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Abstract. This paper discusses an approach to representing and reasoning about
constraints over strings. We discuss how string domains can often be concisely
represented using regular languages, and how constraints over strings, and do-
main operations on sets of strings, can be carried out using this representation.

1 Introduction

Constraint satisfaction problems (CSPs) involve finding values for variables subject to
constraints that permit or exclude certain combinations of values. Since many tasks in
computer science [13,5,22] and many real-world problems [23,14,16,20] can be formu-
lated as CSPs, they have been attracting widespread research and commercial interests
for the last two decades. Whereas much work has been done on constraints over fi-
nite discrete domains and numerical intervals, there has been little work on constraint
reasoning over strings.

Strings appear everywhere, from databases to DNA, and the relationships between
the strings and the real-world objects they represent can be formalized as constraints.
For example, we are applying constraint-based planning to provide automation in soft-
ware domains [9,8], domains in which the actions are operations in a software envi-
ronment, such as moving files, searching for information on the Internet or image pro-
cessing. One characteristic of nearly all software domains is the ubiquity of strings and
constraints. File path names, URLs and the contents of text files and web pages are all
represented as text, which often obey specific constraints. For instance, many programs
have inputs or outputs in the form of files, whose names follow some canonical form:

– A Java compiler expects the pathname for the source code of “my.package.MyClass”
to be “my/package/MyClass.java,” and it produces a file “my/package/MyClass.class.”

– The pathname of data down-linked from a spacecraft or planetary rover is often in
a form like “phase2/sol29/my_instrument/seq0002.jpg,” where each component of
the pathname refers to some meaningful aspect of the data.

A distinguishing characteristic of software domains and other domains involving strings
is that the set of possible strings corresponding to a given name, input or file is either
infinite or so large that listing them all would require unacceptable amounts of time
and storage. The challenge of effectively representing and reasoning about constraints
on strings is to represent infinite string sets without actually requiring infinite space
and to enforce constraints over infinite string sets without exhaustively listing the con-
sistent values. In this paper, we provide such a string representation, based on regular



languages, we discuss how common string constraints are defined and handled using
this representation, and we show how string constraint problems can be solved.

The remainder of the paper is organized as follows. In Section 2, we review no-
tations of constraint satisfaction problems. In Section 3, we discuss our string domain
representation, namely, regular languages. In Section 4, we provide definitions of useful
string constraints and describe how they are enforced using this domain representation.
In Section 5, we discuss how standard domain operations, such as intersection and
equality testing, are handled. In Section 6, we show how the string constraints can be
applied to solving some interesting problems. And finally, in Section 7 we conclude by
summarizing our contribution.

2 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP)is a representation and reasoning frame-
work consisting of variables, domains, and constraints. Formally, it can be defined
as a triple< X,D,C > where X = {x1,x2, . . . ,xn} is a finite set of variables,D =
{d(x1),d(x2), . . . ,d(xn)} is a set of domains containing values the variables may take,
andC = {C1,C2, . . . ,Cm} is a set of constraints. Each constraintCi is defined as a rela-
tion R on a subset of variablesV = {xi ,x j , . . . ,xk}, called the constraint scope.R may
be represented extensionally as a subset of the Cartesian productd(xi)×d(x j)× . . .×
d(xk). A constraintCi = (Vi ,Ri) limits the values the variables inV can take simultane-
ously to those assignments that satisfyR. Let VK = {xk1, . . . ,xkl } be a subset ofX. An
l -tuple(xk1, . . . ,xkl ) from d(xk1)× . . .×d(xkl ) is called aninstantiationof variables in
VK . An instantiation is said to beconsistentif it satisfies all the constraints restricted in
VK . A consistent instantiation of all variables inX is asolution. The central reasoning
task (or the task of solving a CSP) is to find one or more solutions.

A CSP can be solved by search using, e.g., standard backtracking algorithms [3,10].
However, for CSPs with infinite domains such as those of interest in this paper, it is not
guaranteed that a solution can be found by search alone, because it is infeasible to enu-
merate all values of infinite variable domains. Instead, the CSPs with infinite domains
need to be relaxed by consistency enforcement before or during the search. Enforcing
local consistency eliminates inconsistent values from variable domains [15,2]. In the-
ory, if a given CSP has only one solution, enforcing a certain level of consistency will
eventually make every variable domain a singleton domain; if the CSP has more than
one solution, or infinitely many solutions, every remaining value in the domain after
consistency enforcement will be part of a solution. In practice, an effective constraint
solving strategy enforces a certain level of consistency such as generalized arc consis-
tency [17,18] at each node of the search tree. A key issue is the trade-off between time
spent on propagation and the reduction in the search space needed to allow feasible
and efficient search. Based on our experience dealing with constraint-based planning
in software environments, much depends on how the variable domains are represented
and how the constraints are evaluated or executed to enforce consistency. In the next
three sections, we focus on our string domain representation and a definition of con-
straints over string domains. These string constraints are in the constraint library of the



constraint reasoning system we implemented and, together with other numerical and
boolean constraints, are used to model planning problems.

3 String Domains

We use the same CSP representation both to represent the constraint problem and to
search for a solution; the domaind(x) of variablex, representing the set of values thatx
can take, will, in general, change during the course of search and constraint propagation.
Typically, a variable’s domain is represented as a list of values. For numeric domains,
we can instead represent a domain as an interval, yielding substantial decreases in space
and time requirements and making it possible to represent an infinite set of values [11].

In the domains of interest, we frequently want to represent infinite, or very large, sets
of strings, such as all possible pathnames matching a given pattern. Representing this
set as a list is clearly infeasible, since it is infinite. Intervals are equally inappropriate.
While it is possible to represent some sets of strings as intervals, such as all names
between “Jones” and “Smith” in the phone book, such intervals are far less useful in
practice than are numeric intervals.

However, there is an alternative representation of sets of strings that is far more
useful, as evidenced by its ubiquity: regular languages. Regular languages are sets of
strings that are accepted by regular expressions or finite automata, which are widely
used in string matching, lexical analysis and many other applications. Although there
are many languages that are not regular, such as palindromes, regular languages provide
a nice tradeoff between expressiveness and tractability. As we will discuss, not only can
we enforce generalized arc consistency (GAC) [2] for a wide range of useful string
constraints when the domains are represented as regular languages, but we can perform
the domain operations necessary for constraint propagation and search.

Regular languages are a much more flexible representation than intervals, in that
the set of regular languages is closed under intersection, union and negation, whereas
the set of intervals is only closed under intersection. Note that moving to an even more
expressive representation would not be an improvement. Neither context-free languages
(CFLs) nor deterministic CFLs are closed under intersection, and determining whether
a context-sensitive (or more expressive) language is empty is undecidable [12, p 281].

We use two different representations of regular languages: regular expressions and
finite automata (FAs). Regular expressions are used as input and are converted to FAs,
which are used computationally. A regular expression represents a regular language
over an alphabetΣ. In our implementation,Σ is the set of Unicode characters. We use
the notation described in Table 1 to describe regular expressions.

The purpose of the notation \c is to “quote” a symbolc that would otherwise be
interpreted as a syntax character. For example, \[ can be use to refer to the character “[”
and \\ refers to the character “\”.

We represent regular languages internally using FAs, since they are easier to com-
pute with than regular expressions. An FA is a pair< S ,T >, whereS is a set of states
andT is a set of labeled transitions between the states. Each transition inT is a triple

< s1, l ,s2 >, which we will write < s1
l→ s2 >, wheres1 is the starting state of the

transition,s2 is the ending state andl ∈ Σ is the transition label. The input to the FA is



Expression Accept
[abc] one of the charactersa,b,c
[a−c] one of the characters in the rangea−c
~[abc] any character inΣ excepta,b,c

. any character inΣ
\c the literal characterc

re1re2 re1followed byre2

re1|re2 eitherre1or re2

re∗ zero or more repetition ofre
re+ one or more repetitions ofre
re? zero or one occurrences ofre
(re) re (used to override precedence)

Table 1.Regular expression syntax

a sequence of symbols fromΣ. Whenever there are symbols left to read, the FA reads
the next symbol,c, and follows a transition from the current state whose label isc. If
there are multiple transitions labeledc, one is chosen nondeterministically. If there are
no transitions labeledc, the FA halts and returns failure. For efficiency, we allow transi-
tions to have sets of labels, represented using the same notation as shown in the first five
rows of Table 1 (i.e., one-character regular expressions). For example, we could have a

transition< s1
[a−zA−Z]→ s2 >, meaning the transition will be taken if the symbol is any

character from the English alphabet. This is logically equivalent to having a separate
transition for each symbol. For notational convenience, we also refer to transitions la-
beled withε. An ε-transition is always applicable and is followed without reading any
characters. An FA has a singlestart state, which is always the first state,S [0], and zero
or moreaccept states. To determine whether a strings is in the language accepted by an
FA < S ,T >, we start the FA inS [0] and have it readsuntil there are no characters left
to read. If, at that time, the FA is in an accept state, thens is in the language. Otherwise,
it is not. In our visual depiction of FAs, we represent states, transitions, start states and
accept states as follows:

s1 s2 s3 s4s0
a

state transition start state accept state

A deterministic finite automaton (DFA) is an FA with no epsilon transitions and in
which there is exactly one transition out of every state for each labell ∈ Σ. An FA that
does not satisfy these conditions is a nondeterministic FA (NFA). The minimal DFA
representation of a language is a unique, subject to renaming the states [12, p 57]. In the
remainder of the paper, we will assume an FA is an NFA unless stated otherwise. NFAs
and DFAs have equivalent expressive power, in that both accept the family of regular
languages, but NFAs may be exponentially smaller. We call a domain represented using
a regular expression or FA aregular domain.

Regular expressions and FAs have been used in many application domains involv-
ing strings, such as data mining from databases or the Web. For example, in [6], the



authors addressed the issue of mining frequent sequences from a database of sequences
in the presence of regular expression constraints (see [1] for a detailed discussion on the
issue of mining sequential patterns). Regular expression constraints are user-defined se-
quence patterns that are used tomatch strings in the database or web during query or
search. Our work differs from past work in that we do not simply use regular lan-
guages to match fixed strings. Rather, we use them to propagate constraints among
string variables, whose domains may be infinite. For example,match is indeed a com-
mon constraint in our library. However, the domain of the string to be matched need not
be singleton. In addition tomatch, many other types of string constraints appearing in
real-world problems need to be represented. We discuss some common ones in the next
section.

There has been some work applying constraint reasoning to strings, but relying on
less expressive representations of string domains. [4] reports on a language capable of
specifying constraints for searching patterns in bio-sequences, such as the length of a
string, the distance between two strings, and the position of a string where a character
matches. The sequences (strings of symbols) are represented as lists, and the constraints
and the constraint solver are implemented using CLP(FD). [19] discusses CLP(S), CLP
extended to deal with strings, and its applications to natural language, images and ge-
netic code processing. In contrast to the work presented here, strings are represented
as concatenations of variables and constants, which are strictly less expressive than the
regular language representation presented here.

4 Constraints

Constraints are usually defined as mathematical formulations of relationships to be held
among objects. For example,x+y= z is a constraint describing an equality relation that
holds among three numeric variablesx, y, andz. Similarly, for the string variablesx, y,
andz, we can define a string constraint asx+ y = z which represents a concatenation
relation; that is, stringz is the concatenation of stringsx andy. We have implemented
a number of string constraints in our constraint reasoning framework, which supports
generalized arc consistency (GAC), even on infinite sets of strings. In the following, we
give definitions of these constraints, illustrated by how they are enforced using FAs.

4.1 Matches

One of the constraints in the library tests whether a string matches a given regular
expression:

matches(stringx, regexpre)

Althoughmatches takes two arguments, it is essentially a unary constraint, because it
is not enforced unless the domain ofre is a singleton, in which case it computes the
FA corresponding to the regular expression represented byre and intersects it with the
domain ofx. Matches subsumes all possible unary constraints over strings expressible
in our formalism, so other unary constraints, such asallUpperCase andisAlphaNumeric



need not be implemented.Matches is used in type constraints to define the initial do-
mains of variables of given subtypes of string. For example, we can define a Unix
filename as any string of non-zero length that does not contain the character ’/’:

matches( f ilename, “~[/]+”)

and we can define a time as a string of the form HH:MM:SS:

matches(time, “(([0−1][0−9]) |(2[0−3])) : [0−5][0−9] : [0−5][0−9]”)

4.2 Concatenation
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Fig. 1.Concatenation

One of the most obvious operations on strings is concatenation. The concatenation
of two strings,x andy, yields another string,z, which consists of all the characters ofx
followed by all the characters ofy:

concat(z,x,y)

This can be generalized to concatenation of three or more strings in the obvious way.
If the domains ofx and y are regular, the domain ofz will simply be the result of
concatenating the FA representations ofx andy — that is, addingε-transitions from the
accept states of the FA forx to the start state of the FA fory, as shown in Figure 1,
obviously a linear-time operation.

Less obviously, if the domains ofx andzare regular, the domain ofy is also regular.
To construct an FA fory given FAs forx andz, we in effect traverse the FAs forzandx
in parallel, exploring the cross-product of the nodes from the two FAs, starting with the

pair of initial states and adding a transition{sn, tm}
lab→{sp, tq} from every node{sn, tm}

and every labellab such that the transitionssn
lab→ sp andtm

lab→ tq appear in the original
FAs (see Figure 2). This is simply the operation that is performed when intersecting two
FAs (Section 5.1). Whenever we reach a state{s, t}, such thats is an accept state in the
FA for x, we mark statet. After the traversal is complete, the marked states in the FA
for z represent all of the states that can be reached by reading a string accepted byx.



A new nondeterministic FA (NFA) fory is constructed by copying the FA forz,
making the start node a non-start node and making all the marked nodes new start
nodes. The complexity of the whole operation is dominated by generating the cross-
product FA, so is the same as domain intersection (Section 5.1). A similar procedure
can be used to construct an NFA forx, given FAs fory andz.
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Fig. 2. Given FAs forx (left box) andz (right box), find an FA fory such thatz is concatenation
of x andy. First, traverse FAs forz andx in parallel, constructing cross-product FA (lower left).
Then, identify states that are accept states forx and mark the corresponding states in the FA forz
(shaded circles). Construct a new NFA (right) fory by copying the FA forz and making marked
nodes start nodes.

4.3 Containment

The relation

contains(Stringa, Stringb)

means that stringb is a substring ofa. If the domain ofb is a regular languager, then
the domain ofa is given simply by the regular expression “.*r.*”. Given an FA for r,
we can create an FA for “.*r.*” in linear time by concatenating the FAs for “.*”, r and
“.*”. If we have some other FA representing the domain ofa, we simply intersect that
domain with the domain for “.*r.*”.

Less obviously, if the domain ofa is regular, then so is the domain ofb. Given an FA
for a, we can construct an NFA forb in linear time by eliminating any dead-end nodes
from a (that is, nodes from which it is impossible to reach an accept node), adding a
new start state, withε-transitions to all states, and then making all states ina accept
states (Figure 3). Again, we simply intersect this domain with the original domain forb
to enforce the constraint.

4.4 Length

Constraints on the length of a string can also be represented using FAs:
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Fig. 3.Given an FA for a regular languager, construct a new FA for all substrings of strings inr.
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As these examples show, intervals over the length are simple to represent; if we have a
constraint of the formlength(s,n), and the domain ofn is represented as a finite interval,
we can enforce the constraint without waiting untiln becomes singleton. We simply
construct a linear FA whose size is one plus the upper bound ofn, and label all of the
states whose position exceeds the lower bound as accept states. Similarly, ifd(n) =
[x,∞), we construct a linear FA of sizex+1 and make the last state an accept state with
a self-transition. The time to construct the FA is proportional to either the upper bound
of n, or to the lower bound if there is no upper bound.

Conversely, if we have a regular domain representation ofs, we can obtain lower
and upper bounds forn by determining the shortest and longest paths from the start
state to an accept state, a linear-time operation. If there is no upper limit on the size,
there will be a loop along a path to an accept state.

4.5 Other constraints

Many other string constraints are straightforward to represent. Toreverse all strings in
a regular domain, we simply reverse the direction of all the transitions and reverse the
status of start and accept states in the FA, a linear time operation. If doing so would
result in multiple start states, we create a new, unique start state and addε-transitions
to all would-be start states. Tosubstitute one character for another, we can perform the
substitution on the labels of the transitions, also linear time.Subsequences of strings
can be obtained using a combination ofconcat andlength. For example, to specify the
5-character prefixp of strings, we can writelength(p,5)∧concat(s, p, r), wherer is an
unconstrained string.

Another common operation on strings is to specify the character at a given location
of the string:characterAt(s,n,c), wherec is the character at positionn of strings. We
will assume thann is a constant (The case wheren is a variable can be handled in a
similar fashion, but is more complex). We apply the same general idea as thelength



constraint. In fact, for the character at positionn in a string to have any value at all,
the string must be at leastn characters long, so thecharacterAt constraint looks like the
constraintlength ≥ n, with the addition that the label of the transition leading to the
accept state is restricted to the domain ofc. Given the domain ofs, we could similarly
determine the domain ofc in O(n(|S |+ |T |)) time, by finding all states reachable in
n−1 transitions from the start state, then taking the union of the labels of transitions
from which it is possible reach an accept state.

Of the constraints we discussed,matches, concat, contains andreverse are imple-
mented in our constraint library. Implementation of the others is left as future work.

5 Domain operations

In order to effectively eliminate inconsistent values from regular domains during con-
straint propagation, we need to be able to perform set operations on the domains, in-
cluding intersecting two domains, determining whether one is a subset of another and
determining whether a domain is empty or singleton. We can perform these operations
easily using FAs. It is well known that regular languages are closed under intersection,
union and negation [12, p 58-60], and the algorithms for performing these operations
on FAs are straightforward.

5.1 Intersection

Since intersection is such an important domain operation, we show the algorithm for
intersection below.
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let init←{S1[0],S2[0]}
push init
let S ′←{init}, T ′←{}
while(stack not empty)

{s1,s2}← pop;
isAccept({s1,s2})← isAccept(s1) and isAccept(s2)

foreach lab ∈ Σ such that< s1
lab→ sx >∈ T1and < s2

lab→ sy >∈ T2
add < {s1,s2}

lab→ {sx,sy}> to T ′
if ({sx,sy} /∈ S ′)[

add{sx,sy} to S ′
push{sx,sy}

return < S ′,T ′ >

The graph is built by exploring reachable states inS1×S2, starting from the pair of ini-
tial states. Because of the test in the innermost loop, no state inS1×S2 will be visited



more than once. In the idealized case of a DFA in which each transition is represented
explicitly, the size of the new FA, and the time to build it, is thus O(|Σ| |S1| |S2|), inde-
pendent of the number of transitions in the input FAs. In reality, transitions havesets
of labels, and the intersections of these sets can result in additional transitions. For ex-
ample, given transitions in one FA on [a-g] and [h-z], and a transition in the other FA
on [d-k], we may end up with transitions in the new FA on [a-c], [d-g], [h-k] and [l-z].
Additionally, an NFA may contain multiple transitions on the same label, so at worst
we need to consider all pairs of transitions from the input FAs, giving a space and time
complexity of O(|T1| |T2|+ |S1| |S2|).

5.2 Negation
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Complementing the accept states of a DFA results in a DFA accepting the complement
of the language [12, p 59]. Although complementing the accept states is clearly a linear
time operation, converting an NFA to a DFA potentially generates the power set of the
NFA, an exponential blowup. Although neither intersection nor negation result in NFAs,
some of the constraints defined in Section 4 do.

Given intersection and negation, we can apply the following definitions to compute
subset and equality relations between two domains:

( f a1⊆ f a2)≡ (¬ f a2∩ f a1 = /0)
( f a1 = f a2)≡ ( f a2⊆ f a1)∧ ( f a1⊆ f a2)
( f a1− f a2)≡ ( f a1∩¬ f a2)

5.3 Splitting domains

Using regular sets as a domain representation, we can propagate constraints very ef-
fectively, even when some of the variable domains are infinite. Searching over infinite
domains, in contrast, runs the risk of infinite regress, but it can be done by successively
splitting the domain into disjoint subsets. Any regular setr can be used to split a domain
d, provided neitherr nor its complement has an empty intersection withd. The new do-
mains ared∩r andd∩¬r. In some applications, a natural choice for sets to split on may
present itself. Otherwise, we can easily derive a setr from d by removing transitions
from the FA ford. As long as|d|> 1, there will be at least one transition leading to an
accept state that can be removed without making the language empty (although doing
so may require partially unrolling a cycle).r is guaranteed to be a proper subset ofd.



5.4 Domain Size

It is important be be able to determine the size of a domain. For example, if the size
is 0 (empty), then the constraint network is inconsistent. If the size is 1, then a value
for the corresponding variable is determined. Domain size is also useful for variable-
ordering heuristics, and knowing whether a domain is finite or infinite is important to
avoid searching over infinite domains. Determining the size of a regular domain is less
straightforward than determining the size of a set or interval domain, but it can still be
done fairly efficiently.

Given a DFA, we can determine the number of strings in the language as follows.
We begin by removing all dead-end states from the FA, a linear-time operation. A dead-
end state is a state from which it is impossible to reach an accept state. If the initial state
is dead-end, then the domain is empty. Once the dead-end states are removed, if the
FA contains any loops, then there are infinitely many solutions, because we can follow
a loop any number of times and then follow a path to an accept state. We perform a
topological sort of the FA, which is linear in the number of arcs. If the sort fails, then
there is a loop and thus infinitely many solutions. Otherwise, we traverse the graph in
the order dictated by the topological sort, keeping track of the number of paths there are
from the initial state to the current state:

size(< S ,T >)



S ← topologicalSort(S)
pathsFromInit[0] = 1
for i = 0 to |S | if isAccept(si) thennumSolutions += pathsFromInit[i]

foreach transition < S [i] l→ S [d] >∈ T
[ pathsFromInit[d] += pathsFromInit[i]

return numSolutions

Let Wi ⊂ Σ∗ be the words that, when read from the initial state, lead toS [i]. To show
that the algorithm produces the correct result, we first show that, for allk, before thekth
iteration of thefor loop, pathsFromInit[k] =

∣∣Wk
∣∣. The proof will be by induction on k.

Base case: BecauseS is topologically sorted,S [0] is the initial state. Before thefor
loop is executed, pathsFromInit[0] = 1 =|ε| = |W0| . Now assume, for allj < k, that
pathsFromInit[j] =

∣∣W j
∣∣. Let Sk be the set of states with transitions toS [k]. BecauseS

is sorted topologically,∀S [i] ∈ Sk, i < k, so all transitions toS [k] are visited (foreach
loop) before thekth iteration of thefor loop. Because the FA is deterministic, no word

can be reached by multiple paths, so|Wk|= ∑S [i]∈Sk

∣∣Wi
∣∣ ∣∣∣{c|< S [i] c→ S [k] >∈ T

}∣∣∣.
By assumption,

∣∣Wi
∣∣= pathsFromInit[i], so this is precisely the value stored in paths-

FromInit[k] by thekth iteration.

Finally, it suffices to observe that numSolutions =∑{i | isAccept(S [i])}pathsFromInit[i]

= ∑{i | isAccept(S [i])}
∣∣Wi

∣∣, i.e., the number of words accepted by the FA.



6 Examples

6.1 Pathname

In Unix, sets of files are often represented using regular expressions on their pathnames.
Correspondingly, regular domains are very useful for representing sets of files in a
constraint-based planning problem. In addition to the ability to represent large sets con-
cisely, we can also handle constraints that relate the file’s pathname to other attributes
of the file. For example, satellite images and other automatically generated data are typ-
ically stored in ordinary filesystems, with pathnames based on details of the data, such
as the time, subject, source, file format, etc. Suppose we have a remote archive in which
satellite images have pathnames of the form:

/downlink/< year >/<dayOfYear>/< sensor> <gridx><gridy>. <format>

We can represent this knowledge using a concatenation constraint:

rpn= concat(“/downlink/”, y, “/”, d, “/”, s, gx, gy, “.”, f mt).

Given only this knowledge, all we know about the remote path names,rpn, is they are
characterized by the regular expression “/downlink/.*/.*/.*/.*\ ..*”. However, we may
know quite a bit about the other variables, such as how many years the satellite has been
in operation, how many days are in a year, the sensors aboard the satellite, the grid coor-
dinate system used to indicate the regions covered by the images, and the available for-
mats. Assuming we are interested in just a subset of the data, we can impose additional
constraints on these variables to specify just the files we are interested in. For example,
if we want MOD17 data from January 27, 2002 in either HDF or binary format, then the
domain ofrpn is “/downlink/2002/27/MOD17[0-9][0-9][0-9][0-9]\.(hdf|bin)”

String constraints are not just useful for specifying sets of files, but also specifying
the effects of file operations. Since the files are on a remote server, we can’t access them
directly, but we can copy them to a local disk. Suppose we executed the commandscp
-r server:/downlink/2002 local02 to copy the contents of the directory2002 to
the directorylocal02. We can describe the effect on the local pathnames,l pn, of the
resulting files using the pair of constraints:

1. concat(rpn, “/downlink/2002/”, ldir )
2. concat(l pn, “local02/”, ldir )

Since the concat constraint can be used to derive the domain of any variable given the
domains of the other two variables, and since we know that the domain ofrpn (limited
to the files we care about) is

/downlink/2002/27/MOD17[0-9][0-9][0-9][0-9]\.(hdf|bin)
we can enforce the first constraint to obtain the domain ofldir :

27/MOD17[0-9][0-9][0-9][0-9]\.(hdf|bin)
We can then apply the second constraint to obtain the domain ofl pn:

local02/27/MOD17[0-9][0-9][0-9][0-9]\.(hdf|bin)
If, after copying the files, we discovered that there are only HDF files, we could apply
the same constraints in the other direction to conclude that there were no binary files on
the server.



6.2 Crossword Puzzle

Another application of string constraints is thecrossword puzzleproblem. Solving
crossword puzzles is a popular pastime and also a well-studied problem in computer
science. The full problem of solving crossword puzzles, given only the puzzle layout
and a list of clues, is a hard problem that involves many aspects of AI [21]. A more
commonly addressed problem is generating crossword puzzles, given a fixed board and
a list of possible words [7]. This problem becomes a classic constraint satisfaction prob-
lem, where the variables of the constraint problem are word slots on the puzzle board
in which words can be written, the domains of variables are available words, and the
binary constraints on variables enforce the agreement of letters at intersections between
slots. Solving the problem reduces to finding a solution to the constraint problem: an
assignment of values to the variables such that each variable is assigned a value in its
domain and no constraint is violated.

We can use string constraints to formalize the crossword puzzle problem. There is
a variable for each slot, each intersection point and each contiguous segment of text
within a slot that does not cross an intersection. The variables for word slots take val-
ues from all available words, the variables for intersection points take values of letters
from the alphabet, and the variables for segments take values of unknown strings of
fixed length. Each word slot is constrained to be the concatenation of the segments and
intersection points that it contains.

For example, suppose that we have the following crossword puzzle that is taken
from http://yoda.cis.temple.edu:8080/UGAIWWW/lectures95/search/puzzle.html:

The list of words: 

AFT
ALE
EEL
HEEL
HIKE
HOSES
KEEL
KNOT

LASER
LEE
LINE
SAILS
SHEET
STEER
TIE

x1 x2 x3

x4 x5

x6 x7

x8

c1 c2

c3 c4 c5

c6 c7 c8

c9 c10 c11 c12

b1 b2

b3 b4

b5

b6

b7

b8

b9

To formalize this puzzle as a CSP with string constraints, we have

– 8 variables for the word slots as marked fromx1 to x8

– 12 variables for those intersection points marked asci

– 9 variables for these segments marked asbi

We have 8 constraints as follows:

1. concat(x1,b1,c1,b2,c2)
2. concat(x2,c1,b3,c3,c6,c10)
3. concat(x3,c2,b4,c5,c8,c12)



4. concat(x4,b5,c3,c4,c5)
5. concat(x5,c4,c7,c1,b6)
6. concat(x6,b7,c9,b8)
7. concat(x7,c6,c7,c8)
8. concat(x8,c9,b9,c10,c11,c12)

It is worth noting that, although we may have more variables than the traditional CSP
formalization, only thexi variables, that is, those variables representing word slots,
need to be searched during the CSP solving. Other variables will be assigned values by
propagation. In fact, with the constraint system we implemented to support a constraint-
based planner, we can solve the above crossword puzzle example without backtracking.

7 Conclusions

We have discussed an approach to constraint reasoning over strings in which regular
languages are used to represent and reason about infinite sets of strings. Regular lan-
guages have a number of qualities to recommend them as a domain representation:

– They are closed under intersection, union and negation.
– They can concisely represent infinite sets of strings.
– Many natural string constraints, such as concatenation, containment and length, can

be represented in terms of operations on regular languages.
– They are widely used and well understood.

These advantages do come at a price; it can be substantially more costly to represent
and reason about regular languages than, say intervals. All of the set operations and
string constraints we have discussed are either linear or quadratic in the size of the
FAs representing the string domains. However, as noted, converting an NFA to a DFA
may result in an exponential blowup in the size of the FA. Furthermore, even when
every operation on the FA results in a polynomially larger FA, the FA can still grow
exponentially with the number of operations, i.e., the number of constraints that contain
the variable whose domain is represented by the FA. Ultimately, how the FA grows will
depend on the nature of the problem at hand. The FA representation can be viewed as a
compression of the full sets of strings. It will tend to do well at compressing sets with
a lot of symmetry and simple structure, but will not do so well at compressing arbitrary
lists of strings, where there is little or no structure to exploit. In the latter cases, the
representation will blow up, converging toward an explicit list of the members. The
exponential blowup in the representation can be viewed as a failure in the exponential
reduction that FAs are capable of providing.

We have implemented a constraint-based planner that uses many of the string con-
straints discussed here and demonstrated it in software planning domains. Our imple-
mentation is complete, but inefficient. Although there are many highly optimized FA
packages freely available, they are tailored to string matching, not domain representa-
tion, so we wrote our own, with little regard for efficiency. For example, our algorithm
for DFA minimization is O(|T | |S |2), even though much faster algorithms are available.
Improving the efficiency, and exploring other domains, such as bioinformatics, is the
subject of future work.
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