
Linearly Combining Density Estimators via

Stacking

Padhraic Smyth 1

Information and Computer Science

University of California, Irvine

CA 92697-3425

smyth@ics.uci.edu

David Wolpert

NASA Ames Research Center

Caelum Research

MS 269-2, Mountain View, CA 94035

dhw@ptolemy.arc.nasa.gov

February 23, 2004

1Also with the Jet Propulsion Laboratory 525-3660, California Institute of Tech-
nology, Pasadena, CA 91109

Abstract

This paper presents experimental results with both real and artificial

data on using the technique of stacking to combine unsupervised learning al-

gorithms. Specifically, stacking is used to form a linear combination of finite

mixture model and kernel density estimators for non-parametric multivari-

ate density estimation. The method is found to outperform other strategies

such as choosing the single best model based on cross-validation, combin-

ing with uniform weights, and even using the single best model chosen by

“cheating” and examining the test set. We also investigate in detail how

the utility of stacking changes when one of the models being combined gen-

erated the data; how the stacking coefficients of the models compare to the

relative frequencies with which cross-validation chooses among the models;

visualization of combined “effective” kernels; and the sensitivity of stacking

to overfitting as model complexity increases. In an extended version of this

paper we also investigate how stacking performs using L1 and L2 perfor-

mance measures (for which one must know the true density) rather than

log-likelihood (Smyth and Wolpert 1998).

1 Introduction

Multivariate probability density estimation is a fundamental problem in ex-

ploratory data analysis, statistical pattern recognition and machine learning.

Frequently one must estimate density functions for which there is little prior

knowledge concerning the shape of the density and for which one wants a

flexible and robust estimator (allowing multimodality if it exists). In this

context, the methods of choice tend to be finite mixture models and kernel

density estimation methods.

As argued by Draper (1995), model uncertainty can contribute signifi-

cantly to predictive error in inductive inference. While usually considered

in the context of supervised learning, model uncertainty is also important

in density estimation. To see this, let f indicate a density used to generate

a data set D. Let M indicate a particular model, i.e., a particular mapping

taking a parameter vector to a density. Let θM indicate a particular param-

eter vector for the model M , so that given M , the vector θM fully specifies

a density. Write that density as fM,θM
. Now assume that the actual density

that generated D is expressible in terms of one of the models in some fi-

nite set of modelsM. (Subtleties concerning the problematic nature of this

assumption — an assumption present in much of Bayesian analysis — are

discussed in (Wolpert (1995, 1996b)).) Then the posterior probability that

the density that generated the data is f is given by

P (f | D) =
∑

M

∫

dθMP (θM | D, M)× P (M | D)× δ(f − fM,θM
). (1)

Eq. (1) tells us that we should average over models rather than use

any single “best” model. In this, one should not use one model of a set of

Gaussians, or one model of a set of kernels, but rather combine them. In

particular, if one is privy to the “prior probability” P (M, θM), then Bayes’

theorem allows us to write out both of the posteriors in Eq. (1) explicitly.

Having done so we explicitly have P (f | D) (and therefore the Bayes-optimal

density) given in terms of a weighted average of the fM,θM
.

Unfortunately, even if we know P (M, θM) exactly, calculating the com-

bining weights can be difficult, in which case an empirically-driven scheme

may be called for. Moreover, when one doesn’t know this distribution —

exactly the situation where kernel-based and Gaussian mixture density es-

timators are so popular — Eq. (1) only tells you that you should average,

not how. So again, one might expect averaging in an empirically-driven

1

manner to be beneficial. Indeed, in supervised learning at least, often such

averaging can formally be proven to be beneficial. For example, for “non-

homogenous” loss functions, in many cases one can prove that a particular

algorithm involving averaging will always have lower expected test set er-

ror than another algorithm that does not, regardless of the prior (Wolpert,

1996a). In particular, if one is doing neural net regression and measuring

test set error with quadratic loss, then independent of the prior, one should

always use the average of several nets produced by random initialization of

the weights, rather than use a single such net.1

Perhaps it is not surprising then that even non-Bayesian averaging schemes

(e.g., uniform averaging) have proven to be effective in practice in super-

vised learning (e.g., Perrone (1993), Hansen and Salomon (1990), Chan and

Stolfo (1996), Merz and Pazzani (1997), among others). However there are

very few schemes that have been investigated that can be viewed as com-

bining density estimators. Perhaps the closest (although it only involves a

single density estimating algorithm) is the work of Ormontreit and Tresp

(1996) in which they investigated “bagging” (uniformly weighting different

parametrizations of the same model trained on different bootstrap samples)

density estimates. They showed that bagging can improve the both density

estimation performance and discrimination accuracy for mixtures of Gaus-

sians with a fixed number of components.

Bagging was originally introduced for supervised learning (Breiman 1996a).

For some of the other empirically-driven supervised learning techniques re-

lated to combining, it is not clear how best to transform them to be ap-

plicable to unsupervised learning. This is true of boosting and arcing for

example (Breiman 1996c). For other techniques though the transformation

is quite obvious. An example of such a technique is “stacking” (Wolpert

1992), which has been found to be very effective for both regression and

classification (e.g., Wolpert and Macready 1996, Breiman (1996b), Leblanc

and Tibshirani (1993), Kim and Bartlett (1995)).

Stacking can be used either to combine algorithms or to improve a sin-

1For such loss functions, the no-free-lunch theorems only state that the measure of the
set of priors for which an algorithm A outperforms an algorithm B equals the measure
for which the reverse is true provided that the algorithms share the same distribution over

output guess values. Although this means that there is no assumption-free justification
for using an algorithm rather than a “scrambled” version of that algorithm (Wolpert,
1996a), it does allow for the a priori superiority of techniques like averaging for which the
provision does not hold.

2

gle algorithm. In the former guise it proceeds as follows. First, subsamples

of the training set are formed. Next the algorithms are all trained on one

subsample and resultant joint predictive behavior on the points in another

“held-out” subsample is observed, together with information concerning the

optimal predictions on those elements in that other subsample. As an ex-

ample, in supervised learning, the “joint predictive behavior” can be the set

of joint-guesses made collectively by the algorithms, for each of the input

points in the held-out subsample. The “information concerning the optimal

predictions” may simply be the associated set of the output components of

those points in that held-out subsample of the training set. Note that the

information gathered by this procedure, concerning predictions for elements

in one portion of a data set made by training on the elements in another

portion, is exactly the information that is gathered in any single fold of

conventional cross-validation.

This information-gathering is repeated for other pairs of subsamples of

the training set, again just like in conventional cross-validation. Where

stacking differs from cross-validation is in the next step: an additional

(“stacked”) algorithm is trained to learn, from the gathered, subsample-

based observations, the relationship between the observed joint predictive

behavior of the algorithms and the optimal predictions. (In contrast, in

cross-validation, the subsample-based observations are simply used to pick

a single one of the algorithms.) Finally, this learned relationship between

joint predictions and optimal predictions is used, in conjunction with the

predictions of the individual algorithms being combined (now trained on

the entire data set) to determine the full system’s predictions on elements

of the test set.

In this paper we apply stacking to density estimation, in particular to

combinations involving kernel density estimators together with finite mix-

ture model estimators. We will concentrate on using a stacking model that

forms a linear combination of its inputs (i.e., the stacking forms a linear

combination of the constituent models being combined.) Furthermore, those

combination coefficients will invariably be nonzero, and their sum will equal

1. Hence those coefficients constitute probabilities, and can be viewed as a

form of empirical Bayesian estimate of the posterior “probabilities” of the

models being combined (Wolpert 1993, Rao and Tibshirani 1996).

Experimental results reported here for both artificial and real-world

problems unambiguously demonstrate the utility of using stacking in this

3

manner — performance on held-out test sets better than that of uniform

averaging, cross-validation, or even choosing the single correct model by

examining behavior on the test set.

In Section 2 we give some background on the density estimators we use,

present a semi-formal justification of stacking in general, and present the

precise technique of stacking density estimators used here. In Section 3 we

describe our experimental framework for our multi-dimensional experiments.

In Section 4 we present the results of the first of those experiments, involving

real-world data. In Section 5 we attempt to gain insight into those results be

considering some visualizable artificial one-dimensional problems. In Section

6 we present our experiments for multi-dimensional artificial data. These

experiments, together with those in an extended version of this paper (Smyth

and Wolpert 1998) indicate that stacking’s superiority is maintained even if

one measures test set error using L2 or L1 norms (for which one must know

the true density) rather than log-likelihood; that it is maintained even if

one of the models being combined generated the data; and that the linear

combination coefficients of the models produced by stacking correlate well

with the relative frequencies with which cross-validation chooses among the

models, the differences illustrating the advantages of stacking. In Section 7

we investigate how the relative performance between stacking and the other

techniques investigated depends on the complexity of the model classes being

combined. We end in Section 8 with a discussion of these results and then

conclusions.

2 Stacked Density Estimation

2.1 Semi-formal Analysis of Stacking

To gain some insight into how a linear combination scheme like stacking

might result in improved predictions, consider the problem of finding the

optimal linear combination of a set of supervised learning algorithms, in

the context of regression with quadratic (L2) loss measuring performance

on the test set. Label the combining coefficients as the αi, and consider

the case where those coefficients are constrained to all be non-negative and

to sum to 1. Let the random variable hi indicate algorithm i’s prediction,

when that i’th model is trained on a random training set and queried for

a random test set point. So hi is the i’th component of the vector forming

the stacking-level learning algorithm’s input space. Similarly let f indicate

4

the random variable of the true “target” regression value at the randomly

chosen test set point.

With these definitions the task before us is to choose the αi that minimize

E(([
∑

i αihi] − f)2), subject to our constraints on the αi. Due to those

constraints, this expectation value can be rewritten as E((
∑

i αi[hi − f])2).

If we now let Zi be the random variable giving the difference between the

guess of the i’th model and the true “target” regression, then we can rewrite

this quantity to be minimized as E((
∑

i αiZi)
2) ≡

∑

i,j αiαjCij .

To proceed we need to estimate the Cij . This matrix is defined as an av-

erage over training sets and test elements, but we only have a single training

set from which to estimate that matrix. Accordingly the usual arguments

counsel us to simulate a multiple training-set, multiple test-set-point sce-

nario, by partitioning our single training set several times into “in-sample”

and “held-out” portions, exactly as in cross-validation, the bootstrap, and

other subsampling techniques. We can then use those partitions to get, in

essence, a Monte-Carlo estimate of the Cij . With that estimate of the matrix

in hand we can then invert it and thereby solve for the αi.
2

Now consider using stacking to combine the models, when the stacking-

level supervised learning algorithm (i.e., the combining algorithm, whose

multi-dimensional input space consists of the predictions of the individual

models) is a simple least-mean-square fitter of a hyperplane to the data

operating under the constraint that the coefficients in the hyperplane must

all be non-negative and sum to 1. A moment’s thought reveals that this use

of stacking is identical to the procedure just outlined for forming a (pseudo)

Monte-Carlo estimate of the optimal linear combination of the models. This

serves as a semi-formal justification of this form of stacking. This kind of

justification of stacking is not possible in general (e.g., when the stacking-

level algorithm is a nearest neighbor algorithm), but it does lend semi-formal

credence to the general observation that even when the combining isn’t done

via a constrained linear combination, stacking performs well in practice.

In general, stacking will work best if the algorithms being combined are

in some sense very different from one another, i.e., if those algorithms are

2One could argue that a superior approach would be to take the data formed by the
subsampling, and use it to form a Bayesian posterior distribution over possible Cij , and
then use that distribution to form the posterior expected value of the best αi. In general,
such a procedure will give a different set of αi than will the procedure discussed here, due
to the nonlinearity of matrix inversion. See (Wolpert and Wolf 1995) and (Wolpert 1994).
Investigating such an alternative approach is the subject of future research.

5

encapsulating different aspects of the training data. A simple way to see this

is to consider the case where Cij = (di)
2δi,j + κdidj [1−δi,j] for some vector

di and some parameter κ (here and throughout δi,j is the Kronecker delta).

As κ shrinks from +1 to eventually fall below 0, the errors of the algorithms

go from being correlated to being anticorrelated. Moreover, in general as

κ changes in that fashion, the difference between the expected error of the

optimal linear combination of the models and that of the best single model

grows. Indeed, for κ = 1, Cij = didj , and the optimizing αi puts all of its

weight on the single best-performing model. On the other hand, by the time

κ has fallen to 0, so long as none of the di equal 0, the difference in errors

between the single best model and the best possible average of models is
R[d0]4

1+R[d0]2
≤ [d0]

2, where without loss of generality model 0 is taken to be the

one with minimal squared error and R ≡
∑

i6=0[di]
−2. If the best-performing

model has small error, this gain associated with averaging will also be small.

2.2 Background on Density Estimation with Mixtures and

Kernels

Consider a set of d real-valued random variables X = {X1, . . . , Xd} Upper

case symbols denote variable names (such as X j) and lower-case symbols a

particular value of a variable (such as xj). x is a realization of the vector

variable X. f(x) is shorthand for f(X = x) and represents the joint proba-

bility distribution of X. D = {x1, . . . , xN} is a training data set where each

sample xi, 1 ≤ i ≤ N is assumed to be an independently drawn sample from

the underlying density function f(x).

A commonly used model for density estimation is the finite mixture model

with k components, defined as:

fk(x) =
k
∑

j=1

βjgj(x), (2)

where
∑k

j=1 βj = 1. The component gj ’s are usually relatively simple uni-

modal densities such as Gaussians. Density estimation with mixtures in-

volves finding the locations, shapes, and weights of the component densities

from the data (using for example the Expectation-Maximization (EM) pro-

cedure). Kernel density estimation can be viewed as a special case of mixture

modeling where a component is centered at each data point, given a weight

6

of 1/N , and a common covariance structure (kernel shape) is estimated from

the data.

The quality of a particular probabilistic model can be evaluated by an

appropriate scoring rule on independent out-of-sample data, such as the test

set log-likelihood (also referred to as the log-scoring rule in the Bayesian

literature). Given a test data set Dtest, the test log-likelihood is defined as

log f(Dtest|fk(x)) =
∑

Dtest

log fk(xi) (3)

This quantity can play the role played by classification error in classification

or squared error in regression. For example, cross-validated estimates of it

can be used to find the best number of clusters to fit to a given data set

(Smyth, 1996).

2.3 Applying Stacking to Density Estimation

Consider a set of M different density models, fm(x), 1 ≤ m ≤ M . In this

paper each of these models will be either a finite mixture with a fixed number

of component densities or a kernel density estimate with a fixed kernel and

a single fixed global bandwidth in each dimension. In general though no

such restrictions are needed.

The procedure for stacking the M density models is as follows:

1. Partition D, the training data set, v times, exactly as in v-fold cross

validation (we use v = 10 throughout this paper), and for each fold:

(a) Fit each of the M models to the training portion of the partition

of D.

(b) Evaluate the likelihood of each data point in the test partition of

D, for each of the M fitted models.

2. After doing this one hasM density estimates for each of N data points,

and therefore a matrix of size N ×M , where each entry is fm(xi), the

out-of-sample likelihood of the mth model on the ith data point.

3. Use that matrix to estimate the combination coefficients {α1, . . . , αM}

that maximize the log-likelihood at the points xi of a stacked density

model of the form:

fstacked(x) =
M
∑

m=1

αmfm(x).

7

Since this is itself a mixture model, but where the fm(xi) are fixed, the

EM algorithm can be used to (easily) estimate the αm (see Appendix

A for further details).

4. Finally, re-estimate the parameters of each of them component density

models using all of the training data D. The stacked density model is

then the linear combination of those density models, with combining

coefficients given by the αm.

3 Experimental Setup

In all of our stacking experiments with multi-dimensional data sets M = 6:

three triangular kernels with bandwidths of 0.1, 0.4, and 1.5 of the stan-

dard deviation (of the full data set) in each dimension, and three Gaussian

mixture models with k = 2, 4, and 8 components. This set of models was

chosen to provide a reasonably diverse representational basis for stacking.

We follow roughly the same experimental procedure as described in Breiman

(1996b) for stacked regression:

• Each data set is randomly split into training and test partitions 50

times, where the test partition is chosen to be large enough to provide

reasonable estimates of out-of-sample log-likelihood.

• The following techniques are run on each training partition:

1. Stacking: The stacked combination of the six constituent mod-

els.

2. Cross-Validation (CV): The best single model as chosen by

the maximum likelihood score of the M = 6 single models in the

N ×M cross-validated table of likelihood scores.

3. Uniform Weighting: A uniform average of the six models.

4. Single “CV-Bandwidth” Kernel: A single kernel model where

the bandwidths are chosen on the training data to maximize the

cross-validated likelihood (details are in Appendix B). The moti-

vation for including this model is to provide a comparison between

combining the three kernel models that had pre-chosen widths

for the kernels, and a kernel model where the bandwidth is un-

constrained and selected from the data in some cross-validated

fashion.

8

5. “Cheating:” The best single model on the test data, i.e., the

model having the largest likelihood on the test data partition,

6. Truth: The true model structure, if the true model is one of the

six generating the data (only valid for simulated data).

• The log-likelihoods of the models resulting from these techniques are

calculated on the test data partition, i.e., for partition p we calculate

Lp
i ≡

∑Ntest
i=1 log f̂p

j (x
p
i) where Ntest is the number of data points in

the test partition, xp
i is the ith test data point in the pth partition,

and f̂p
j is the model generated by the jth technique in the pth par-

tition (1 ≤ j ≤ 6) . The log-likelihood of a single Gaussian model

(parameters determined on the training data) is subtracted from each

model’s log-likelihood to normalize the scale. Finally, for each tech-

nique, the average log-likelihood over the 50 test sets is reported, i.e.,

Lav
j ≡ 1/50

∑50
p=1 Lp

j , 1 ≤ j ≤ 6.

More details of the numerical implementations of the kernel density estima-

tors, the mixture model estimators, and the use of EM to combine those

estimators, can be found in Appendix A.

Note that we cannot really say of the estimators we are combining that

they “are ... very different from one another”, in the sense meant in the

background on stacking presented above. (In fact, for some of the one-

dimensional intuition-building experiments described below, we do not even

mix kernel density estimators with mixture models.) As discussed above,

this lack of major disparity between the estimators in our experiments usu-

ally constitutes a Ähandicap for stacking.

Conversely, consider the case where the density estimators being com-

bined are all highly regularized, and therefore will all be similar to each

other in their behavior. For such a scenario combining the estimators via

stacking (or any other scheme for that matter) would be expected to result

in a smaller gain in performance than if the constituent estimators were

not highly regularized. Accordingly, our not using very highly regularized

estimators can be viewed as favoring stacking.

In this paper we are not primarily concerned with either optimizing the

implementation of stacking or with investigating its performance in partic-

ularly adverse conditions. Rather we wish to investigate the use of stacking

in an “off-the-shelf” mode, with some standard density estimators.

9

Table 1: Relative performance of stacking multiple mixture models, for var-
ious data sets, measured (relative to the performance of a single Gaussian
model) by mean log-likelihood on test data partitions. The maximum for
each data set is underlined.

Data Set Gaussian CV “Cheating” Uniform CV-Bandwidth Stacking

Diabetes -352.9 27.8 30.4 29.2 20.7 (72%) 31.8
Fisher’s Iris -52.6 18.3 21.2 18.3 19.4 (40%) 22.5
Vowel 128.9 53.5 54.6 40.2 52.1 (84%) 55.8

Star-Galaxy -257.0 678.9 721.6 789.1 (0%) 888.9

4 Experimental results for real world data

Four “real-world” data sets were chosen for experimental evaluation. The

diabetes data set consists of 145 data points used in Gaussian clustering

studies by Banfield and Raftery (1993) and others. Fisher’s iris data set is

a classic data set in 4 dimensions with 150 data points. Both of these data

sets are thought to consist roughly of 3 clusters which can be reasonably

approximated by 3 Gaussians. The Barney and Peterson vowel data (2

dimensions, 639 data points) contains 10 distinct vowel sounds and so is

thought to be highly multi-modal. The star-galaxy data (7 dimensions, 499

data points) contains fairly non-Gaussian looking structure in various 2d

projections. For the diabetes and iris data sets 30 data points were reserved

for each test set, and 100 data points were reserved for testing in each run

for the vowel and galaxy data sets.

The results for the single CV-bandwidth kernel model may require some

additional explanation. Any (single) triangular kernel model has finite sup-

port. Accordingly, any test data point that lies outside the multivariate

product kernel regardless of which of the training data points that kernel is

centered on (those points being used as “lookup” to calculate the kernel den-

sity function at any new test point) will have probability zero according to

the definition of the model, or equivalently, infinitely negative log-likelihood.

Table 1 summarizes the results. All columns except CV-Bandwidth re-

port the average log-likelihood over the 50 test data sets. The CV-Bandwidth

column reports the average over those runs (the percentage of which are

10

given in brackets) which resulted in finite log-likelihood. For the Star-

Galaxy data, the bandwidths selected for each of the 50 runs resulted in

the likelihood of the corresponding test data being zero.

For each data set, this occurred at least once in the 50 train/test parti-

tions, for the CV-bandwidth model. Thus the full average (which includes an

infinitely negative log-likelihood) is meaningless. To provide some informa-

tion on how this method behaves out-of-sample, we report the average over

only those partitions having finite average test log-likelihoods (i.e., those

that are finite out of the 50 runs). Note that this is an overly optimistic

estimate of how this method performs in that it ignores the problematic

runs where test data points are assigned zero probability. More generally, it

clearly illustrates in a practical setting the problematic nature of bandwidth-

selection for finite-support kernels. This serves as further motivation of the

use of stacking, to “smooth” the finite-support kernel estimates, in effect.

For each of the 4 data sets stacking had the highest average log-likelihood,

even out-performing “cheating” (the single best model chosen from the test

data). (Breiman (1996b) also found that stacking outperformed the “cheat-

ing” method for regression.) The single CV-Bandwidth model is not com-

petitive in general, indicating that the triangular kernels are not as robust as

Gaussian mixtures for density estimation on these data sets (keep in mind

that the column for CV-Bandwidth is optimistically biased in its favor).

Given the problems in getting finite test log-likelihood scores for the CV-

Bandwidth model, and the fact that it appears to be clearly non-competitive

in general on these data sets, we did not include it in any further experi-

ments.

To compare stacking with the other methods, we considered two null

hypotheses: stacking has the same predictive accuracy as cross-validation,

and it has the same accuracy as uniform weighting. (Testing the differ-

ence between stacking and cheating seems meaningless). According to the

Wilcoxon signed-rank test, each hypothesis can be rejected, with a chance

of less than 0.01% that we are rejecting each hypothesis when we should not

be. 3

3The Wilcoxon signed-rank test is a test of the null hypothesis that two sets of measure-
ments were formed by sampling the same underlying distribution. Unlike the more widely
used t-test, which assumes the differences in measurements to be normally distributed, in
the Wilcoxon test no distributional assumptions are made. The price for such a lack of
assumptions is that the test is overly conservative. (See Snedecor and Cochran (1989) or
Lehmann (1986) for details). In our case, each null hypothesis is that the distribution of
the test set log-likelihoods under stacking and a competing method are in fact the same.

11

Table 2: Average across 20 runs of the stacked weights found for each con-
stituent model. The columns with h = . . . are for the triangular kernels and
the columns with k = . . . are for the Gaussian mixtures.

Data Set h=0.1 h=0.4 h=1.5 k = 2 k = 4 k = 8

Diabetes 0.01 0.09 0.03 0.13 0.41 0.32
Fisher’s Iris 0.02 0.16 0.00 0.26 0.40 0.16
Vowel 0.00 0.25 0.00 0.02 0.20 0.53

Star-Galaxy 0.00 0.04 0.03 0.03 0.27 0.62

Table 2 shows the averages of the stacked weight vectors for each data

set. The mixture components generally got higher weight than the triangular

kernels. The vowel and star-galaxy data sets have more structure than can

be represented by any of the component models and this is reflected in

the fact that for each most weight is placed on the most complex mixture

model with k = 8. The relatively high weight on the Gaussian mixtures also

provides a clue as to why the single CV-Bandwidth kernel model performed

relatively poorly (in Table 1), i.e., the Gaussian mixtures appear in general

better suited as density estimators than the triangular kernels for these data

sets.

5 Illustrative Examples of Stacked Density Esti-

mation

In Sections 6 and 7 artificial multi-dimensional data sets are used to inves-

tigate numerical aspects of stacking’s test set performance. In this section,

we first visually present the results of stacking together density estimators

for two specific 1-dimensional data sets, to help hone one’s intuition. In

particular we present the composite density estimate obtained from stack-

ing, as well as the “effective” combined kernel (i.e., the linear combination

of the individual kernels given by the combination weights that the stacking

generates).

Like the t-test, the Wilcoxon test does assume that the two samples are independent,
an assumption which is violated here since we are resampling the same test sets with
replacement. Nonetheless, the differences in performance are quite compelling.

12

−0.4 −0.2 0 0.2 0.4
0
5

10

−0.4 −0.2 0 0.2 0.4
0

5

−0.4 −0.2 0 0.2 0.4
0

2

4

−0.4 −0.2 0 0.2 0.4
0

1

−0.4 −0.2 0 0.2 0.4
0

0.5

1

−0.4 −0.2 0 0.2 0.4
0

0.5

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

DATA SET: 3 GAUSSIANS 1000 DATAPOINTS

wt = 0.13h = 0.1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.33h = 0.2

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.23h = 0.3

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.29h = 0.1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.02h = 0.2

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.00h = 0.3

−0.4 −0.2 0 0.2 0.4
0
2
4 Effective

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2
Stacked

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

50

Figure 1: Individual kernel density estimates and the stacked density esti-
mate for the artificial 3-Gaussian data set. The plots on the left are the
individual kernels, where the horizontal axis is measured in multiples of the
standard deviation of the data. The top six plots on the right are the density
estimates multiplied by their stacking weights. From top to bottom, they
are: triangular kernel density estimates with h = 0.1, h = 0.2, h = 0.3;
Gaussian kernel density estimates with h = 0.1, h = 0.2, h = 0.3. The
bottom two plots are the stacked kernel density estimate, and a histogram
of the points in the training set.

13

−0.5 0 0.5
0
5

10

−0.5 0 0.5
0

5

−0.5 0 0.5
0
2
4

−0.5 0 0.5
0
1
2

−0.5 0 0.5
0

1

−0.5 0 0.5
0

0.5
1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

DATA SET: 3 Gaussians 1000 DATAPOINTS

wt = 0.03h = 0.1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.10h = 0.2

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.08h = 0.3

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.02h = 0.4

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.09h = 0.1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.01h = 0.2

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.11k = 2

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.08k = 3

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.43k = 4

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05 wt = 0.04k = 5

−0.5 0 0.5
0

0.5
1 Effective

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1
0.2

Stacked

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

50

Figure 2: Individual kernel density estimates, mixtures model density esti-
mates, and the stacked density estimate, for the simulated 3-Gaussian data
set. The plots on the left are the individual kernels, where the horizontal
axis is measured in multiples of the standard deviation of the data. The
plots on the right are the density estimates multiplied by their stacking
weights. From top to bottom, they are: triangular kernel density estimates
with h = 0.1, h = 0.2, h = 0.3, h = 0.4; Gaussian kernel density estimates
with h = 0.1, h = 0.2; and Gaussian mixture density estimates with k = 2,
k = 3, k = 4, k = 5. The bottom two plots are the stacked kernel density
estimate, and a histogram of the points in the training set.

14

5.1 A Simulated 3-Component Gaussian Mixture

We simulated data from a 1-dimensional 3-component Gaussian mixture

model with µ1 = −3, σ1 = 0.5, µ2 = 0, σ2 = 1, µ3 = 3, σ3 = 0.5, and

component weights of w1 = 0.25, w2 = 0.5, and w3 = 0.25. The components

making up this density have some overlap, with a larger, broader weight

component in the center, and 2 smaller, narrower components on either

side. Figure 1 shows the results of stacking for a 1000 element training set

formed by sampling this mixture model. The stacking combined 3 triangu-

lar and 3 Gaussian kernel estimators, where h = 0.1, 0.2, 0.3 for each (the

“bandwidth” for a Gaussian being its standard deviation).

The plots on the left of the figure show the individual kernel shapes, with

the effective kernel at the bottom. This effective kernel can be interpreted as

a smoothed triangular kernel, where the tails have been stretched by adding

Gaussian kernel components.

The plots on the right show (from top to bottom) the 6 individual density

estimates, the stacked density estimate, and, at the bottom, a histogram of

the 1000 elements in the training set. Most of the weight is assigned to the

first 4 models (the 3 triangular kernels, and the Gaussian kernel with h =

0.1). The first model, a triangular kernel with h = 0.1, is relatively rough,

with many spurious local maxima. The next 3 models (with most of the

weight) are relatively smooth estimates reflecting the true trimodal nature

of the data. The final stacked model is also relatively smooth, although it

does have what consideration of the true underlying model reveals to be a

spurious ridge around -1. This ridge arises due to the idiosyncratic nature

of the particular training set generated for this experiment by sampling that

underlying model (the ridge is visible in the histogram).

In the next experiment both the triangular and Gaussian kernel models

were extended to include “smoother” kernel bandwidths, by having h ∈ {0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. In addition, Gaussian

mixture models with k ∈ {2, 3, 4, 5, 6} were also included in the set of den-

sity estimators being combined, for a total of 32 models. Figure 2 shows the

composite plot for all models whose stacked weight was greater than 0.01.

About 2/3 of the total weight has now been shifted to the much smoother

mixture models. Accordingly the resulting stacked model presented in Fig-

ure 2 is smoother than its counterpart in Figure 1. In particular, the ridge

near -1 is now much less pronounced.

In an extended version of this paper (Smyth and Wolpert 1998) we apply

15

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

DIMENSION 1

D
IM

E
N

S
IO

N
 2

Figure 3: Scatter plot of 200 simulated data points from a four-component
Gaussian mixture

this same kind of investigation to a data set of galaxy velocity previously

investigated by Roeder (1990).

6 Results on Artificial Data

We now return to the experimental setup described in Section 4 for our

exploration of stacking’s behavior on multi-dimensional data sets. In this

section we use that setup to investigate various aspects of the test set error

resulting from the use of stacking.

6.1 Results when there is no model misspecification

One might suspect that if one of the models being combined is the true model

that generated the data, then there is little to be gained by model averaging

rather than picking a single model. On the other hand, even if {M} does

include the true model, and even if one knows the prior P (M, θM), in general

there is still spread in the posterior probability of models P (M | D). Pushing

things further, even if one somehow knew the correct M , there would still

be room for error in using that single model, due to spread in P (θM | M, D)

16

20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

M
E

A
N

 L
O

G
−

LI
K

E
LI

H
O

O
D

 O
N

 T
E

S
T

 S
E

T

TRAINING SAMPLE SIZE

Stacking

Cheating
TrueK

Uniform

CV

Figure 4: Plot of mean test set log-likelihood (relative to a single Gaussian
model) for various density estimation models fit to data simulated from a
4-component Gaussian mixture. At a training sample size N of 80 data
points, the ordering from top to bottom is Stacking, Cheating, CV, Uni-
form, and TrueK. Log-likelihoods less than zero (less likely than the single
Gaussian) are not shown for clarity. The cross-validated results (CV) are
plotted as open circles. For the missing values of N = {30, 40, 60, 70, 90},
cross-validation chose a finite-support kernel model which resulted in at least
one data point in the test set being assigned zero probability, and hence,
infinitely negative log-likelihood.

17

20 40 60 80 100 120 140 160 180 200
0

0.5

1

kernel: h = 0.1

20 40 60 80 100 120 140 160 180 200
0

0.5

1

kernel: h = 0.4

20 40 60 80 100 120 140 160 180 200
0

0.5

1

kernel: h = 1.5

20 40 60 80 100 120 140 160 180 200
0

0.5

1

mixture: k = 2

20 40 60 80 100 120 140 160 180 200
0

0.5

1
mixture: k = 4

20 40 60 80 100 120 140 160 180 200
0

0.5

1

TRAINING SAMPLE SIZE

mixture: k = 8

Figure 5: Plot of mean weight values over 20 runs (for stacking), or fraction
of times each model was chosen over 20 runs (for CV), as a function of
training sample size N , for each of the 6 models being combined. The
average stacked weights are plotted as “o” symbols connected with a solid
line; the CV fractions are plotted as unconnected “+” symbols.

18

(cf. Eq. (1)). Due to all of this, it is not a priori clear whether the utility

of model averaging does or does not degrade significantly when one of the

models being combined is the true model. This section presents experiments

investigating this issue. The results of those experiments indicate that at a

minimum, having the correct model in the set of candidates does not negate

the utility of stacking.

We generated artificial data from a 2-dimensional 4 Gaussian mixture

model with a reasonable degree of overlap (Figure 3). This is the data set

used in Ripley (1994) with the class labels removed. We compared the same

models and combining/selection schemes as described earlier, except that

this time we also included “TrueK”, i.e., the scheme which always selects

the model structure with k = 4 Gaussians. The training sample size was

varied from 30 to 200 and the test results were determined on an independent

sample of size 1000. For each sample size N , 20 training data sets of size N

and 20 test sets of size 1000 were generated: the plotted data points are the

means across the 20 runs for each value of N .

Note that here we are assured of having the true model in the set of

models being considered, something that is presumably never exactly the

case in the real world (and presumably was not the case for the experiments

recounted in Table 1.). Thus, a priori, one might expect combining schemes

(stacking and uniform weights) to be at a disadvantage relative to schemes

which can pick the single true model. In this sense, this experiment investi-

gates whether there is a penalty incurred for using stacked density estimation

for problems when a single model is optimal in theory.

The results in Figure 4 clearly show that stacking performed about as

well, or slightly better than, the “cheating” method and significantly outper-

formed all of the other methods. The fact that “TrueK” performed poorly

on the smaller sample sizes is due to the fact that with smaller sample sizes

it was often better to fit a simpler model with reliable parameter estimates

(which is what “Cheating” typically would do) than a more complex model

which may overfit (even when it is the true model structure). As the sample

size increases, both “TrueK” and cross-validation (CV) approach the perfor-

mance of “Cheating” and stacking. Uniform weighting is universally poorer

than stacking for all sample sizes, as one might expect given that the true

model is within the model class.

These results indicate that use of stacking incurs no penalty when the

true model is within the model class being fit. In fact the opposite is true; for

19

small sample sizes stacking outperforms other density estimation techniques

which place full weight on a single (but poorly parametrized) model. Similar

conclusions hold if rather than log-likelihood error L1 or L2 error is used.

(See (Smyth and Wolpert 1998).)

6.2 Analysis of the combining coefficients

It is informative to examine how the model weights from stacking and the

cross-validation model choices vary as a function of training sample size N .

Figure 5 plots the the average stacked weights as a function of the training

sample size N (averaged across 20 training runs) for each of the 6 models

being combined. Alongside are plotted the fraction of times each model

was selected by cross-validation (across the 20 runs for each sample size N).

It is clear that the stacking weights and the cross-validation fractions are

correlated. Neither places any significant weight on the narrowest kernel

bandwidth, h = 0.1. CV rarely chooses the kernel bandwidth h = 0.4 or

the most complex mixture model with k = 8; stacking also places relatively

little weight on these models, although it is inclined to place more weight on

the kernel bandwidth h = 0.4 as N gets larger. Both cross-validation and

stacking place significant weight (order of 0.5) on the smoothest kernel model

(h = 1.5) for very small training sample sizes, and this weight decreases to

near zero as the sample size approaches N = 200. This is all consistent

with the standard theory of kernel density estimation; as the sample size

increases, for a given true density the optimal single bandwidth decreases

as an inverse function of N (Silverman, 1986).

For very small sample sizes (N < 60) the parameters of the mixture

models are relatively poorly estimated, while the narrower kernels will not

generalize well; thus, the broader kernel (h = 1.5) is one of the better fitting

models in this context. As N increases, the lower-bias models becomes more

competitive and the higher-bias model (h = 1.5) less so.

Perhaps surprisingly, neither method places much weight on the true

model k = 4. The weight is slowly increasing in both schemes, but even

by N = 200 both weights are less than 0.5. The model receiving the most

weight is k = 2. From the scatter plot in Figure 3 we can see why this

might occur: a 2-component mixture could approximate the 4-component

mixture reasonably well, since the pairs of components on the left and on the

right each have substantial overlap. Thus, for smaller sample sizes, this lower

variance k = 2 model may be a good alternative to the higher variance k = 4

20

model (the two models having comparable bias). In this regard note that

the CV method is “forced” to place higher weight on the k = 2 model since

it is an “all or nothing” scheme. In the absence of a low-variance estimate of

the true model (i.e., in the absence of estimate that is low-variance as well as

low-bias), stacking can exploit alternative low-variance models whose bias is

not too bad by combining multiple models. The advantage of stacking over

cross-validation is clear in this context; cross-validation does not have this

option of exploiting alternative low-variance models since it must choose a

single one.

The correlation between the CV fractions and the stacking weights is in-

triguing. One can speculate that both are in fact empirical estimates of the

ideal weights one would obtain in a Bayesian model averaging framework to

this problem. (We say “ideal” because as emphasized in the introduction,

in practice the ideal Bayesian solution is rarely achieved.) This lends cre-

dence to the proposition that stacking may be a more robust and accurate

methodology in practice than is explicitly Bayesian model averaging, for all

but the comparatively rare cases where the assumptions in the Bayesian

scheme (of priors, models, etc.) both very closely match reality and also al-

low for very accurate calculations. In this regard it would be interesting to

see how stacking fares against an “ideal” Bayesian model averaging scheme

for artificial problems, where we know the Bayesian scheme is optimal.

7 Dependence of Results on Increasing Model Class

Complexity

An obvious question about combining methods such as stacking is whether

they are susceptible to overfitting as the number and complexity of the com-

ponent models being combined are increased. To investigate this issue we

ran several experiments in each of which we stacked together the models in a

different model family. We then examined how stacking’s efficacy changed as

we varied the model family. Each of the model families we investigated con-

sisted of a single Gaussian model together with models having {2, 4, . . . , K}

Gaussian components. In our experiments K varied from 2 to 16 in steps of

2.

We ran these experiments on real-world data sets. For the diabetes data

set, the data was randomly partitioned 20 times into training sets of size

105 and test sets of size 30. The average test-set log-likelihood across the

21

2 4 6 8 10 12 14 16
25

30

35

40

MAXIMUM NUMBER OF MIXTURE COMPONENTS K

M
E

A
N

 L
O

G
−L

IK
E

LI
H

O
O

D
 O

N
 T

E
S

T
 S

E
T

DIABETES DATA SET

Stacking

Uniform

MaxK

CV

Cheating

Figure 6: Estimated mean log-likelihood on test data sets for diabetes data,
as a function of maximum number of mixture components K (see text for
details).

22

2 4 6 8 10 12 14 16
28

29

30

31

32

33

34

MAXIMUM NUMBER OF MIXTURE COMPONENTS K

M
E

A
N

 L
O

G
−L

IK
E

LI
H

O
O

D
 O

N
 T

E
S

T
 S

E
T

IRIS DATA SET

Stacking

Cheating

Uniform

CV

MaxK

Figure 7: Estimated mean log-likelihood on test data sets for iris data,
as a function of maximum number of mixture components K (see text for
details).

23

2 4 6 8 10 12 14 16
17

18

19

20

21

22

23

MAXIMUM NUMBER OF MIXTURE COMPONENTS K

M
E

A
N

 L
O

G
−

LI
K

E
LI

H
O

O
D

 O
N

 T
E

S
T

 S
E

T

VOWEL DATA SET

Stacking/CV

Cheating

MaxK

Uniform

Figure 8: Estimated mean log-likelihood on test data sets for vowel data,
as a function of maximum number of mixture components K (see text for
details).

24

20 runs is reported in Figure 6 for each value of K. All results are reported

relative to the test-set likelihood obtained with a single Gaussian. Stacking

dominates the other techniques over all values of K, with slight evidence

of overfitting (a drop in estimated out-of-sample log-likelihood) for K > 6.

The “MaxK” strategy consists of fitting a single mixture model with K

components. It clearly overfits and for K > 8 was much worse than the

single Gaussian. The Uniform strategy outperforms “Cheating” and CV,

although it does appear to overfit above K = 10. Both “Cheating” and

CV “converge” on K = 4 and remain with this model through all other K

values. Presumably there is considerable model mis-specification present,

allowing the combining approaches to outperform the single model schemes

throughout.

Figure 7 shows the same type of plot for the Iris data, where each data

point is again an average over 20 random partitions of 120 training data

points and 30 test data points. The results are qualitatively similar to those

for the diabetes data, with the exception that the single model approaches

are more competitive than on the diabetes data, and the uniform method

fares more poorly. Once again, stacking dominates, and there is slight evi-

dence of overfitting beyond K = 6.

One striking feature of both of these data sets is that the fall-off in

performance with increasing K of the MaxK algorithm is so much worse

than it is for the other algorithms. If that fall-off is taken to be a result

of overfitting, than the lack of falloff of the other techniques indicates that

even though the number degrees of freedom that they “have access to”

grows polynomially with K, they do not overfit more for higher values of

K. It would appear that while the number of potential fits to the data

these techniques can generate grows quickly with K, those fits are “sifted”

by those techniques in such a way that there is little associated gain in

variance. So in particular, both CV and stacking can be viewed as schemes

for deploying very high degree-of-freedom density estimates with sufficiently

strong regularization that no overfitting results.

Figure 8 shows the results for the vowel data set, where the training

data sets are of size 571 and the test data sets of size 100. These results are

qualitatively different from the others. For this data set the (unrealizable in

practice) technique of “cheating” dominates. Stacking and CV are indistin-

guishable, and quite close to MaxK; all three schemes appear to be slightly

overfitting. While stacking does not outperform “Cheating”, it performs as

25

well as the best of the real-world methods (i.e., the methods which do not

have access to the test data).

The lack of fall-off with K in the performance of both the MaxK algo-

rithm and the uniform combining method is surprising at first glance, being

different from the behavior for the other two data sets. However the vowel

data consists of 10 vowel classes in 2 dimensions. Thus, the true density is

likely to be highly multimodal. Given this highly varying character of the

“true density”, and given the number of training data points relative to the

number of parameters being fit, the lack of overfitting suggested by this lack

of fall-off in the uniform method is plausible.

These three experiments indicate that overfitting does not seem to be a

practical problem with stacking for the types of mixture models considered in

these experiments. Indeed, overall stacking seems to deal with the problem

of overfitting effectively, i.e., it provides a better trade-off between bias and

variance than any of the single model selection schemes or uniform weighting

does.

8 Discussion

This section discusses some of the relationships between stacked density es-

timation and other, non-stacking machine learning techniques. First the

relationships having to do with stacking kernel estimators are discussed, in

particular the insight that stacking provides for the issue of how to determine

kernel widths. Next some of the relationships having to do with stacking

Gaussian mixtures are are elaborated, in particular those concerning the

wavelet-like “hierarchical decomposition” aspect of stacking Gaussian mix-

tures.

8.1 Stacking Kernel Density Estimators

Selecting a global bandwidth for kernel density estimation is still a topic

of debate (e.g., see Jones, Marron, and Sheather, 1996). Numerous cross-

validation schemes and iterative techniques for finding the “best” bandwidth

in a data-driven manner have been proposed. Stacking allows the possibility

of side-stepping the issue of a single bandwidth by combining kernels with

different bandwidths and different kernel shapes. A stacked combination of

such kernel estimators is equivalent to using a single composite kernel that

is a convex combination of the underlying kernels. Viewed another way, the

26

convex combinations of kernel estimates produced by stacking are function-

ally equivalent to a single kernel estimator with a kernel which is a convex

combination of kernels with different bandwidths. If one generalizes to al-

low different kernel shapes in the stacking, one ends up with an “effective”

kernel which is a convex combination of different kernel shapes and band-

widths. Thus, for example, kernel estimators based on finite support kernels

can be regularized in a data-driven manner by combining them with infinite

support kernels. The key point is that the shape and width of the result-

ing “effective” kernel is driven by the data (see Figures 1 through 4), thus

providing in principle a more flexible estimator than is provided by using

fixed kernel shapes where only the width is allowed to vary. A similar idea

was independently proposed by Marchette et al. (1995) using mixture mod-

els to determine the weighting coefficients for linearly combining different

bandwidth kernels, but restricted to a single kernel shape.

As an example of the benefits of combining different kernel shapes, con-

sider the combination of a finite support kernel (such as the triangular ker-

nel) with an infinite support kernel (such as the Gaussian). Finite sup-

port kernels can be very useful for modeling densities with gaps, holes, and

other topological features which induce discontinuities in the derivatives of

the density function. However, a significant practical problem with setting

the bandwidths of these kernels is that they assign zero probability (and

hence infinitely negative log-likelihood) to test data points outside the fi-

nite support of the estimated density. Stacking the finite support kernels

with infinite support kernels ameliorates this problem and can improve the

robustness and applicability of finite support kernels in general.

For multivariate kernels, the issue arises of how to combine different ker-

nel bandwidths in different dimensions. In this paper we did not address this

issue; we restricted attention to a single bandwidth expressed as a fraction

of the standard deviation in each dimension.

8.2 Stacking Gaussian Mixtures

By stacking Gaussian mixture models with different k values one gets a

hierarchical “mixture of mixtures” model.

fstacked(x) =
K
∑

k=1

βkfk(x) (4)

27

where each component model fk is itself a mixture model of k compo-

nents. This hierarchical model can provide a natural multi-scale repre-

sentation of the data, which is clearly similar in spirit to wavelet density

estimators, although the functional forms and estimation methodologies for

each technique can be quite different. The individual mixture models (with

k = 1, 2, . . . , K) can model different scales, e.g., the models with low k values

will typically be broad in scale, while the higher k components can reflect

more detail.

There is also a representational similarity to Jordan and Jacob’s (1994)

“mixture of experts” model where the weights are allowed to depend di-

rectly on the inputs. A key feature of the “mixture of experts” approach is

to allow the component weights to be a function of the inputs, increasing

the representational power substantially over fixed weights. On the other

hand, the key aspects of stacked density estimation are the combining of

potentially disparate (and even non-parametric) functional forms, and the

use of partitions of the data to determine how the models are combined. An

interesting future direction is to extend stacked density estimation to the

case where the combining weights are a function of the inputs. (In fact the

original proposal for stacking in its general form allows for this (Wolpert,

1992). See also (Kim and Bartlett 1995).)

9 Conclusion

In this paper several aspects of the behavior of stacked density estimation

were investigated. In particular, the technique of stacking together density

estimators was compared to several other techniques for combining / choos-

ing among several density estimators. It was shown that stacking outper-

forms the other techniques investigated, as well as the technique of always

using an estimator based on the model that actually generated the data,

even when one of the models being combined generated the data. It was

also shown that the linear combination coefficients produced by the stack-

ing correlated well with the relative frequencies with which cross-validation

chooses among the density estimators. The differences between the two sets

of numbers illustrated some of stacking’s advantage over cross-validation. It

was also shown that stacking outperforms the other techniques even when

one uses L1 and L2 performance measures (for which one must know the

true density) rather than log-likelihood. For well-specified models (simu-

28

lated data, where the true model is within the model class being considered),

stacking was seen to provide a regularization effect for small sample sizes

and outperformed even the single true model.

Acknowledgements

The work of P.S. was supported in part by NSF Grant IRI-9703120 and in

part by the Jet Propulsion Laboratory, California Institute of Technology,

under a contract with the National Aeronautics and Space Administration.

Appendix A: Specification of the Stacking Algo-

rithm

In this appendix we provide details on the fitting of (1) the individual kernel

density estimators, (2) the individual Gaussian mixture models, and (3) the

stacking weights. Unless stated otherwise, all results in this paper were

obtained using the algorithms described below.

Fitting Kernel Models

We used the well-known product form of the multivariate kernel model (Sil-

verman, 1986). Assuming that one has a test data point x and a training

data set {x1, . . . , xN}, then,

f̂(x|h1, . . . , hd) =
1

Ch

N
∑

i=1

d
∏

j=1

K

(

x− xj
i

hj

)

where d is the dimensionality of x, xj
i is the jth component of the ith train-

ing data point, and Ch = N ×
∏

j hj is a normalizing constant. The data

were standardized to have unit standard deviation in each dimension and the

bandwidths h quoted in the text are on this normalized data scale. For con-

venience, in applying the stacking methodology a single constant bandwidth

hj = h, 1 ≤ j ≤ d, was used in each dimension, yielding a well-known special

case of the general product estimator above. While in principle stacking can

be applied to models with different bandwidths in different dimensions, it

is not clear how one would determine which bandwidths are to be used in

which dimensions (i.e., there is a formidable search problem to be solved).

29

Fitting Gaussian Mixtures

We used the well-known Expectation-Maximization (EM) algorithm to ob-

tain maximum a posteriori (MAP) parameter estimates for Gaussian mix-

tures, following the scheme proposed by Ormoneit and Tresp (1996). Specif-

ically, we used non-informative priors on the means and component weights

(such that one gets update equations in EM which are identical to those of

maximum likelihood estimation) and a very weak prior on the covariance

matrices corresponding to β = 0.01 in the Wishart prior used by Ormoneit

and Tresp. This prior term provides enough regularization to ensure that

the component covariance matrices do not shrink to delta functions (and,

thus, useless solutions) as EM converges, while still allowing the model rel-

ative freedom in adapting to the data. Particularly for data sets with small

numbers of data points (100 or less), when fitting models with large num-

bers of components (5 or more), the use of a MAP estimator rather than an

ML estimator was found to be essential in order to generate non-degenerate

solutions in parameter space.

There are two other practical aspects to the application of the EM al-

gorithm: the choice of initial conditions, and the choice of a convergence

criterion. In general, it is advisable to start the algorithm from as many

different starting points and for as many iterations, as one can afford. In

the experiments reported here, however, we adopted a very simple scheme

for training our mixture models, namely to run 10 EM iterations from 4

different starting points (2 chosen by the k-means algorithm and 2 chosen

randomly) and choose the parameters from among these which maximized

the MAP criterion. We chose this simple method as a trade-off between

computation time and result quality, based on the empirical observation

that the EM procedure often (but not always) makes the largest steps in

parameter space in the first few iterations and the likelihood of the model

does not typically change significantly after i = 10 iterations. There are of

course exceptions to this heuristic for certain data sets and certain initial

starting points. Nonetheless, some simple checks indicated that the experi-

mental results described are not sensitive to the exact form of EM used to

fit the mixture models.

30

Estimating the Stacking Weights using EM

We seek the stacking weights α which maximize the likelihood of the stacked

model on the cross validated scores, i.e., maximize

N
∑

i=1

log

(

M
∑

m=1

αmfm(x)

)

as a function of the weight vector (α1, . . . , αm). Direct maximization of this

function is a non-linear optimization problem. We can apply the EM al-

gorithm directly by observing that the stacked mixture is a finite mixture

density with weights (α1, . . . , αm). Thus, we can use the standard EM algo-

rithm for mixtures, except that the parameters of the component densities

fm(x) are fixed and the only parameters allowed to vary are the mixture

weights (the α′s). It remains to choose initial conditions and a convergence

criterion. For the results repored here we always chose αi = 1/m, 1 ≤ i ≤ m

to initialize the algorithm and halted whenever

m
∑

i=1

|αk
i − αk−1

i | < 0.001

where αk
i is the estimate of the ith weight at the kth EM iteration. Sim-

ple experiments with other initial starting points did not seem to produce

different maxima.

Appendix B: Determining the Best Bandwidths for

the Multivariate Triangular Product Kernel

The multivariate product kernel is defined as

f̂(y) =
1

∏d
j=1 hj

N
∑

i=1

d
∏

j=1

K(
yj − xj

i

hj
) (5)

where yj is the jth component of the test data vector y, xj
i is the value of the

ith training data point in the jth dimension, 1 ≤ i ≤ N , 1 ≤ j ≤ d, and the

function K(
yj−x

j
i

hj
) is a normalized univariate kernel for the jth dimension

with bandwidth hj . This is the most widely used form of multivariate kernel

in practice, requiring the specification of both the functional form of K

31

(typically the same shape is used in all d dimensions) and the d bandwidths

h1, . . . , hd.

In this paper we use the triangular kernel for K, defined as

K(y, x, h) =

{

1−
∣

∣

∣

y−x
h

∣

∣

∣ : |y − x| < h

0 : |y − x| ≥ h.

The likelihood of the bandwidth vector h, given a set of training data,

attains its maximum value (infinity) when the bandwidths are set to zero,

i.e., when the density estimate consists of delta functions centered on the

training data. To avoid this singular solution, and in keeping with using

log-likelihood as our measure of performance, we use 10-fold cross-validated

likelihood as the objective function to maximize when seeking the single best

bandwidth vector h (various similar cross-validation schemes, such as leave-

one-out likelihood cross-validation are described in Silverman (1986) and

Scott (1994)). Finding the global maximum of this cross-validated likelihood

function (as a function of h) is highly non-trivial due to the presence of

multiple local maxima. In the results described in this paper we used the

following heuristic search technique based on multiple-restart local search:

1. Locate the highest CV-likelihood bandwidths for each dimension sepa-

rately (just as you would if the data were one-dimensional), evaluated

on the grid of values {0.1, 0.2, 0.3, . . . , 1.5}.

2. Perform gradient ascent to a local maximum in the multidimensional

bandwidth space, using the combination of bandwidths from step (1)

as a starting point.

3. Sometimes the the resulting product kernel has zero CV-likelihood

(the product kernel is too narrow). Accordingly, even if the individual

dimension bandwidths have non-zero CV-likelihood, we augment step

(2) by rerunning the gradient ascent with 5 new starting points. The

five vectors of those starting points are given by multiplying the vector

of the starting point in (2) by 1.1, 1.2, 1.3, 1.4, and 1.5.

4. In addition we also perform steps (2) and (3) by hill-climbing along

each dimension of h in turn, until a local maximum is reached.

5. The bandwidth vector corresponding to the largest maximum found

at the end of steps (2) through (4) is used as the selected bandwidth.

32

Over multiple trials on multiple data sets we found that the procedure was

relatively robust in the sense that small changes in the heuristics used re-

sulted in only small changes in the value of best bandwidth vector found.

References

Banfield, J. D., and Raftery, A. E., ‘Model-based Gaussian and non-Gaussian

clustering,’ Biometrics, 49, 803–821, 1993.

Wand, M. P., and Jones, M. C., Kernel Smoothing, London: Chapman and

Hall, 1995.

Breiman, L., ‘Bagging predictors,’Machine Learning, 26(2), 123–140, 1996a.

Breiman, L., ‘Stacked regressions,’ Machine Learning, 24, 49–64, 1996b.

Breiman, L., ‘Bias, variance and arcing classifiers,’ submitted to Annals of

Statistics, 1996c.

Buntine, W. ‘Bayesian back-propagation’, Complex Systems, 5, 603-643,

1991.

Chan, P. K., and Stolfo, S. J., ‘Sharing learned models among remote

database partitions by local meta-learning,’ in Proceedings of the Sec-

ond International Conference on Knowledge Discovery and Data Min-

ing, Menlo Park, CA: AAAI Press, 2–7, 1996.

Draper, D, ‘Assessment and propagation of model uncertainty (with dis-

cussion),’ Journal of the Royal Statistical Society B, 57, 45–97, 1995.

Escobar, M. D., and West, M., ‘Bayesian density estimation and inference

with mixtures,’ JASA, 90, 577-588, 1995.

Hall, P., ‘On Kullback-Leibler loss and density estimation’, Ann. Stat., 15,

1491, 1987.

Hansen, L. K., and Salamon, P., ‘Neural network ensembles,’ IEEE Trans.

Patt. Anal. Mach. Int., 12, 993-1001, 1990.

33

Jones, M. C., Marron, J. S., and Sheather, S. J., ‘A brief survey of band-

width selection schemes for density estimation,’ J. Am. Stat. Assoc.,

91(433), 401–407, 1996.

Jordan, M. I. and Jacobs, R. A., ‘Hierarchical mixtures of experts and the

EM algorithm,’ Neural Computation, 6, 181–214, 1994.

Kim, K., and Bartlett, E. B., ‘Error estimation by series association for

neural network systems’, Neural Computation, 7, 799, 1995.

Leblanc, M. and Tibshirani, R. J., ‘Combining estimates in regression and

classification,’ preprint, 1993.

Macready, W., and Wolpert, D. H., ”Combining stacking with bagging to

improve a learning algorithm”, submitted, 1996.

Madigan, D., and Raftery, A. E., ‘Model selection and accounting for model

uncertainty in graphical models using Occam’s window,’ J. Am. Stat.

Assoc., 89, 1535–1546, 1994.

D. J. Marchette, C. E. Priebe, G. W. Rogers, and J. L. Solka, ‘Filtered

kernel density estimation,’ preprint, 1995.

Merz, C. J., and Pazzani, M. J., ‘Combining neural network regression es-

timates with regularized linear weights,’ in Advances in Neural Infor-

mation Processing Systems 9, M. Mozer, M. I. Jordan, and T. Petsche

(eds.), 564–570, 1997.

Neal R. M., ’Bayesian learning via stochastic dynamics’, in Advances in

neural Information Processing Systems 5, S. J. Hanson et al. (eds),

Morgan Kauffman, 1993.

Perrone, M. Improving regression estimation, PhD thesis, Brown University

Department of Physics, 1993.

Ormeneit, D., and Tresp, V., ‘Improved Gaussian mixture density estimates

using Bayesian penalty terms and network averaging,’ in Advances in

Neural Information Processing 8, 542–548, MIT Press, 1996.

Rao J. S., and Tibshirani, R., ‘The out-of-bootstrap method for model

averaging and selection’, University of Toronto Statistics Department

preprint, 1996.

34

Ripley, B. D. 1994. ‘Neural networks and related methods for classification

(with discussion),’ J. Roy. Stat. Soc. B, 56, 409–456.

K. Roeder, ‘Density estimation with confidence sets exemplified by super-

clusters and voids in the galaxies,’ J. Am. Stat. Assoc., 85(411),

617–624, 1990.

Scott, D. W., Multivariate Density Estimation: Theory, Practice, and Vi-

sualization, New York: John Wiley, 1992.

Silverman, B. W., Density Estimation for Statistics and Data Analysis,

London: Chapman and Hall, 1986.

Smyth, P.,‘Clustering using Monte-Carlo cross-validation,’ in Proceedings

of the Second International Conference on Knowledge Discovery and

Data Mining, Menlo Park, CA: AAAI Press, pp.126–133, 1996.

P. Smyth and D. Wolpert, ‘An evaluation of linearly combining density

estimators,’ ICS TR-98-25, Information and Computer Science, Uni-

versity of California at Irvine, 1998.

Titterington, D. M., A. F. M. Smith, U. E. Makov, Statistical Analysis of

Finite Mixture Distributions, Chichester, UK: John Wiley and Sons,

1985

Wand, M. P., and Jones, M. C., Kernel Smoothing, London: Chapman and

Hall, 1995.

Wolpert, D. 1992. ‘Stacked generalization,’ Neural Networks, 5, 241–259.

Wolpert, D. H., ‘Combining generalizers by using partitions of the learn-

ing set’, in 1992 lectures in complex systems, L. Nadel et al. (eds),

Addison-Wesley, 1993.

Wolpert, D. H., ‘Bayesian backpropagation over i-o functions rather than

weights’, in Advances in neural Information Processing Systems 6, J.

Cowan al. (eds), Morgan Kauffman, 1994.

Wolpert, D. H., ‘On the Bayesian ‘Occam’s factors’ argument for Occam’s

razor’, in Computational learning theory and natural learning systems

III, T. Petsche et al. (eds), 1995.

35

Wolpert, D. H., ‘The existence of a priori distinctions between learning

algorithms’, Neural Computation, 8, 1391-1420, 1996a.

Wolpert, D. H., ‘Reconciling Bayesian and non-Bayesian analysis’, in Max-

imum entropy and Bayesian methods, G. R. Heidbreder (ed.), Kluwer

Academic Publishers, 1996b.

Wolpert, D. H., and Wolf, D. R., ‘Estimating functions of probability dis-

tributions from a finite set of samples’, Phys. Rev. E, 52, 6841, 1995.

36

