Abstraction For Analytic Verification of Concurrent Software
Systems

Michael Lowry! and M. Subramaniam

2

! Computational Sciences Division, Code IC, MS 269-2 NASA Ames Research Centre Mofett Field, CA 94035
lowry@ptolemy.arc.nasa.gov
2 Recom Technologies, Computational Sciences Division, Code IC, NASA Ames Research Center, Mofett Field, CA
subu@ptolemy.arc.nasa.gov

Abstract. This paper describes methods
towards automatically generating abstract
models of complex software systems. The
abstraction methods take as input a soft-
ware system and a property to be verified,
and produce an abstracted model. The ab-
stract models generate d can be automat-
ically analyzed by current model checkers.
Towards this goal we describe two tech-
niques based on Dijkstra’s weakest precon-
dition calculus for performing control and
data abstractions of software applications.
The first of these, called semantic slicing,
performs control abstractions by replacing
portions of a program that do not affect
the truth value of a given property by ¢dle
statements. In other words, semantic slic-
ing maximally abstracts a program with re-
spect to the property being verified. The re-
sult of semantic slicing is a highly reduced
program that is behaviorally equivalent to
th e original program with respect to the
given property. The second technique per-
forms data abstractions by using weak-
est preconditions. A finite state abstract
model is automatically generated from a
given program and a finite set of user-
supplied control predicates. The abstrac-
tion technique preserves counterexamples
for invariant (universal) properties. In or-
der to deal with liveness (existential) prop-
erties we also discuss an approach based
on explicit abstraction mappings over the
domains of the program variables for gen-
erating an abstract model. No information
is lost in abstraction in this technique if the
mappings are a congruence with respect to
the program operations. The effectiveness
of these techniques are illustrated by sev-
eral examples including a nontrivial exam-
ple of a spacecraft controller being devel-
oped at NASA.

1 Motivation

Traditional testing approaches to debugging and
V&V (verification and validation) have reached the

limits of system complexity for which they can pro-
vide high assurance. As system complexity increases,
both in terms of system behavior and in terms of in-
ternal structure, the number of test cases required to
cover the range of possibilities and to cover the inter-
nal computational paths rises exponentially. In par-
ticular, concurrent real-time systems such as space-
craft controllers are notoriously difficult to debug and
verify by traditional V&V approaches. This is of-
ten due to subtle interactions between components
and the fact that the system’s behavior may depend
upon timing. For example, Mars pathfinder repeat-
edly reset itself, thereby losing days of potential sci-
ence data, due to a subtle priority inversion bug. An-
other conccurrency bug led to the first Brazilian mi-
crospacecraft being inoperable for six months until
a formal methods team found the error. A bug in
such a system may manifest itself only intermittently
during testing, making it difficult to pinpoint the lo-
cation of the bug in the software. In fact, a timing
bug may never manifest itself until actual flight con-
ditions, at which point an error condition may arise
that causes the failure of the entire mission. Multiple
levels of redundancy can mitigate the effects of some
errors, but it is clear that catastrophic failures can
arise from unexpected conditions. Sometimes failure
recovery systems are part of the problem, as were
the manner in which watchdog timers interacted with
other components on Mars pathfinder and the Brazil-
ian microspacecraft.

In contrast, automated reasoning approaches to
debugging and V&V are more comprehensive than
traditional testing in that they replace individual
test cases with symbolic calculation that covers whole
swaths of the test space at once. Therefore, analytic
V&V frequently uncovers serious design flaws that
survive extensive traditional testing. An example is
the Pentium floating point bug, which went unde-
tected through a period of extensive testing prior to
the initial release of the Pentium. After this costly
error, the digital hardware industry invested heav-
ily in analytic approaches to debugging. Analytic
approaches for verification and debugging such as
model checking have recently proven very success-
ful in uncovering subtle design and implementation
flaws in complex state-of-the-art hardware micropro-
cessors and concurrency protocols.

Our main objective is to apply analytic verifica-
tion techniques such as model checking to the com-
plex software systems being developed by NASA
Space and Aeronautic Enterprises to provide high
assurance software systems. Qur primary focus is on
complex, concurrent/distributed and real-time soft-
ware systems. These include: autonomy software,
spacecraft and rover task programs that operate in
concurrent and distributed environments, software
for managing distributed control of space missions,
and software for distributed design of spacecraft and
missions, real-time software for civilian avionics, etc.

An important issue in applying analytic verifi-
cation techniques to such large scale systems is in
generating an abstract mathematical model that can
be automatically analyzed against formally stated
requirements and designs. Currently, the abstract
models have to be manually formulated by formal
methods experts while carefully studying the applica-
tion domain. This imposes considerable burden both
in terms of time and cost on the use of analytic
approaches. This is the major bottleneck prevent-
ing their wide-spread application. Developing ab-
stract models for software systems is even more in-
volved than that for the hardware applications, since
the currently available model checkers are not well-
suited for verifying software applications. For exam-
ple, many model checkers do not support adequate
language constructs in terms of data, control and
concurrency. More importantly, most of the model
checkers operate only on bounded models, which is
an inherent limitation for software systems.

2 Outline of Approach

The main goal of this paper is to describe techniques
that allow automatic generation of abstract models
from software programs. The abstract models gen-
erated can be automatically analyzed by the cur-
rent model checkers. Our approach towards this goal
is two-fold: devise translation techniques from high
level programming languages to input languages of
model checking tools; devise abstraction techniques
for abstracting data, control and concurrency aspects
of a given program to generate an abstract model
that is finite-state and is computationally tractable
for analyses by model checking algorithms. This pa-
per is primarily concerned with the latter aspect
of developing abstraction techniques to generate a
finite-state tractable model. For details on the lan-
guage translation aspects of abstract model genera-
tion, the reader may refer to [13].

Our key idea in automatic generation of an ab-
stract model is to use the property that needs to be
verified of the given program as the basis for abstrac-
tion. Informally, control abstractions discard irrele-
vant portions of the program that do not affect the
property. For data abstractions, the property along

with a finite set of user supplied control predicates
is used. The potentially unbounded set of values of
the various data types in the program can then be
reformulated in terms of their effect on these control
predicates. This leads to a finite state abstract model
since the number of control predicates is finite.

Weakest pre-conditions of a program statement
with respect to a property or a set of control pred-
icates can be used to determine both whether the
statement affects the property and also to determine
how the specified control predicates valuations are
changed by executing the statement. This provides
a basis for deriving an abstract interpretation of the
program. The abstract model obtained via control
abstractions is eract and preserves the truth value
of the property, i.e. the property holds of the ab-
stract model if and only if it holds of the program,
since the constructs that do not affect the property
are only discarded. The abstract model obtained via
data abstractions is conservative in the sense that
it preserves only the counterexamples of the prop-
erty. So the abstract model could lead to “false nega-
tives”. This means that an abstract counterexample
of a property needs to be checked against the concrete
program to determine if it is a true counterexample.

A further limitation of the data abstraction ap-
proach based on weakest pre-conditions is that it is
conservative only for invariant (universal) properties.
For liveness (existential) properties, it appears in-
feasible to map their truth values in the abstract
model generated by this approach to those in the
program. In order to address this shortcoming, we
describe an alternate approach for data abstractions
based on explicit mappings from the domains of pro-
gram variables to predefined abstract domains. The
mappings are then “lifted” to abstract program op-
erations to generate an abstract model. The abstract
model so constructed is conservative with respect to
the branching temporal logic fragment ACTL (the
universal fragment of computational tree logic) [7].
Furthermore, the abstract model is exact for all prop-
erties expressible in CTL*, if the domain mappings
are a congruence with respect to program operations
[7].

In the next section a brief overview of model
checking is given. Section 4 discusses the proposed
approach for model checking of software. The use
of weakest preconditions for performing control and
data abstractions is described. The effectiveness of
these techniques are illustrated using examples that
arose in the analytic verification of a space craft con-
troller that is being developed at NASA [16, 12]. Sec-
tion 5 outlines the data abstraction technique based
on explicit domain mappings.

A long-term spin-off of this technology is the
development of light-weight, automated versions of
these analytic V&V tools that continuously monitor
a software system as it is executing. This technol-
ogy has the potential to anticipate errors before they

occur, thus enabling preventative measures to be in-
voked. For example, a model-checker could be syn-
chronized to the execution of a software system, and
explore in advance possible execution paths. Paths
leading to safety violations, deadlocks, and other
unanticipated concurrency bugs would be flagged and
prevented (e.g., through run-time insertion of addi-
tional synchronization steps). To use these tools in a
runtime monitoring mode requires that they be made
extremely computationally efficient.

3 Analytic Verification Approaches:
Model Checking

Model checking has proven very successful in debug-
ging and verifying behavioral aspects of industrial-
strength hardware applications and protocols [17, 8,
12]. This success can be largely attributed to the
highly automated and algorithmic nature of model
checking techniques that automate reasoning about
error-prone concurrent applications. Unlike tradi-
tional, general-purpose verification approaches based
on interactive theorem proving, model checking tech-
niques focus on decidable fragments of logic over
which automated reasoning is effective, without hu-
man guidance.

Typically, model checking is used to establish
temporal properties of finite state transition systems.
The finite state transition system is represented as
a Kripke model and the properties are expressed
in propositional temporal logic. Several variants of
propositional temporal logic such as linear temporal
logic, branching time temporal logic, and associated
variants have been used to express temporal prop-
erties. Different model checking tools have been de-
veloped supporting these variants of temporal logic.
These model checkers differ in the underlying rep-
resentation of the finite state transition system that
they employ and in the methods that they use to ef-
ficiently compute the reachable states of a transition
system. An important problem that is pervasive in all
model checking tools is the combinatorial explosion
of the reachable state space even for moderately sized
applications. This has been called the state-explosion
problem. We discuss two broad approaches that have
been previously pursued for dealing with the state-
explosion problem and the associated model checking
tools below.

Symbolic model checkers such as SMV [17] iden-
tify the state of the system with a predicate denot-
ing the valuations of the variables of the system. The
predicate encoding of a state can be naturally ex-
tended by expressing each transition as a relation
between the current state variables and next state
variables. The entire transition system can then be
viewed as a conjunction of individual transitions.
Symbolic model checkers like SMV use canonical rep-
resentations to represent the formulae denoting a

state, a set of states, and the transition relation.
These specialized representations include binary de-
cision diagrams (BDD), and binary moment dia-
grams (BMD) [2, 1]. A BDD can be thought of as
first a binary decision tree for a propositional formula
where each horizontal level is a boolean variable and
the left and right branches represent the true and
false valuations of a boolean variable. Each leaf of
the tree is either true or false depending on whether
the propositional formula is true or false under the
valuations of the boolean variables repre sented by
the path to that leaf. A binary decision diagram is
a binary decision tree where common sub-trees have
been merged, thus obtaining a directed graph. BDDs
and BMDs often lead to a compact representation
of the transition system by exploiting the sharing of
structure in the sub-components of the system.

The reachable states of the system can be com-
puted using a fixed point computation by either com-
puting the forward images of a set of states at each
iteration or by computing the reverse images of a
set of states at each iteration. The convergence is
guaranteed as the number of states is finite. Each
temporal logic formula in a symbolic model checker
is typically identified with the set of states in which
it holds. The formula denoting the states satisfying
a universal property (safety or invariant property)
can be identified with the greatest fixed point of a
monotonic functional denoting the set of the states
satisfying the given property. The set of states satis-
fying an existential property (liveness or eventuality
property) can be similarly characterized by the least
fixed point of a monotonic functional. The computa-
tion of these fixed points can be iteratively done by
starting with true (false) for the safety (eventuality)
property [17].

Ezxplicit state model checkers such as SPIN and
Murphi, in contrast to symbolic model checkers, do
not employ predicate encodings for representing the
states of the transition system. The states are rep-
resented directly as a tuple of assignments to the
variables of the system. In early explicit state model
checkers the reachable states were precomputed by
using the explicit representation of the transition sys-
tem and the properties were then be checked over
these reachable states. But such precomputation of
the reachable states is not computationally tractable
for even moderately sized applications due to large
number of states. In order to circumvent this problem
explicit state model checkers like SPIN and Murphi
compute the reachable states on-the-fly along with
each property. Several additional techniques are em-
ployed by these model checkers to reduce the num-
ber of explicit states that need to be enumerated.
These techniques called state-space-reduction tech-
niques are typically based on the notions of equiv-
alences among states or paths. Murphi uses symme-
try reduction techniques to avoid enumerating equiv-
alent states and SPIN wuses partial-order reduction

techniques to avoid enumerating paths that lead to
equivalent states.

4 Automatic Abstractions for Model
Checking Software Systems

This section discusses the use of weakest precondi-
tions in performing control and data abstractions.
Automatic abstraction algorithms will generate an
abstract model from a concrete program and re-
quirements expressed as temporal properties to be
verified. Semantic slicing based on weakest precon-
ditions to perform control abstractions is described
first. Subsequently, we discuss the use of weakest pre-
conditions in performing data abstractions.

4.1 Automating Control Abstractions by
Semantic Slicing

In many large scale software applications, often only
certain portions of the application are relevant to a
given property that is to be verified. The irrelevant
portions of the program can be automatically dis-
carded by using techniques similar to program slic-
ing. This leads to a reduced program that is com-
putationally tractable for analytic V&V. Instead of
slicing the task programs with respect to variables,
the programs are sliced with respect to state predi-
cates appearing in the given temporal property. The
reduced program that is generated from a given state
predicate has the following guarantee: its error traces
for the given property are in direct correspondence
to the error traces of the original program.

Program slicing is a technique to extract a partial
program that is equivalent to an original program
over a subset of the program variables. The input
to a traditional slicing algorithm is a program and
a designated subset of variables, the output of the
slicing algorithm is a partial program that for ev-
ery program execution has identical values assigned
to the designated subset of variables upon program
termination. The key idea of slicing algorithms is to
work backwards from the program end-point, keeping
statements that have an effect on the designated vari-
ables and removing statements that have no effect.
As the algorithm works backwards over the program
statements, additional variables might be added to
the designated set if they have occur in expressions
which modify the designated set.

The concept of program slicing can be extended
to abstract state-based programs for the purpose of
model checking. However, instead of slicing with re-
spect to variables, the programs are sliced with re-
spect to state predicates, starting from a statement
which contains the operation(s) which are required to
only be executed in particular states. In other words,
the programs are sliced with respect to an invariant.

The partial program that is generated from such a
property has the following guarantee: its error traces
for the never property are in direct correspondence
to the error traces of the original program. This is
called WP-program slicing, as the algorithm is de-
fined using Dijkstra’s weakest-precondition calculus.

Two rules for this slicing calculus are described.
Slice takes a code-seq terminated by a statement,
and a state predicate, and returns a reduced code-
seq. It determines where it can substitute the IDLE
statement without affecting error traces by calculat-
ing when a statement “ passes through” a state pred-
icate. This occurs when the weakest precondition is
the same as the state predicate. (The IDLE state-
ments can later be removed if not needed for pre-
serving the interleaving semantics. While slicing with
respect to invariant properties, the statement can be
discarded; whereas while slicing with respect to ex-
istential or liveness properties the IDLE statement
is needed in order to preserve the possible interleav-

ings.)
The slicing rule for straight-line sequences is:

Slice({code-seq; statement},state-predicate)

->

If WP(statement,state-predicate) =

state-predicate

then

{Slice(code-seq,state-predicate) ; IDLE}

else

{Slice(code-seq,
WP(state-predicate,statement)) ;

statement}

The rule states that IDLE can be substituted for
a statement if the statement has no effect on the state
predicate. Otherwise, the weakest precondition of the
state-predicate is substituted for the state-predicate
and slicing continues backwards. A more elaborate
calculus would allow substituting a simpler statement
that had the same weakest precondition.

The rule for conditionals requires the definition
of a weakest predicate reduction. R is a predicate re-
duction of Q by Pif R V P = Q. R is a weakest
predicate reduction(WPR) of Q by P iff for any S
which is a predicate reduction of @ by P, S = R.

The rule for conditionals is defined on the follow-
ing pattern:

Slice({code-seq; if P then then-statement
else else-statement, Q})
Let then-WP = WP(then-statment, Q),
else-WP = WP(else-statment, Q)
Let reduced-then-WP = WPR(P,then-WP)
reduced-else-WP = WPR(not(P),else-WP)

Note that when the condition P implies then-
WP, the IDLE statement can be substituted for then-
statement. In other words, the then-statement is ex-

ecuted only in a context where it will not generate an
error trace. Define reduced-then-statement as IDLE
when P implies then-WP, otherwise it is the same
as then-statement. Similarly, when not(P) implies
else-WP, the IDLE statement can be substituted
for else-statement. Define reduced-else-statement ac-
cordingly. The rule for slicing conditionals can now
be defined:

Slice({code-seq; if P then then-statement
else else-statement, Q} ->
{Slice(code-seq, (P and reduced-then-WP) or
(not(P) and reduced-else-WP));
(if P then reduced-then-statement
else reduced-else-statement)}

Note that the weakest precondition for the condi-
tional is composed of reduced weakest preconditions
for the then- statement and the else-statement. A dis-
cussion of the application of these rules to task pro-
grams of a space controller executive are described
in [16].

4.2 Overview of Automating Data
Abstractions

Data abstractions play a crucial role in generat-
ing abstract models of software programs that are
amenable for model checking. Typical software ap-
plications employ data types such as numbers, lists,
trees, queues, stacks etc. that are often unbounded
in advance. Simple translations of such applications
leads to models with unbounded structures. Such
models cannot therefore be analyzed by model check-
ers which operate on finite state models.

In the following two sections we describe two ap-
proaches for automatically generating an abstract
model that is amenable for model checking start-
ing from a concrete/program model. The first one is
based on the generation of an abstract model based
on weakest preconditions and is an extension of the
approach described in [11]. The second approach is
based on generating a set of mappings over the do-
mains of the variables of the program and automati-
cally lifting the program operations to abstract pro-
gram operations. This approach extends research by
Clarke et. al on abstractions in [7]. The theory de-
veloped previously by [7] dealt only with homomor-
phisms on the logical operators. Further, the domain
mappings and the corresponding abstract logical op-
erations are manually supplied that work.

The approach for performing data abstractions
in [11] uses weakest preconditions to compute an ab-
stract model from a program expressed in terms of
a simple guarded command language. Even though
it is conceivable that many software applications can
be modeled or mapped in to such a simple language,
often there is considerable overhead incurred in an-
alyzing such a flattened representation of software

applications. Often, high level control constructs em-
ployed in these applications such as loops and other
concurrency primitives have to be rediscovered in or-
der to effectively automate the generation of abstract
models. Furthermore, the translation of applications
from high level languages into such a formalism needs
to carefully devised as naive translations may lead to
state explosion. The main contribution of our work is
first to extend the approach described in [11] to the
richer control, data and concurrency constructs that
occur in concurrent software applications. Second, we
generate the abstract models compositionally in con-
trast to the approach in [11], where the application
is always considered as a whole. This limits the abil-
ity of the approach in [11] to scale to large, complex
applications. The extended approach is illustrated by
generating an abstract model for the release property
of the space controller resource manager verified in
[12].

The basic assumptions underlying both these
methods is the same. The notions of concrete and ab-
stract program models used by these two approaches
are formalized below.

Software/Concrete Model The semantic model
representing the concrete program is a state transi-
tion system where each state is a valuation of a finite
number of the program variables Vi, -- -, V,,. over the
types of the variable denoted by the corresponding
domains Dy, ---, D,. The state space of the program
is bounded by S = Diz---xD,,. The transition sys-
tem T can be formally defined by the triple (S, I, R)
where I, a subset of S, is the set of initial states and
R, a subset of S x S, is the transition relation over
states.

Abstract Model The abstract model of T,
Tops, is a transition system denoted by the triple
(Sabss Labss Rabs)- Taps is defined in terms of an
abstraction function Fypg S — Sups- The ab-
straction function F,ps is naturally extended to
a set of states S’, denoted by Fpps(S’) where
Fops(S') = {Fups(s') | 8 € S'}. Similarly, the ab-
straction function Fyps is naturally extended to the
relation R, denoted by Fgps(R), where Fyps(R) =
{Fups(s1,52) | (s1,52) € R}. The following conditions
must hold for the abstraction function Fjp,.

1. Fabs(I) g Iabs-
2. Fabs(R) g Rabs-

If conditions 1 and 2 are equivalences, then the
abstract model is exact. Any invariant property that
is true of the abstract model is true of the program,
but not vice-versa. The converse also holds when the
abstraction is exact.

The abstract model obtained using the first ap-
proach has the guarantee that whenever an invariant

property is true in the abstract model then it is true
in the concrete model, but not vice-versa. The second
approach is more general and preserves truth values
of the abstract model for more expressive class of
properties including CTL and universally quantified
fragment of CTL* [7].

4.3 Generating Data Abstract Models
Using Weakest Pre-Conditions

The key idea in this approach is to identify a set
of control predicates. The abstract model can then
be regarded as recording the control predicate values
as concrete transitions are executed. The resulting
abstract state machine is defined in terms of the val-
uations of these predicates and hence is finite state
and can therefore be analyzed by a model checker.

Given a set of control predicates P =
{p1,---,pn}, the state space of the abstract model
is a lattice induced by predicates in P. The elements
of the lattice are conjunctions of atomic literals over
P with the additional element false. The lattice is
complete with the implication ordering relation with
the join and meet being given by conjunction and
disjunction respectively. The state space is bounded
with at most 3(n + 1) elements.

The concrete transition relation R is viewed as a
finite set of labeled transitions corresponding to the
program statements. Recording the values of control
predicates is done by computing the successors for
each abstract state with respect to all of the concrete
transitions whose labels correspond to the program
control being at that point and which are enabled.
The absence of successors for an abstract state s;
with respect to a transition with label ¢1, is denoted
by setting the abstract successor state to false. The
rule for computing the abstract successor state for a
concrete assignment statement is given below.

succ(sl, x := e)[i] =
{true, if sl => WP(x :=
false, if s1 => WP(x :
Otherwise}

e, pi
e, not(pi))

True

The it" component of the abstract successor state
in the above rule is computed based on the i*" con-
trol predicate. The component is true if the weakest
precondition of the assignment statement with re-
spect to the corresponding control predicate follows
from the current abstract state. It is false if the weak-
est precondition with respect to the negation of the
predicate is implied by the current abstract state. It
evaluates to true otherwise.

A Simple Example of Abstract Model Gener-
ation Consider the following simple program with
two processes P1 and P2 with the global shared vari-
able x. L1 and L2 are the labels associated with the

two assignment statements in the processes. The ini-
tial value of the variable x is set to 1. This is denoted
by the assignment in the initially block. The two run
statements result in the simultaneous spawning of the
processes P1 and P2.

Concrete Model/Program

Integer x;
Process P1();
Li: x := x + 1;
end;
Process P2();
L2: x := x + 2;
end;
Main Program
Initially
x = 1;
end;

begin
run P1();
run P2();
end;

end.

An invariant property that can be established
from this program is x > 0. The abstract model can
be generated from the above concrete program by
the following sequence of steps. WP below denotes
the weakest pre-condition.

1. Let the control predicate P = x > 0.
2. The initial abstract state S0 = x > 0 since the
initial value of x = 1 and (x = 1) => (x > 0).
3. Abstract Transition Relation:
(a) (80, L1) = S1: x > 0 since WP(11, x > 0)
=x>-1and (x> 0) = (x> -1).
(b) (s0, L2) = 82: x > 0 since WP(12, x > 0)
=(x>-2) and (x > 0) => (x > -2).
(c) (s1, L2) = 83: x > 0 since WP(12, x > 0)
=x>-2and (x> 0) => (x > -2).
(d) (s2, L1) = S4: x > 0 since WP(12, x > 0)
=x>-1and (x> 0) = (x> - 2).
In the above generation of state machine, for il-
lustrative purposes, no form of state equivalence
has been assumed. Steps ¢) and d) can be elim-
inated by identifying the abstract states $2 and
S1 with the absstract stateso.
4. The above state machine can be used by a model
checker to establish the invariant x > 0. In this
case, the reachable states is S0 with x > 0.

A non-trivial example : Remote Agent Exec-
utive of a Spacecraft Controller In this section
we illustrate how the same technique can be applied
to a nontrivial example of a resource manager of a
space craft controller. The resource manager was ver-
ified using the SPIN model checker in [12] and sev-
eral bugs were found. An invariant property that was

found to be incorrect there concerned the release of
locks by the task processes whose resource usage is
monitored by the resource manager. We outline how
the abstract model exhibiting an error trace for this
property can be automatically generated using the
invariant property. A very brief description of the
Remote agent executive, the invariant property and
the relevant aspects of the concrete model are first
described. Subsequently, we illustrate how the pro-
posed approach can be used to automatically gener-
ate an abstract model which can be analyzed by a
model checker to generate a counterexample to the
invariant property. For a complete description of the
Remote agent executive the reader may refer to [12].

The remote agent executive monitors a set of on-
board flight tasks that operate on a common set of
shared resources. Each task needs specific resources
and also requires certain properties of the resources
to hold while it is executing. The current set of prop-
erties of a resource are stored in a global database Db.
In order to execute, each task first locks (snarfs) the
required resources, then the task tries to achieve the
properties of the resources that must be maintained
while it is executing. If both these are successful the
task may go ahead and performs its computation,
releases the acquired resources and successfully ter-
minates. Mutual exclusion among shared resources is
achieved by locking and the resource locks that are
held by a task process are maintained in a global lock
table, Locks.

In addition to the task processes two predefined
processes that execute in the remote agent execu-
tive are the environment Env, and a daemon pro-
cess, Daemon. The daemon process is periodically
woken up in response to certain events signaled by
the task and the environment processes and checks
whether the properties associated with a resource in
the database and lock table are consistent. If this is
not the case, then all the task processes that are in
violation are aborted by the daemon. The environ-
ment process in response to external stimulus (not
modeled here) may change the properties associated
with a resource in the global database. On a change,
the process signals the daemon to perform consis-
tency check of the properties. An important invari-
ant that needs to be established of this model is that
any task once it successfully terminates releases all
its resources. This can be modeled in terms of a pred-
icate called issubs(Taskid, resource, property, Locks),
which checks whether a task with Taskid is holding
the resource. The predicate should evaluate to false
once the task successfully terminates.

This is modeled as an in-line assertion in the con-
crete model described below.

Concrete Model/Program

List Db of (Resource, Property);
List Locks of (Resource, Property, Subscribers);

List activetasks of Taskid;

Process task(Taskid, Resource, Property);
begin
{atomic
{snarf_property (Taskid, Resource, Property);
achieve_property(Taskid, Resource, Property)}
perform_computation() ;
} unless {active_tasks[Taskid].status = abort};
active_tasks[Taskid] .status := Terminate;
{Release_locks(Taskid, Resource, Property)}
unless {active_tasks[Taskid].status = abort};
assert {
(not (issub(Taskid,Resource,Property,Locks));}
end;

Process Daemon();
List Taskids of Taskid;
begin
If (Daemon.status = Wakeup) then
Taskids = Db_violated();
While(Taskids <<> nil) do

active_tasks[head(Taskids)].status := aborted;
Taskids = tail(Taskids);
end;

end;

Process Env(Resource, NewProperty);

begin
Db[Resource] := NewProperty;
Daemon.status := Wakeup;

end;
Main Program
begin
activetasks = Db = Locks = nil;
run Daemon() ;
run task(Taskid, resource, property);
run Env (resource, NewProperty);
end.

In the concrete model above, “ atomic” indi-

cates an indivisible sequence of statements whose ex-
ecution is not be interleaved with any other state-
ments in other processes. Exceptions are handled
by the special construct “unless”. {Sy;---,S,} un-
less (cond) has the semantics that statements are
S1,- -+, S, are executed sequentially as long as cond
evaluates to false. Otherwise, the program control
jumps to the statement following the unless state-
ment. Therefore, in the above example, a task locks
resources, achieves the desired properties of the re-
sources and performs its computation as long as the
it is not aborted by the daemon due to an incon-
sistency between the database and the lock table.
Such an inconsistency could be triggered by the en-
vironment changing the database. In order to auto-
matically compute an abstract model corresponding
to the above given concrete model we first describe
rules for computing the abstract successors for addi-
tional concrete model constructs such as condition-

als, repetition and unless statements below. The par- The blocking case leads to no abstract successors
tial abstract model generated for each of the pro- as specified below.

cesses based on these rules is given next.
succ(sl, expl = exp2) =

iy iy i => =
— Conditional Transition: There are two cases to {false if (s1 not(expl = exp2))}

be considered here. First, when the statement is
enabled i.e. the condition cond is implied by the
current abstract state. In this case the compo-
nentwise computation of the abstract successor
state is given below.

succ(sl, if(cond) x := e)[i] =

{true, if s1 => WP(if(cond)x := e,pi) &
sl => cond,

false, if sl => not(WP(if(cond)x := e,pi)) &
sl => cond,

True Otherwise if s1 => cond}

If the statement is not enabled then there is no
abstract successor and this denoted by the ab-
stract successor state being assigned the value
false.

succ(sl, if (cond)x := e) =
{false if s1 => not(cond)}.

Repetition Transition: An abstract successor for
a repetition statement of the form: while b do S
can be computed in terms of the loop invariant I.
Given invariant I, the repetition statement is split
into two actions with the control points b and I,
not(b) and I corresponding to the control being
in the loop or going out of the loop respectively.
The abstract successors for each of these cases is
given below.

succ(sl, b and I S)[i] =

{true if s1 => (b and I => pi)
false if s1 => not((b and I => pi))
True Otherwisel}.

succ(sl, not(b) and I S)[i] =

{true if s1 => (not(b) & I => pi)

false if s1 => not((not(b) & I => pi))
True Otherwise}

Assertion Transition: The underlying semantics
of an assertion statement is that whenever the
program control reaches such an expression it
can progress to the subsequent statement only
when the expression evaluates to true. Other-
wise, the program control is said to be blocked.
For the non-blocking case the computation of the
abstract successor state is given below.

succ(sl, expl = exp2)[i] =

{true, if (sl => (expl = exp2)) &
sl => pi

false, if (s1 => (expl = exp2)) &
sl => not(pi)

True Otherwise}.

— Unless Transition: Unless is a special construct
for handling exceptions. The typical usage is of
the form : (Si; ---; Sp) unless (cond). Before
the execution of each statement S; in the se-
quence, the condition cond is checked and the
next statement is executed only if cond eval-
uates to a false. Otherwise, the rest of the
statements are ignored and the program con-
trol jumps to the statement following the un-
less construct. For computing abstract succes-
sors, the unless construct can be transformed
into a series of conditional statements of the
form: (i f (not(cond) S1); ---; if(not(cond) Sy).
These statements can be handled as conditionals.

The abstract model based on these rules can be
computed by the following sequence of steps. In addi-
tion to the invariant two additional control predicates
isconsis and isnotabrt are used. These denote the con-
sistency of the database and the lock table and the
status of a task not being aborted respectively.

1. The control predicates are:

Pl:not(issub(Taskid,resource,property,Locks)),
P2:isconsis(Db, resource,property, Locks),
P3:isnotabrt(this,activetasks)

2. The task process abstract machine:

(a) s0 = p1, P2, P3

(b) Sta = S0, action incompatibility check in
snarf property = S1 = (P1, P2, P3)

(C) S2a= S2a, append action in snarf property
= (not(P1), P2, P3)

(d) S3a= S2a, achieving property

(e) S4 = S2a, terminate action =
P2, P3)

(f) 85 = 52a, action release lock procedure =
(P1, P2, P3)

The environment process abstract machine:

(a) EO = (True, True, True)

(b) E1 = EO, Changing the Db = (True,
not(P2), True)

The daemon process abstract machine:

(a) DO = (True, True, True)
(b) D1 = (DO, check-locks) = (not(P1), True,

= S2a
(not (P1),

True)

(C) D2 = (D1, lockviolation) = (not(P1),
not (P2), True)

d) D3 = (D2, abort task) = (not(P1),
not (P2), not(P3))

Composing these three machines gives the entire
abstract machine. Composition needs to be carefully

done since the actions suffixed by ”a” denote atomic
actions. The composed abstract state machine con-
tains the following sequence of transitions which can
be analyzed by a model checker to give the following
counter-example:

S5 x EO (not(P1), True, P3) ->
E1 x DO = (not(P1), not(P2), P3) ->
D2 -> D3 = (not(P1), not(P2), not(P3))

which is the violating state. The above counterexam-
ple corresponds to the subtle interleaving that arises
due to the environment changing the database and
the daemon aborting the task after the task has fin-
ished its computation but before it has released its
locks.

4.4 Generating Abstractions Using Explicit
Homomorphisms

In the approach based on the generation of abstract
models using explicit homomorphisms the abstract
transition system T,ps over the program variables
Vi,---,V, over the abstract domains Dj,---, D} is
obtained by using a family of onto mappings h; :
D; — D) where D; denotes the concrete domain.
Note that h; is an equivalence relation over D; where
di =abs djif fhi(d;) = hi(d;) for any two elements d;
and d; of D;. This is naturally extended to a map-
ping h over the states by pointwise applications of h;.
The characterization of an exact abstract model can
be given in terms of the family of mappings h and the
primitive operations P. An abstract model is exact iff
h is a congruence with respect to each of the prim-
itive operations in the program. If (h(d;) = h(e;))
then P(dy,---,d,) = P(e1, - -,en) for 1 <i <n.

The naive way of generating the abstract model
from a given program model T and a set of onto
mappings is infeasible for software since it requires
an explicit representation of the program model T
and often the program model T is either too large or
is unbounded. A typical way around is to generate an
approximation of the abstract model from the text of
the program itself by doing a form of abstract com-
pilation. This is usually done by identifying the set
of ”primitive operations” in the program and sym-
bolically simulating the program starting from the
initial state, and executing the program. The tran-
sition system T can be obtained in this way as well
as Typs- The only difference is in the interpretations
associated with the primitive operations. If we inter-
pret the primitive operation more abstractly then we
get Tabs-

So, for automatic generation of the abstract
model T,;; there are three issues that need to be
addressed:

1. Generating h automatically.

2. Showing that h is a congruence with respect to
primitive operations P.

3. Deriving abstract versions of the primitive oper-
ations from P and h ?

The proposed approach is to identify some use-
ful classes of h and choose dynamically from among
these based on the property that is being attempted
and other user supplied predicates. This is done in
terms of the following steps.

1. For a given set of predicates and identify the do-
main mappings using a predefined classification
hierarchy.

2. Check whether this mapping is a congruence with
respect to the primitive program operations.

3. If so, “lift” all the program operations to corre-
sponding operations over the new domain. Oth-
erwise, the abstraction fails.

4. Perform abstract compilation with respect to the
new predicates and the domain.

5 Related Work and Conclusions

The main challenge in using automated V&V tools
such as model checkers is in coming up with a
tractable finite state model i.e., dealing with the state
explosion problem. A lot of work has been done in
combating the state explosion problem for hardware
applications [4, 5, 6]. Several techniques such as sym-
metry reduction [18], partial-order red uction [9, 14]
and symbolic encodings of states using representa-
tions such as BDDs, BMDs [17, 1, 2] have been con-
sidered. However, these techniques only work on fi-
nite models. They can not be applied in general to
software systems, which typically use data types op-
erating on unbounded domains and hence have mod-
els which are not bounded in advance.

The use of data abstraction in model checking to
handle some limited types of infinite state systems
are discussed in [19, 7, 10, 15]. In [19], Wolper uses
the notion of data independence to transform cer-
tain temporal properties specified over infinite data
values to equivalent properties specified over a finite
domain. In [7], Clarke et. al, discuss how user defined
abstractions can be used for model checking. How-
ever, no attempt is made there to automate the gen-
eration of abstractions. Two approaches that address
aspects of automatic generation of abstractions are
[15, 11]. Jackson in [15] discusses how certain prop-
erties involving unbounded sets and predicates over
such sets can be reduced to equivalent properties over
bounded sets. In [11], the interactive theorem prover
PVS is used to generate an abstract model. However
this approach is limited in terms of the data, control,
and concurrency abstractions and in the size of the
abstract model to be used for software applications.
We have shown how this approach can be extended to

handle typical data concurrency and control abstrac-
tions that frequently occur in software applications.
The use of weakest preconditions for program slic-
ing is also discussed in [3]. However, the approach
described there is applicable only to sequential pro-
grams.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

R. E. Bryant, and Y.-A. Chen, “Verification of Arith-
metic Circuits with Binary Moment Diagrams”, In
32nd ACM/IEEE Design Automation Conference
(DAC) 1995.

. R. E. Bryant, “Graph-based algorithms for boolean

function manipulation”, In IEEE Trans. on Comput-
ers, Vol. C-35, No. 8. 1986.

J. J. Comuzzi and J. M. Hart, “Program Slicing us-
ing Weakest Preconditions”, in Proc. FME: Indus-
trial Benefit and Advances in Formal Methods, 3rd
Intl. Symposium , LNCS 1051, 1996.

5th International Conference on Computer Aided
Verification, CAV-93, Springer Verlag LNCS 697.

. 6th International Conference on Computer Aided

Verification, CAV-94, Springer Verlag LNCS 818.
8th International Conference on Computer Aided
Verification, CAV-96, Springer Verlag LNCS 1102.
E.M.Clarke, O. Grumberg, D.E. Long , “ Model
Checking and Abstraction”, In Proc. of 19th ACM
Symp. POPL 1992.

A. Th. Eiriksson and K.L. Mcmillan, “Using formal
verification/analyses methods on the critical path in
system design : A case study,” In Proc. of Computer
Aided Verification, LNCS 939, Springer Verlag 1995.
P. Godfroid, “ Using Partial Orders to improve auto-
matic verification methods,” In Proc. of 2nd Work-
shop on Computer Aided Verification 1990.

S. Graf, “A tool for symbolic verification and abstrac-
tion,” in CAV93.

S. Graf, H. Saidi, “ Constructing Abstract Graphs
Using PVS,” in CAV96.

K. Havelund, M. Lowry, and J. Penix, “ Formal anal-
ysis of a space craft controller using Spin”, NASA
Ames Research Center Technical Report, 1997.

K. Havelund, T. Pressburger, “ Translating Java to
Spin,” Manuscript Under Preparation, NASA Ames
Research Center.

G. Holzmann, D. Peled, “ The State of SPIN,” in
CAV-96.

Jackson, D.E., “ Abstract Model checking of infinite
specifications,” In Proc. of Formal Methods in Europe
1994.

M. Lowry, K. Havelund, and J. Penix, “ Verification
and validation of AI systems that control deep-space
spacecraft.”, In Proc. of ISMIS 1997..

K. McMillan, “ Symbolic Model Checking”, Kluwer
Academic Publishers, 1993.

C. Norris Ip, “ State Reduction Methods for Au-
tomatic Formal Verification,” Ph.D. Thesis, Depart-

19.

ment of Computer Science, Stanford University, De-
cember 1996.

Wolper, P., “ Expressing Interesting Properties of
Programs in propositional temporal logic” In Proc.
18th ACM POPL 1986.

This article was processed using the WTEX macro package
with LLNCS style

