions of measurements to be re-done
as well as how the physical models themselves may be mod-
ified. The resulting data mining/machine learning models
can also be used to fill in the gaps left by the physical mod-
els. That is, one can leave the existing physical models as
they are and add our data mining models to them to form

an ensemble model that outperforms the original physical
models.

2. Just as physical models and measurements may be in-
consistent with each other, different measurements and data
may be inconsistent. Machine learning and data mining
methods can be used to model the relevant measurements
and other data and can use the resulting models to detect
such inconsistencies in new data. These inconsistencies rep-
resent anomalous conditions under which one may want to
take measurements again. This capability allows us to go far
beyond typical single-variable range-checking and instead
enables the detection of deviations from the typical mathe-
matical relationships between measurements and data even
when they may be within appropriate ranges.

3. Measurements and derived data that are needed for
flight planning may sometimes be missing or corrupted.
This may happen due to sensor problems or conditions that
hamper measurement (e.g., clouds). Certain data derived
from measurements and process models may also be use-
ful in flight planning but may not be available due to the
time required to compute the derived data. Data mining and
machine learning methods can generate estimates of sensor
measurements and derived data as a function of other avail-
able data and information in situations where true values are
unavailable or unusable.

For these three functions, we are using standard ma-
chine learning methods as well as novel methods developed
by us and our colleagues (Srivastava 2004; Iverson 2004;
Bay & Schwabacher 2003; Oza 2004). We are using su-
pervised machine learning methods for regression such as
MultiLayer Perceptrons (MLPs) (Bishop 1995) and Sup-
port Vector Regression (SVR) with Radial Basis Func-
tion (RBF) kernels (Scholkopf & Smola 2002). To use
these methods, we identify a training set consisting of pairs
{z1, y1), (z2, y2), . . . , (zn, yn)}, wheren is the number of
training examples we have, and each training example con-
sists of a quantityy (the output or response) that we would
like to predict andz (the input or predictor) that we believe
is useful in generating the output. For example, in low-level
problem 1 above, eachyi (i ∈ {1, 2, . . . , n})could be the
error in MOZART’s CO prediction in a certain region and
z could be the actual MOZART CO prediction and tem-
perature. The machine learning model would learn a func-
tion y = f(z) from past data. Then, given the CO predic-
tion and temperature forecast for the next measurement day,
the machine learning model would generate an estimate of
MOZART’s prediction error. The high-error regions would
represent locations where measurements should be taken. In
problem 2 above, we are using regression methods to model
different measurements and data as a function of other avail-
able data. Such regression models go far beyond simply
measuring the linear correlations between different data and
checking for changes.

We are also using standard unsupervised learning meth-
ods for clustering (e.g., K-means (MacQueen 1967) and ker-
nel clustering (Girolami 2001)) and anomaly detection (e.g.,
one-class Support Vector Machines (Tax, Ypma, & Duin
1999). Clustering methods organize the data into clusters
that represent data that have similar properties (e.g., par-



ticular ranges in which different measurements fall or par-
ticular mathematical relationships between measurements).
Data that are part of very small clusters or are far from all
clusters represent anomalies that may need to be examined.
Anomaly detection methods construct a model of the train-
ing data, which is typically assumed to be normal. These
methods are then executed on new data, and data that do
not fit the model’s definition of normality are flagged as
anomalous. For example, one-class Support Vector Ma-
chines (SVMs) are given training inputsz1, z2, . . . , zn just
as defined above, as well as an expected fraction of training
points that are anomalous. One-class SVMs find a nonlin-
ear model that identifies up to that fraction of training points
as anomalous and separates them from the normal points.
When a one-class SVM is given a training pointz, it re-
turns a valuey that is positive ifz is part of the normal
regime identified in the training data and negative ifz is
thought to be abnormal. The farther awayy is from zero,
the “more normal/abnormal”z is. Given input from clus-
tering and anomaly detection, we expect to characterize re-
gions where new measurements should be taken (e.g., par-
ticular locations or ranges of model predictions). We ex-
pect that different methods for supervised learning, cluster-
ing, and anomaly detection will work well in different situ-
ations (e.g., different times of year or regions of the Earth).
Therefore, we plan to use ensemble machine learning meth-
ods (Kuncheva 2004) that combine multiple machine learn-
ing models in order to leverage each model’s strengths in the
right situations.

For the third function above, we are leveraging work done
under the Virtual Sensors project. The goal of this project
was to produce high accuracy estimates of sensor measure-
ments given other measurements and data. These estimates
are produced when actual measurements are not available,
which can happen due to sensor failure, ambient conditions
that prevent or hinder measurement, or the measurement ca-
pability not being available (e.g., for an older instrument).
The estimator is referred to as a Virtual Sensor because it is
designed to serve as an estimate for a real sensor measure-
ment when the real measurement is not available. Virtual
Sensors exploit the fact that, even though every sensor takes
seemingly independent measurements, there are a limited
set of possible objects that these sensors measure. There-
fore, all the sensors cannot simultaneously take all possi-
ble values (e.g., two sensors taking CO measurements in the
same location will tend to report comparable values, there-
fore, if one sensor is unavailable, the other one can be used
to generate an estimate of the missing measurement and/or
a range of possible measurements). We previously used this
methodology to generate an estimate of the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) channel 6 (1.6
mm) for an older instrument (Advanced Very High Reso-
lution Radiometer, AVHRR/2) that did not have this chan-
nel (Srivastava, Oza, & Stroeve 2005).

Planning Problem
There are two kinds of inputs to the flight planner: mission
goals and waypoints. Mission goals arise from models, from
a phenomenon or event of interest, or from other sensing re-

sources. The goal might be to validate predictions made by
a model, to characterize or classify the composition of dy-
namic process like a pollution plume, or validate observa-
tions made by a remote sensing instrument. The waypoints
are 3D specifications of locations that support one or more
of the goals. Goals or waypoints may be assigned a prior-
ity. They may also be assigned a indicator of confidence or
certainty.

The output of the flight planner is a flight plan, a set of
paths, including a designated best path. A path is a set of
segments, or flight legs, connecting waypoints. A path might
also be associated with temporal information (start time of
each leg, and duration). Each leg follows a pattern: direct as-
cent, direct descent, level, or spiral (ascent or descent).The
best path is the one the planner has determined most likely to
satisfy the most goals, based on the specified priorities and
uncertainties.

There are four kinds of constraints on the output of the
planner: related to the instruments taking the measurements,
the platforms (aircraft) on which they reside, direct con-
straints on the paths that can be flown, or to the mission
goals.

Instruments must be set up before they can take measure-
ments. In this problem, to set up an instrument means setting
up the aircraft on which it resides. For example, an in-situ
instrument might require level flying for a certain amount of
time. Similarly a remote sensor might require flying over the
phenomenon of interest for a certain length of time.

Second, the aircraft on which the instruments reside have
requirements related to its navigational capabilities, orfor
safe flying. The flight path must adhere to these require-
ments. An important constraint of this type is the avoidance
of Special Use Airspace (SUA).

Third, the paths flown must satisfy certain constraints,
such as the flight path must start and end at the same lo-
cation, the airport at which the aircraft resides. Restricted
airspace requirements are also path constraints. There may
be constraints related to start times or end times of the flight
plan.

Finally, goals constrain flight plans by requiring certain
patterns. Thus, the goal to validate a remote sensing instru-
ment requires a flight plan that contains legs that coincide
with the flight pattern of the satellite. Similarly, a goal to
measure the composition or distribution of some matter in a
process might require a spiral path pattern for a duration of
time at a specified location.

The core computational problem being solved can be
viewed as a version of theorienteering problem(OP) (Fis-
chetti, Gonzalez, & Toth 1998). In this type of transporta-
tion problem there is a single ”vehicle” (the DC-8) and a set
of ”customers” (waypoints) that need to be serviced, each
with a designated priority. There is a transit time between
customers. A feasible route is a sequence of waypoints that
begins and ends at a designated ”depot” (airport). A feasible
route also must adhere to a bound on the sum of the tran-
sit times in the route, corresponding to restrictions on fuel
and other restrictions on the length of a flight. More for-
mally: given a set of waypoints,W = {x0, x1...xn} each
with an assigned prioritywi, 1 ≤ i ≤ n, a binary cost func-



tion C : W × W → N , a designated start pointx0 with
w0 = 0, and a temporal boundB, find a sequence (sched-
ule) s = 〈xs1

, ..., xsk
〉, sj ∈ {0, . . . , n}, k ≤ n + 1, that

maximizesΣj=1...kwsj
, subject to the following constraints:

1. s1 = sk = 0,

2. i 6= j → si 6= sj , i.e., eachxj ∈ W occurs at most once
in s,

3. Σi=2...kC(xsi−1
, xsi

) ≤ B.

Notice that in this version there is an assumption of ”over-
subscription”: it is not necessary, and may not be possible,
to service all the customers, and indeed a best route might
not include all of them. As such, it bears similarity to the
robot activity planning problem described in (Smith 2004).
The solution method employed here also draws upon an ap-
proach to flight planning employed in the Sofia planning sys-
tem (Frank, Gross, & Kürklü 2004).

In the first version of the solver (flight planner), we are ex-
perimenting with variations of a constructive search, where
each decision point involves selection of the next waypoint
to add to a partial schedule. A greedy approach to selection
is employed, where each feasible waypoint candidatexi is
heuristically evaluated in terms of theexpected valuevi of
adding a leg terminating atxi to the partial plan. We define
vi = wi/[C(xsj

, xi)+pj,i], wherexsj
was the last waypoint

added to the schedule, andpj,i is a penalty for SUA intru-
sion, discussed below. A candidatexi is feasible for a sched-
ule 〈xs1

, . . . , xsj
〉 if the sequence〈xs1

, . . . , xsj
, xi, x0〉 sat-

isfies the bound constraint (3), i.e., if the aircraft can return
to the airport immediately after flying to the waypoint with-
out violating (3). The algorithm deterministically selects the
candidate with the highest expected value to extend a plan,
until either the list of available candidates is empty, or none
of the remaining candidates is feasible with respect to the
current plan.

SUA intrusion is treated as a penaltypj,i that reduces the
expected value of adding a leg fromxsj

to xi to the current
plan. The penalty is incurred because for the leg to be added
to the plan, it is necessary to plan a route around the SUA.
Because the new path adds duration to the overall plan, the
candidate loses value proportionately.

An SUA violation is detected by intersecting the line de-
fined by the leg with the region defining the SUA. More than
one SUA may be defined for a given problem, so this inter-
section may need to be performed more than once for each
candidate. If the intersection is non-empty, then the value
of the penalty,pj,i, must be estimated. A number of esti-
mation techniques are available. We start with one of the
simplest, which does not involve any form of path planning.
Given a SUA region, we take its convex hull, and determine
its perimeter. We estimate the worst-case penaltypj,i as
one-half the perimeter. This corresponds to the worst case
scenario where, roughly speaking, the straight line path in-
tersects the ”mid point” of the polyhedron. If more than one
SUA is intruded upon, then we perform the same estimate
on the convex hull of the union of the SUAs.

Integration
The integration of machine learning with flight planning into
a daily mission planning system is visualized in Figure 1.
The closed loop system involves four components:

1. Data archives, process models, and instruments for pro-
ducing data or forecast products.

2. A data assimilation assistantfor generating planning
goals (waypoints) given data;

3. A flight and activity planning assistantfor generating
flight plans given goals; and

4. A visualization toolVIZ (Edwardset al. 2004) for dis-
playing the data and plans to the human flight planner.

In the current implementation, the Mozart process model
produces Carbon Monoxide (CO) predictions, which are
assimilated with satellite observations of CO from the
AIRS and MOPITT sensors, as well as observations of
dust, aerosols and clouds from MODIS. These data and
models are organized and archived in the TOPS data
and modeling system (Nemaniet al. 2000). Way-
points, currently expressed in a 3D location vector,
〈latitude, longitude, altitude〉 are identified as interesting
locations for conducting future CO measurements, either for
finding and characterizing differences between models and
observations, or for filling in gaps in data.

The waypoints are fed into the planner as goals. Flight
plans are generated using the greedy approach described
above, and the best plan displayed to the human planner.

Preliminary testing of the learning and planning compo-
nents on INTEX-B data is underway, but the integration be-
tween the planner and data assimilator is in progress. The
requirements of the integrated system include the following
capabilities:

1. Planning for multiple types of mission goals, including
goals involving coordinated sensing with other airborne
or space-borne assets. Such goals will introduce tighter
temporal constraints explicitly associated with waypoints.

2. Identification of interesting targets based on the mining
of other data products, including ozone and aerosols. The
use of multiple data products may introduce further crite-
ria for prioritizing observations.

3. Generating and displaying multiple high quality plans for
down-selection by human users. This will require a modi-
fication of the planner to allow for generating multiple so-
lutions. The simplest modification would be to introduce
non-determinism in the advice given by the heuristic, a
method that has been used in other observation schedul-
ing applications (Bresina 1996).

Conclusion
This work is an example of the infusion of AI technology
into decision support tools for remote sensing missions for
Earth science. The integration of machine learning and data
mining into mission observation planning will increase the
amount of useful data products for improving the predictive
capabilities of Earth science models, thus improving human



 

Figure 1: The daily mission flight planning cycle, integrating machine learning and flight planning.

understanding of Earth processes. From a technology stand-
point, the use of observation and forecast data in the formu-
lation of planning goals represents a more robust representa-
tion of the world in which the plans will be executed, which
will improve the ability of planning systems to converge on
plans with high scientific value.
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