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Abstract.

This paper describes an experiment to use the Spin model checking system to
support automated verification of time partitioning in the Honeywell DEOS real-
time scheduling kernel. The goal of the experiment was to investigate whether model
checking with minimal abstraction could be used to find a subtle implementation
error that was originally discovered and fixed during the standard formal review
process. The experiment involved translating a core slice of the DEOS scheduling
kernel from C++ into Promela, constructing an abstract “test-driver” environment
and carefully introducing several abstractions into the system to support verification.
Attempted verification of several properties related to time-partitioning led to the
rediscovery of the known error in the implementation.

The case study indicated several limitations in existing tools to support model
checking of software. The most difficult task in the original DEOS experiment
was constructing an adequate environment to close the system for verification.
The fidelity of the environment was of crucial importance for achieving meaningful
results during model checking. In this paper, we describe the initial environment
modeling effort and a follow-on experiment with using semi-automated environment
generation methods. Program abstraction techniques were also critical for enabling
verification of DEOS. We describe an implementation scheme for predicate abstrac-
tion, an approach based on abstract interpretation, which was developed to support
DEOS verification.

1. Introduction

The cost of software aspects of flight certification for avionics systems
has grown significantly in recent years due to the increased use and
complexity of software. This software provides advanced control, com-
munication and safety features at a reduced cost and weight. However,
verification and certification of software for high levels of assurance
is extremely expensive due to the manual effort needed to support
the extensive testing required by the Federal Aviation Administration
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(FAA) [37]. Furthermore, the difficulty of verification and certification
will continue to increase due to an industry trend toward Integrate
Modular Avionics (IMA) to further reduce costs. IMA allows multi-
ple applications of varying criticality levels to execute on a shared
computing resource [59]. Part of the cost savings strategy of IMA is
that software applications will be individually certified allowing them
to be mix-and-matched with avionics platforms. This is currently not
supported by the FAA certification process which takes the more con-
servative approach of certifying each platform configuration. However,
this approach is well advised because it is well known that testing is
inadequate to assure that arbitrary combinations of applications will
operate together safely [12].

Reducing the manual effort required to support certification while
increasing the levels of assurance will require significant advances in
software verification and certification technology. We have been inves-
tigating the use of model checking to support the analysis of critical
avionics software systems. Model checking is an algorithmic formal
verification technique for finite-state concurrent systems [18, 56]. Orig-
inally applied to hardware verification, model checking has become
a promising technique for analyzing software requirements specifica-
tions [2, 14, 15, 38] and software design models [1, 24, 40]. One reason
for this trend is that, at high levels of abstraction, the scalability
limitations of model checking can be avoided while providing useful
information about a system. This is convenient because early life-cycle
errors are expensive to correct later [7] and can often lead to safety
critical failures [47]. However, some software errors cannot be discov-
ered in the requirements and design stages. This may be because the
details of the system are not sufficiently elaborated to reveal prob-
lems until implementation, or simply because errors are made during
implementation. NASA has recently suffered from a number of soft-
ware implementation problems, including a missing critical section that
caused a deadlock in the Deep Space 1 Remote Agent control sys-
tem [35] and a variable that was not re-initialized after a spurious
sensor signal that led to the loss of the Mars Polar Lander [45]. These
errors are symptoms of the fact that software has become a pervasive
component of aerospace systems and is therefore more complex and
difficult to design and validate.

The state of the art for finding errors at the implementation level
are static analysis [53, 64, 31, 28] and testing [6, 13]. However, testing
only provides a small degree of behavioral coverage of a system, es-
pecially for concurrent systems, where testing has limited control over
thread scheduling [70, 43]. Static analysis has better success dealing
with concurrency, but it can be challenging to obtain accurate re-
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sults [49]. Model checking, however, has the potential to provide more
extensive behavioral coverage in two ways. First, the model checker can
evaluate every possible interleaving of threads in the system. Second,
model checking can use nondeterministic environment models to close
a system for verification. This enables the model checker to generate
all combinations of environmental behaviors as the closed system is
checked. While in practice it is not possible to exhaustively search
this space of behaviors, it provides a comprehensive starting point for
systematic reduction and abstraction of the state space.

This paper describes the analysis of a time partitioning property of
Honeywell’s Dynamic Enforcement Operating System (DEOS) schedul-
ing kernel, using the SPIN model checker. The goal of this experiment
was to investigate whether model checking, supported by minimal, well-
defined abstractions, could be used to find a subtle implementation
error that was originally discovered and fixed during the standard for-
mal review process. The analysis was done on a model of the system
very similar to the original code: there is essentially a 1-to-1 map-
ping from statements in the original code to statements in the model.
Therefore, this work can be classified as one of the first attempts at
program model checking (or software model checking) [3, 22, 39, 42, 68].
The philosophy of program model checking is that programs written in
popular programming languages should be model checked directly in a
(semi-)automated fashion. The entire process used in the investigation
is shown in Figure 1. To best understand the feasibility and applicabil-
ity of this approach, the process of translating the source code into a
model checking language was separated from the process of abstracting
the code to permit tractable verification. This allowed us to assess the
type and extent of abstraction that might be required to apply model
checking directly to source code.

During this investigation, we addressed several challenges of model
checking complex software systems. First, in order to analyze the kernel,
it was completed with an environment that adequately models user
threads running on the kernel, the hardware clock and the system
timer. Second, the state space of the kernel is very large (exhaust-
ing 4 Gigabytes of memory during verification, without completion),
so abstraction was required to make verification tractable. The main
contribution of this paper is to demonstrate that model checking can
be used to locate subtle errors in complex software systems. A second
contribution is to motivate and demonstrate how tool support for en-
vironment generation and data abstraction can make these techniques
more cost-effective so that they may be used in practice.

The most difficult task in the original DEOS experiment (Section 2)
was constructing an adequate environment to close the system for ver-
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Figure 1. Methodology used to investigate source code model checking.

ification. The fidelity of the environment turned out to be of crucial
importance for achieving meaningful results during model checking.
To reduce the size of the state space, the environment model used for
verification contains a significant amount of abstraction with respect
to the modeling of time. In this paper, we describe the initial environ-
ment modeling effort (Section 3) and a follow-on experiment with using
semi-automated environment generation methods (Section 3.5).
Systematic abstraction also played a critical role in making the
verification of DEOS tractable in practice. In this paper, we describe
an extension to predicate abstraction, an abstraction approach based
on abstract interpretation, to allow it to be used on this case study.
Section 4 provides an overview of the use of abstraction to support
verification and introduces predicate abstraction. The existing work
on predicate abstraction has been in the context of simple modeling
and programming languages. The main contribution of our work is the
extension of existing abstract frameworks to support abstraction of
relationships between classes, or interclass abstractions. We show how
a specific infinite state programming pattern that occurs frequently in
practice can be transformed to a finite state program using predicate
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abstraction. We then demonstrate how this approach was applied to
DEOS to allow tractable verification (Section 4.4).

Since our initial effort to analyze DEOS, a number of subsequent
studies, by ourselves and others, have been performed on DEOS with a
variety of different approaches. In Section 5 we highlight these activities
and also look at related work in the area of program analysis via model
checking. Because the problem of extracting models from programs has
received much attention [21, 36, 22, 3, 41, 68, 65], we do not present
the details of our translation [50] from C++ to Promela, the input
language of SPIN. Finally, Section 6 contains conclusions and future
research directions.

2. Overview of Original DEOS Experiment

For certification of critical flight software, the FAA requires that func-
tional software testing achieve 100% coverage with a structural coverage
measure called Modified Condition/Decision Coverage (MC/DC) [58,
16]. Although MC/DC coverage is quite extensive and expensive to
achieve, Honeywell was still concerned that it would not be sufficient to
assure complex properties in integrated modular avionics architectures.
This concern was based on their experience developing and testing the
DEOS operating system. During DEOS development, a subtle error in
the time partitioning implementation was not discovered by extensive
testing.

To address this concern, we performed an experiment to determine
whether model checking, with only minimal abstraction, could provide
a systematic method for discovering this error. Honeywell provided an
overview of the basic functionality of DEOS and a slice of the operating
system containing the budgeting and scheduling algorithms. The NASA
team then applied model checking without knowing any details of the
DEOS implementation or the error. The source code that was analyzed
was 1500 of the approximately 10,000 lines of C++ code which com-
promise the DEOS kernel. This section introduces DEOS and describes
the verification experiment.

2.1. DEOS

DEOS is a portable micro-kernel-based real-time operating system used
in Honeywell’s Primus Epic avionics product line. DEOS supports flex-
ible, integrated modular avionics applications by providing both space
partitioning at the process level, and time partitioning at the thread
level. Space partitioning ensures that no process can modify the mem-
ory of another process without authorization, while time partitioning
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Figure 2. Thread Scheduling in DEOS

ensures that a thread’s access to its CPU time budget cannot be im-
paired by the actions of any other thread. The combination of space
and time partitioning makes it possible for applications of different
criticalities to run on the same platform at the same time, while ensur-
ing that low-criticality applications do not interfere with the operation
of high-criticality applications [59]. This noninterference guarantee re-
duces system verification and maintenance costs by enabling a single
application to be changed and re-verified without re-verifying all of the
other applications in the system. DEOS itself is certified to DO-178B
Level A, the highest possible level of safety-critical certification.

The DEOS scheduler enforces time partitioning using a Rate Mono-
tonic Analysis (RMA) scheduling policy [62]. RMA is a general ap-
proach for assuring that various system latency requirements can be
met during real-time thread scheduling. The basic mechanism in RMA
is the assignment of high-priorities to threads with the most stringent
real-time requirements. Figure 2 shows an example DEOS scheduling
time line. In the example, the system contains a main thread, two user
threads (children of the main thread) and the special idle thread which
runs when no other threads are schedulable. The main thread runs in
the fastest period, and therefore also at the highest priority, with a bud-
get of 5 out of 20 time units. The user threads run in a period 3 times as
long as the main thread, each with a budget of 20/60 time units. In the
example, all of the threads are scheduled and appropriately allocated
their requested budget within their respective periods. Threads are
interrupted when they use all of their budget (timer interrupt) or when
a thread of higher priority becomes schedulable (preemption). The idle
thread runs at the end of the sequence to take up the slack time in the
system that is not requested by any thread.

Many real-time operating systems are at least partially statically
scheduled, which makes it relatively easy to analyze the possible ex-
ecution sequences in the system. DEOS, however, supports fully dy-
namic creation and deletion of threads and processes at runtime. When
threads are created within a process, they receive some budget from
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the main thread for that process. When they are deleted, the bud-
get is returned to the main thread. DEOS also provides a rich set
of thread synchronization and inter-process communication primitives.
As a result of this complexity, the number of possible interleavings
of program execution in DEOS is enormous, and calculations such as
schedulability analyses must often be made at runtime. This makes
systematic verification of time partitioning a difficult task.

2.2. MobpEL CHECKING DEOS

Because there are no model checkers that take C++ as input, the
DEOS code had to be translated into the input notation for a model
checker. A methodical, 1-to-1 mapping between the code and the model
checker input was used to separate abstraction from translation to more
clearly understand what abstractions were necessary. We chose the
Spin model checker [40] since Promela, the input language for Spin,
is the closest model checking language to C++. Promela is a process
based imperative language supporting complex data-structures (e.g.
records and arrays) and allows communication with shared memory
and message passing. An overview of the Promela language, as used
in this paper, is provided in Section 3.1. The translation was based on
modeling classes as records and using arrays of these records to store
object data, similar to the technique used by Havelund and Pressburger
for Java [36]. We will not discuss the details of the translation because
this has been subsumed by recent work in model extraction [22] and
direct model checking [68]. To model check DEOS, an environment was
constructed to model the possible behaviors of user threads, the system
clock and the system timer. Section 3 describes the environment that
was constructed for verification of the kernel.

Verification in Spin involves systematic execution of all possible
process interleavings in a program. It detects assertion violations, dead-
locks and supports model checking of linear temporal logic (LTL) [51,
67] formulae. In LTL, a pattern of states is defined that characterizes
all possible intended behaviors of a system. We describe LTL operators
using Spin’s ASCII notation. LTL is a propositional logic with the stan-
dard connectives &&, | |, => and !. It includes three temporal operators:
<>p says p holds at some point in the future, [Ip says p holds at all
points in the future, and the binary pUqg operator says that p holds at
all points up to the point where ¢ holds (p until g).

The main aspect of DEOS that we were interested in verifying was
the time partitioning property: that each thread in the kernel is guaran-
teed to have access to its complete CPU budget during each scheduling
period. Two approaches to specifying time partitioning properties in
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Figure 3. Error scenario

terms of events in the DEOS kernel were investigated. The first, using
assertions over program variables, was not effective but led to some
insight in the design [50]. The second approach used a liveness property
stated in terms of labeled program events referred to from within an
LTL property specification. This approach led to the rediscovery of the
known error.

To specify time partitioning using liveness, we had to identify a
condition that would always occur if time partitioning was maintained.
We hypothesized that, in the case where there is slack in the system
(i.e. the main and user threads do not request 100% CPU utilization),
the idle thread should run during every longest period'. To specify this
property, labels were placed in the program to identify when the idle
thread starts running and where the longest period begins and ends.
The property is then specified as:

[1( beginperiod -> (!endperiod U idle))

meaning that it is always ([]1) the case that, when the longest period
begins, it will not end until (U) the idle thread runs. That is, idle will
always run between the begin and end of the longest period.

Spin automatically generates a finite state automaton that monitors
the system for violations of the LTL property. Verification is done over
the combination of the property automaton and the system model. This
causes a potential increase of the state space by a factor of 4 in this
example, because the property monitor has 4 states. In practice, the
increase is approximately two fold, because not all states are reachable.

The property was checked using several DEOS configurations and
environments. In a configuration with 2 user threads and with dynamic
thread creation and deletion enabled, Spin reported the error scenario
shown in Figure 3. In this configuration, the main thread runs in the
fastest period (period 0) with an initial budget of 19/20 time-units. Two
user threads are created to run in the next fastest period, period 1, with
budgets of 20/60 time-units. To create the CPU budget for each user

! This is a necessary, not sufficient, condition of time partitioning.
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thread, 7/20 is taken from the main thread, leaving it with a budget
of 5/20 time-units. The total budget requested in this configuration is
55/60 time-units, leaving 5 units for the idle thread to fill at the end
of period 1.

Figure 3 shows a scheduling sequence where user thread 1 deletes
itself (before being interrupted) at the end of the first period 0. At this
point, its budget (20/60 or 7/20 time-units) is given back to the main
thread, giving it 12/20 units. The scheduling then continues normally
to the end of the period 1 boundary. At this point, Spin signals an
error because the idle thread did not run between the two period one
boundaries. Notice that user thread 2 only ran for 16 (8+8) time units
and not the 20 it requested, so time partitioning was violated. The
error stems from the fact that when user thread 1 deleted itself, it
immediately returned its budget to the main thread. This leaves the
main thread with a remaining budget of 24 (124+12) time-units and
user thread 2 with 20, with only 40 left in period 1. The result is that
user thread 2 does not get all of the CPU time it requested.

This was the same bug that was discovered by Honeywell during
code inspections. This could indicate that model checking can provide
a systematic and automated method for discovering errors. However,
there were several problems. The state space of the configuration re-
quired to show the bug was too large to be exhaustively verified. It
was not apparent that the model could even be searched exhaustively
to a depth necessary to guarantee discovery of the error. In addition,
after adding the fix to the code, we were unable to perform exhaustive
verification. To guarantee the error would be discovered and to permit
exhaustive verification of the fix, abstraction had to be applied.

3. Environment Modeling

In the original experiment the most challenging task was developing an
environment model to allow efficient analysis of time partitioning. The
DEOS kernel receives calls from threads that run on the kernel and
responds to both periodic system clock interrupts (called system ticks)
and timer interrupts from the hardware via interrupt handling routines.
The fidelity of the environment was of crucial importance for achieving
meaningful results during model checking. Specifically, modeling time
in different ways led to trade-offs between result validity and state
space size. In this section, we introduce the Promela language of Spin
and describe the initial environment modeling effort. We then describe
how semi-automated techniques for environment generation, previously
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only tested on small examples, reduced most of the effort involved in
the construction of the original environment model.

3.1. BRIEF OVERVIEW OF PROMELA

A PROMELA program consists of a collection of processes that commu-
nicate via buffered channels and shared global variables. A process body
is a sequence of local variable and channel declarations, and statements.
Processes can be parameterized with variables, including channels. A
process P is started with the statement: run P(...). A channel is a
bounded first-in-first-out buffer. Processes can read and write messages
of a declared type to channels.

Basic statements include assignment statements and channel com-
munication statements. The skip statement is a no-operation state-
ment. Statements can either be ezecutable or blocked in a particular
state. Two kinds of statements can block: channel communications
(described below) and boolean expressions occurring as statements.
A boolean expression blocks if it evaluates to 0 and is otherwise equiv-
alent to skip. Statements can be composed sequentially, as in s1;s2,
and can be grouped together using curly brackets: {...}. A composed
statement is executable if its first statement is executable.

A PROMELA if-statement has a sequence of options each preceded

by a double-colon. Only one of the statements is executed, and only
one where the first sub-statement — called the guard — is executable.
When several statements have executable guards, the choice of the
statement is non-deterministic. When no guard is executable, the if-
statement blocks. The special else statement can be used at most once
as the first sub-statement of an option, and it will become executable
if all other options are non-executable. There is a corresponding do-
statement which is executed repeatedly until a break statement is
encountered.
Processes communicate over channels using send and receive state-
ments. For example, a process sends the value 5 to a channel ¢ by
executing the statement c!5, while another process can receive this
value in the variable x by executing c?x. If a channel is full, then a
send-statement will block. Similarly, if the channel is empty, a read-
statement will block. If the size of the channel is defined as 0, commu-
nication is by rendezvous; the sending process blocks until a receiving
process reads the value, and vice versa.

3.2. THE DEOS KERNEL

Figure 4 illustrates the Promela environment constructed to model
check the DEOS kernel. There is a box for each concurrently executing
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DEOS Kernel
coldStartKernel();
START_A_THREAD(); /fidle thread
START_THE_TIMER();  /fforidle

resume(0) createMainThread();
do
Idle Thread stop(0)
op(©) ::fromThread?create(budget, period) ->
resume(1) createThread(id, period,budget);
- - toThread! getld(id);
Main Thread finishedForPeriod “fromThread?deletefid) ->
stop(1) deleteThread(id);
create(budget,period) START_A_THREAD();
= finishedForPeriod START_THE_TIMER();
User Thread 1 - ::fromThreadinishedForPeriod ->
delete(id) waitUntilNextPeriod();
| stop(id) START_A_THREAD();
resume(id) START_THE_TIMER();

::fromSystem?systemTicklnterrupt ->
old = Scheduler_itsRunningThread;
Scheduler_handleSystemTicklInterrupt();

User Thread n if /I check for preemption

::old = Scheduler_itsRunningThread ->
STOP_A_THREAD(old);

| START_A_THREAD();

| START_THE_TIMER();

‘ nelse

fi;

! :fromTimer2imerinterrupt ->

| getTimeRemaining old = Scheduler_itsRunningThread();

T - Scheduler_handleTimerlnterrupt();

[oxeNe]

systemTicklnterrupt

timer nterrupt if /I specidl casefor idle
start(time) ::old = Scheduler_itsldieThread ->
STOP_A_THREAD(old);
START_A_THREAD();
relse
fi;
START_THE_TIMER();
od;

Figure 4. DEOS Kernel and its Environment

process: the kernel, the idle thread, the main thread, n user threads
to be scheduled by DEOS, the system tick generator and the timer
process. The dotted box around the last two is to indicate that the
system tick generator and the timer were eventually combined into
one process. Rendezvous communication between processes is achieved
using synchronous message passing, illustrated by the labeled arrows
in the figure. Dotted arrows indicate values being returned in response
to some messages. In the following sections, we discuss the different
components of the DEOS kernel and its environment in detail.

It is important to note that in the real system, there are not sepa-
rate “processes” for the DEOS kernel and the threads: there is really
one thread of control with context switches initiated by kernel code
to switch threads. However, this style of scheduling did not map well
onto the Promela scheduling semantics. Therefore, the kernel (trans-
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lated code) and the threads (environment code) were put into different
Promela processes and context swaps were modeled by sending start
and stop messages to the thread processes.

The kernel code interacts with its environment through a wrapper
that maps messages from the environment to methods in the trans-
lated code. The wrapper code is shown inside the DEOS kernel box in
Figure 4. After initializing the kernel and starting the idle thread and
main thread, the process sits in a loop and reacts to messages from the
environment.

The kernel can receive three messages from a thread, directly corre-
sponding to DEOS API calls: create, delete and finishedForPeriod
(yield). The kernel can also receive interrupt messages which evoke the
interrupt handler methods of the kernel. The systemTickInterrupt
message is generated periodically (at the frequency of the scheduling
period of the highest priority threads) and indicates that a thread
of higher priority than the currently executing thread may become
schedulable. A timerInterrupt message indicates that a thread has
exhausted its budget and must be stopped immediately.

In response to messages, the kernel can send messages to start and
stop threads and to start the timer for a specific amount of time. For
example, in DEOS, only the currently running thread can delete itself,
so a new thread must be scheduled in response to the delete call.
If a thread is preempted, it is important to find out how much time
still remains from its budget, since it may get another chance to run
within the current period. This is done by sending a getTimeRemaining
message to the timer, and the value returned in the reply is used to
update the thread’s remaining budget data.

3.3. THREADS

We distinguish among three types of threads: the idle thread, the main
thread and user threads. The User threads have most functionality:
they can be stopped, can yield the CPU and can decide to terminate.
The Promela code for the user threads is shown in Figure 5. Mes-
sages are sent as data records over channels, where the first field in
the record denotes the message type. Messages have the form chan-
nel! message_type, data, data. For message types where some data is
unnecessary, 0’s are used as place holders. In the figure, a nondetermin-
istic if statement is used to implement a concise environment model
where all possible thread behaviors are examined. Synchronization is
used to ensure that when the kernel sends a resume (id) message only
the thread with the corresponding id will receive it?. The simplicity

2 eval(id) allows synchronization only when the message data matches id.
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of this model can be contrasted to the complexity of the interrupt
generator presented in the next section.

proctype UserThread(chan fromScheduler, toScheduler;
byte myBudget, periodIndex)
{

byte id;

byte threadState = threadStatusNotCreated;
toScheduler!create (myBudget,periodIndex) ;
fromScheduler?getId(id);

threadState = threadStatusDormant;

do

: :fromScheduler?resume,eval (id) ->
threadState = threadStatusActive;
if
::fromScheduler?stop,eval(id);
::toScheduler!finishedforperiod,0,0;
::toScheduler!delete,id,0 -> goto terminate;
fi;
threadState = threadStatusDormant;

od;

terminate: skip;

Figure 5. The DEOS User Thread Model.

3.4. INTERRUPTS

Modeling the generation of hardware clock and timer interrupts was the
most difficult part of constructing the environment for DEOS. Promela
and Spin do not provide special support for real-time clocks, so the
timers had to be modeled explicitly. The challenge was to determine
the level of abstraction at which real-time needed to be modeled.

To verify the time partitioning features of the DEOS kernel, the
time-related interrupts had to be coordinated to avoid “impossible”
behaviors. Without coordination, system tick interrupts might occur
several times, each indicating that 20 time units had passed, but the
timer, set for 10 time units, would never go off. To allow the necessary
level of coordination, the SystemTickGenerator and Timer were com-
bined into one process, shown in Figure 6. The combined timer model
keeps track of the time that has been used in a period and makes sure
that a system tick interrupt occurs only when the appropriate amount
of time has been used.

Promela does not directly support sending and receiving messages
based on evaluating a condition, but this can be implemented using a
two element array of channels, with the condition used as the index
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proctype TIMER() {

byte Remaining time = 0;/* time remaining for thread after timer counted
down from Start_time */
byte Used_time = 0;/* time used in period since last tick; must be

less than or equal to uSecsInFastestPeriod */
byte Start_time 0;/*% time the timer was started with */
byte Y=0; /* time used by a thread */
bool tick_since_start = FALSE;
bool started=FALSE;
bool timer_went_off = FALSE;

do

/* Start Timer */

::Sched2Timer?start,Start_time ->
tick_since_start = FALSE;
started = TRUE;
timer_went_off = FALSE;

/* Get Time Remaining */
::Sched2Timer?getTimeRemaining,0 ->
started = FALSE;
if
::tick_since_start ->
Timer2Sched[1] !timeRemaining,Remaining_time;
::timer_went_off ->

assert(Remaining_time == 0);
Timer2Sched[1] !timeRemaining,Remaining_time;
::else ->
/* Y: 0 <= Y <= uSecsInFastestPeriod - Used_time AND */
/* 0 <= Y <= Start_time */
if

:: (uSecsInFastestPeriod - Used_time) <= Start_time ->
Y = uSecsInFastestPeriod - Used_time;

:: ((uSecsInFastestPeriod - Used_time)/2) <= Start_time ->
Y = (uSecsInFastestPeriod - Used_time)/2;

Y = 0;

fi;

Remaining_time = Start_time - Y;

Timer2Sched[1] !timeRemaining,Remaining time;

Used_time = Used_time + Y;

fi;

/* Timer Interrupt - channel array trick for conditional send */
::Timer2Sched[started] !timerintrpt,0 ->

Remaining time = 0;

Used_time = (Used_time + Start_time)

timer_went_off = TRUE;

/* System Tick - channel array trick for conditional send */
::Tick2Sched[((Start_time+Used_time)
>= uSecsInFastestPeriod) && started]!tickintrpt,0 ->

Y = uSecsInFastestPeriod - Used_time;

Remaining time = Start_time - Y;

Used_time = 0;

tick_since_start = TRUE;
od

Figure 6. Final DEOS timer model
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to select which channel will be used for communication.? For example,
for a condition p and channel array c, a conditional send is c[p]!x
and the corresponding receive is c[1]7y. These two statements will
only synchronize if p is true (i.e. equal to 1). This technique was used
to control whether a timer interrupt or a system tick message would
be sent to the kernel on the Timer2Sched channel. A timer interrupt
message can only be sent if the timer has been started. A tick interrupt
message can only be sent when the timer has been started and the
amount of time since the previous tick interrupt is greater or equal to
the amount of time between ticks (uSecsInFastestPeriod).

The behavior of the timer is guided by two variables: the time re-
maining from the thread’s budget (Remaining time) and the amount
of time elapsed since the last tick (Used_-time). These variables are
updated in response to each of the messages the timer process can
receive as follows:

Start timer - Start_time is assigned the value received from the
kernel (the thread’s budget) with which the timer is started.

Timer interrupt - Indicates that the thread exhausted it’s budget, so
the Remaining_time must be 0. The amount of time used within
the period is the previously used time plus the amount of time the
timer was started with (Start_time).

System tick - The time remaining in a thread’s budget (i.e. the time
left on the timer when the system tick occurs) must be calculated.
First, the amount of time the thread used is calculated, which is
the total time in the period (uSecsInFastestPeriod) minus the
time previously used in the period (Used-time). The amount of
time remaining on the timer, Remaining Time, is then the amount
of time the thread was started with minus the time the thread
used. Furthermore, since a system tick just occurred, Used_time is
reset to zero for the next period.

Get time remaining - To limit the number of potential execution
paths and avoid state space explosion, we limited the choices as
to the amount of time that a thread could execute. In cases where
the interrupts do not constrain the amount of time that has passed
during thread execution, the timer nondeterministically chooses
how much time a thread uses. It chooses from three possibilities:

% Standard conditional statements cannot be used because the condition eval-
uation and message command must be executed atomically. Spin does not allow
messages to be sent inside atomic sections because messages indicate global states
where threads must be interleaved.
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either it used no time, or it used all of its time (or all of the time
left in the period, if that is smaller), or it used half of the time
between the current time and the end of the period. These cases
were selected based on intuition similar to that used in selecting
boundary cases during testing, with the middle value included for
good measure. Experiments that varied this abstraction showed
that the middle value increased the state space by approximately
twofold, but did not improve error detection.

3.4.1. Discussion

The decision was made to use an abstraction of time, rather than one
of the real-time extensions of SPIN (e.g. RT-SPIN [66] and DTSPIN
[9]), since we believed the inherent complexity of these techniques
would add an unnecessary layer of inefficiency during model check-
ing. Furthermore, the abstractions used were under-approximations (a
subset) of timing behavior rather than over-approximations (a super-
set)*. This decision was influenced by the fact that the property being
checked (time-partitioning) was dependent on time, and experiments
with over-approximation of timing behavior lead to many spurious
errors. Verification using an under-approximation of time does not
provide a full guarantee that properties are true. However, any errors
detected will be real errors, as long as any other data abstractions
that are used do not over-approximate behavior. In Section 4 we de-
scribe a precise abstraction that can be safely combined with the time
under-approximation to preserve errors.

3.5. ENVIRONMENT MODELING USING LTL ASSUMPTIONS

The most difficult part of defining the environment of DEOS was de-
veloping the model for the interrupt generation that would allow us to
check time partitioning. Developing and validating the interrupt model
in Figure 6 took approximately 2 man-months. Also, despite our best
efforts, this model is hard to understand and maintain. Because these
issues are serious barriers to the adoption of model checking as a tool to
find errors in programs, automated methods for generating environment
models were investigated.

This section presents the application of the filter-based methods
described by Dwyer et al. [30, 54] to generate the environment that
models the generation of interrupts. Starting with the most general
definition of the environment, a set of LTL environment assumptions is
established and used to refine the environment definition. This refined

4 See Section 4.1 for more precise definitions of over- and under-approximation.
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proctype skeletonl TIMER() {
byte Start_time;
byte Remaining time;
do
/% SYSTEM TICK GENERATOR */
/* send a tick interrupt to the scheduler */
:: Tick2Sched[1]!tickintrpt,0;

/* TIMER */
/* scheduler starts the timer with value Start_time */
:: Sched2Timer?start,Start_time;

/* scheduler asks for Remaining time */
: Sched2Timer?getTimeRemaining,0;

/* timer returns value Remaining_time */
:: Timer2Sched[1]!timeRemaining,Remaining _time;

/* send a timer interrupt to scheduler */
: Timer2Sched[1]!timerintrpt,0;

:: skip; /# some internal, non-observable action */
od

Figure 7. Timer skeleton

environment is used to rediscover the error in DEOS. Moreover, the
environment is precise enough such that when used with the corrected
version of the kernel, no spurious errors are reported.

The most general environment for properties stated in LTL is the
universal environment that is capable of executing any sequence of
operations in the system’s interface. Under the assume-guarantee rea-
soning paradigm [52], assumptions about the environment can be ex-
pressed in LTL and used to constrain the behavior of the universal
environment [54]. In particular, if the environment assumption ¢ and
the guarantee 1 are LTL formulas, one can simply check the formula
¢ — 1. The LTL assumption can also be used to synthesize a refined
environment, in which case ¢ is eliminated from the formula to be
checked [54].

3.5.1. Universal Environment for the DEOS Scheduler

To build the DEOS timer model systematically, the interface between
the timer and the scheduler was identified and used to build the envi-
ronment skeleton in Figure 7. This environment is capable of invoking
any sequence of interface operations. However, to verify time parti-
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proctype skeleton2 TIMER() {
byte clock = 0;
byte Start_time;
byte Remaining time = 0;
do
/* SYSTEM TICK GENERATOR */
/* send a tick interrupt to the scheduler */
: Tick2Sched[1] !tickintrpt,0;
/* reset */
clock=uSecsInFastestPeriod;

/* TIMER */
/* scheduler starts the timer with value Start_time */
: Sched2Timer?start,Start_time;

/* estimate Remaining time */
if
:: Start_time > clock -> Remaining time=Start_time-clock;clock=0;
11 Start_time <= clock -> Remaining time=0;clock=clock-Start_time;
:: Remaining time = Start_time;
/* put half_time_option here */
fi;

/* scheduler asks for Remaining time */

:: Sched2Timer?getTimeRemaining,0;

/* timer returns value Remaining time */

:: Timer2Sched[1] !timeRemaining,Remaining_time;

/* send a timer interrupt to scheduler */

:: Timer2Sched[1]!timerintrpt,0;

od

Figure 8. Timer skeleton with Remaining_time variable

tioning, the model must be refined to capture the relationship between
Start_time and Remaining time. This was done by introducing a third
variable, clock, to record the time remaining in a period.

The resulting code for the timer is shown in Figure 8. The underlying
principle is variable time advance [63, 10]: at each event, the time at
which the nezt event will occur is calculated. When the timer is started,
depending on the amount of time the timer is started with and the
amount of elapsed time in the period, the next event is predicted (either
timer or system tick interrupt) and the remaining time and elapsed time
is calculated accordingly. Specifically, when the timer is started with
a value specified in Start_time, the remaining time is estimated as
follows:

— If Start_time is greater than the current value of clock, then a
system tick interrupt will occur, so Remaining._time for the current
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proctype U_TIMER() {
byte clock = 0;
byte Start_time;
byte Remaining time = 0;

do
/*
/*

/*

/*

/*

/+

SYSTEM TICK GENERATOR */
send a tick interrupt to the scheduler */

: Tick2Sched[clock==0]!tickintrpt,0;

/* reset */
clock=uSecsInFastestPeriod;

TIMER */
scheduler starts the timer with value Start_time */
Sched2Timer?start,Start_time -> start:skip;
/* estimate Remaining time */
if
:: Start_time > clock -> Remaining time=Start_time-clock;clock=0;
Start_time <= clock -> Remaining_time=0;clock=clock-Start_time;
:: Remaining time = Start_time;
/* put half_time_option here */
fi;
scheduler asks for Remaining time */
Sched2Timer?getTimeRemaining,0;
timer returns value Remaining time */

:: Timer2Sched[Remaining time>0]!timeRemaining,Remaining_time;

/s

od

timeRemainingGTO:skip;

: Timer2Sched[Remaining_time==0]!timeRemaining,0;

send a timer interrupt to scheduler */

:: Timer2Sched[1] !timerintrpt,0 -> timerinterrupt:skip;

Figure 9. Timer with restricted rendezvous on tickintrpt

thread will be greater than zero, and clock is reset to the period
duration, uSecsInFastestPeriod, to indicate that it will be the
beginning of the next scheduling period.

If Start_time is less than or equal to the current value of clock,
then a timer interrupt will occur, so the Remaining time for the
current thread will be zero and the clock will be decreased.

Nondeterministically, the environment can set Remaining time to
be Start_time and leave clock unchanged, which corresponds to
the situation that the thread consumed no time.
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3.5.2. Environment Assumptions

The timer in Figure 8 is still too approximate, leading to spurious
counterexamples, because period ticks and resets of the clock can occur
arbitrarily. The problem is that clock should not be reset unless its
value is zero (as would happen in a real system clock). This environment
assumption (¢1) can be encoded in LTL as follows:

[1(tickinterrupt -> !new_tickinterrupt U (clock==0 || []!new_tickinterrupt))

Assumption ¢ says that after a system tick interrupt occurs, a new
tick interrupt can not occur unless the value of the clock is zero. This
assumption can more effectively be encoded in the timer model, by
restricting the rendezvous on tickintrpt to occur only when clock is
zero, as shown in the code for U_TIMER in Figure 9.

Checking the timing property using this restricted environment gives
another infeasible counterexample: after a timer interrupt occurs and
the kernel asks for the remaining time, the value returned is greater
than zero. This would not happen in a “realistic” environment, since
a timer interrupt signifies that there is no remaining time left for the
current thread.

This situation can be captured by the following environment as-
sumption (¢g):

[1(timerinterrupt -> !timeRemainingGTO U (start || []!timeRemainingGTO))

This assumption states that, after a timer interrupt occurs and the
kernel asks for the remaining time, the environment cannot return a
value greater than zero, unless the timer is started again. Notice that in
Figure 9, labels were inserted (e.g., start:) to define the predicates and
we split the rendezvous based on the returned value of Remaining time,
e.g. predicate timeRemainingGTO is true when the timer thread is at
label timeRemainingGTO).

When using U_TIMER and assumption ¢s as a filter, i.e. when check-
ing the combined formula:

([J(timerinterrupt -> !timeRemainingGTO U (start || []!timeRemainingGTO0))) ->
[1(beginperiod -> !endperiod U idle)

the same error found in the original DEOS experiment is reported. The

assumption effectively “filtered out” traces that did not correspond to
real executions of the system.
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systemTickInterrupt

start(time)
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timeRemaining=( timerInterrupt
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systemTickInterrupt
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timeRemaining>0
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Figure 10. Synthesized assumption graph

3.5.3. Results

The time partitioning property was checked using both the U_TIMER
in Figure 9, with the LTL assumption ¢9 encoded in the formula be-
ing checked, and, alternatively, with the environment automatically
synthesized from ¢s.

The synthesis procedure (described in detail in [54]) uses a tableau-
like method similar to the one used in SPIN for generating never claims
to check LTL properties. The method takes an LTL formula represent-
ing the environment assumption, and constructs an automaton that
can be represented as a graph (and automatically translated to Ada,
Java, or Promela). The graph is a maximal model of the environment
assumption, meaning that for every computation which satisfies the
assumption, there is a corresponding path in the graph, and that every
finite path in the graph is the prefix of some computation that satisfies
the assumption.

The state graph for the synthesized environment from assumption
¢2 is shown in Figure 10. The labels on the edges denote the allowed
interface operations such as rendezvous between environment and ker-
nel, together with the code to be executed for each rendezvous. For
example, the label systemTickInterrupt is a place-holder for:

Tick2Sched[clock==0] !tickintrpt,0 -> clock=uSecsInFastestPeriod;
Node 0 designates the initial state. The corresponding Promela code is

a straight forward implementation of this state machine with additions
to update clock and Remaining time as in U_TIMER.
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Verification was done using Spin version 3.2.5a on a SUN ULTRA 60
(360 MHz) with 1G of RAM. following table gives data for each of the
model checking runs (using U_TIMER, S_TIMER and the original TIMER).
The table shows the total of user and system time in seconds to convert
LTL formulas to the Spin “never claim” format (fjeyer), the time to
execute the model checker (fp;¢), the memory used in verification in
Mbytes (mem) and the number of steps in the shortest error trace.

Environment trever tve mem  error trace depth

U_TIMER 1:49.97 1.3 3.633 1988
S_TIMER 0.1 0.1  2.609 1554
TIMER 0.1 0.1  2.609 1619

In conformance with the data from [54], synthesized environments
enable faster model checking and better use of memory. The time for
generating the never claim with the assumption encoded into the for-
mula to be checked is the dominant time. The time for environment
synthesis is negligible, especially considering synthesized environments
can be reused across verification runs.

We repeated the experiment with a new version of the DEOS kernel,
with the error corrected by the developers (and with the abstraction
described in Section 4). Spin exhaustively searched the state space and
reported the following data:

Environment tve mem

U_TIMER 1:38.1 102.289
S_TIMER 8.8 23.172
TIMER 2.9 12.996

The environments were precise enough so that no errors, real or spu-
rious, were reported. The original, hand-coded environment and the
synthesized environment exhibit relatively similar uses of time and
memory, compare against the filtered property.

3.5.4. Conclusions

This section shows that filter-based environment generation is viable
in practice. The effort involved was relatively small, taking one person-
week to accomplish, compared to two person-months for the original
environment. The environment was built without looking at the code
for the kernel; only the code for the original environment was inspected.
This second experiment did have the advantage of looking at code that
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was previously analyzed. The error was known, and also the configura-
tion of the system (i.e. at least two user threads are necessary in order
to find the error). However, the environment assumptions were not gen-
erated from this previous experience; they were derived systematically
from the spurious counterexamples found by Spin.

The most striking advantage of the filter-based approach is the
structured way in which environment assumptions are encoded. During
the original environment development, assumptions were discovered in
much the same way as in the filter-based approach, but these assump-
tions were just hard-coded into the environment model in an ad-hoc
fashion. With the filter based approach the assumptions were first intro-
duced as LTL (filter) properties, and only if the implementation in the
actual code was straight-forward, were they added to the code. An en-
vironment was also synthesized directly from the LTL filter properties.
The synthesized environment performed very similar to the hand-build
environment.

In the following section we address the other major barrier to the
adoption of model checking in program analysis: the need for auto-
mated, or semi-automated, abstraction techniques to reduce the size of
the state space that must be analyzed.

4. Program Abstraction for Verification

In the original experiment, the error was detected without introducing
abstractions within the DEOS code itself (the abstraction was in the
environment). However, it was not possible to guarantee of finding
the error or to verify the corrected code. Therefore, abstractions for
some parts of the DEOS code were investigated to permit more exten-
sive verification. This section provides an overview of abstraction for
program verification, describes predicate abstraction and presents ex-
tensions to predicate abstraction to support object-oriented programs.
The application of predicate abstraction to DEOS to enable exhaustive
verification is then described.

4.1. PROGRAM ABSTRACTION

Abstractions are used to reduce the size of a program’s state-space
in an attempt to overcome the memory limitations of model checking
algorithms. Abstractions can be characterized in terms of their effect
on a property (or class of properties) being verified, or the way that
they approximate the behavior of the system being verified.

An abstraction is weakly preserving if a set of properties that are true
in the abstract system has corresponding properties in the concrete
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system that are also true. An abstraction is strongly preserving if a
set of properties with truth-values either true or false in the abstract
system has corresponding properties in the concrete system with the
same truth-values. An abstraction is often designed to preserve a single
specific property, making strong preservation useful in practice. Nev-
ertheless, abstractions that are only weakly preserving can be much
more aggressive in reducing the state-space and therefore are more
popular for verification purposes. In practice, the role of verification is
often to support rapid and effective debugging during development and
evolution. Therefore, we define an abstraction as error preserving if a
set of properties that are false in the abstract system has corresponding
properties in the concrete system that are also false.

A second way to classify abstractions is with respect to the relation-
ship between the behavior of the abstract system and the concrete sys-
tem. For a reactive software system, program behavior can be defined as
the set of possible program execution paths®, where an execution path
is an infinite sequence of program states. Ouer-approzimation occurs
when more behaviors are present in the abstract system than were in
the original “concrete” system. The drawback of over-approximation is
that it may add behaviors that invalidate a property in the abstract
system that is true in the concrete system. Under-approximation oc-
curs when behaviors are removed when going from the concrete to the
abstract system. Program testing can be viewed as analysis of an under-
approximation: a set of test cases (or a reactive test driver) leads the
system through a subset of the possible program executions.

To combine abstraction with model checking, either an abstract
state graph is generated during model checking by executing the con-
crete transitions over abstracted data, or the concrete transitions are
abstracted statically (i.e. before model checking) and the resulting ab-
stract transition system is checked. There has been work in automating
both approaches by using decision procedures, either during state gen-
eration [25, 60] or statically [20, 61]. In the static approach, where
abstract transitions are generated, the number of calls to the decision
procedures is bound by the size (lines of code) of the concrete system.
Because the dynamic approach uses the decision procedures as the state
space is explored, it will in most cases require many more calls to the
decision procedures than the static approach. However, the dynamic ap-
proach can be more precise since it uses information about the current
abstract state to determine the abstract transition. This information
can be used to eliminate potential next states that cannot be eliminated
statically, thus providing a more precise over-approximation. In the

5 Also called traces or computations.
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DEOS study, the static approach was used because it appeared more
likely to scale to large programs. The precision problem is addressed by
generalizing the statically generated transitions to be defined in terms
of multiple abstract predicates, increasing the amount of information
about the abstract state that can be used to define the transitions [61].

4.2. PREDICATE ABSTRACTION

Predicate abstraction, introduced by Graf and Saidi [33], is a form of
over-approximation which forms the basis of a number of automated
abstraction tools [25, 60, 61, 3, 39]. The basic idea of predicate ab-
straction is to replace a concrete variable with a boolean variable that
evaluates to a given boolean formula (a predicate) over the original
variable. This concept is easily extended to handle multiple predicates
and, more interestingly, predicates over multiple variables. For example,
consider a program with two integer variables, x and y, which can grow
infinitely. Since this program will have an infinite state-space, model
checking cannot be complete in general. However, closer inspection may
reveal that the only relationship of interest between the two variables
is whether or not they are equal. We can then define a predicate to
represent this relationship, B = z = y, and use it to construct an
abstract transition system as follows:

— wherever the condition z = y appears in the program we replace
it with the condition B = true and

— whenever there is an operation involving x or y we replace it with
an operation changing the value of B appropriately.

When generating the abstract transition system, over-approximation
can occur when not enough information is available to calculate a de-
terministic next action or state in the abstract system. For example,
the operation x := x + 1 leads to over-approximation in the abstract
transition system (by introducing nondeterminism) in the case where
B is false (z # y) because the concrete result depends upon informa-
tion that is not available in the abstract state (specifically, whether
y = = — 1). The abstract transition system for this example showing
the effects of the concrete operationsy := xand x := x + 1 is shown
in Figure 11.

System invariants can be used to construct more precise abstrac-
tions (i.e. less nondeterminism and over-approximation). For example,
consider the example program in Figure 12, which is an extremely sim-
plified version of part of DEOS. In this program, x is first incremented
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Y=z z=z+1
C\ r:=z+1
/_\ @
Y=z
\_/(
r:=x+1

Figure 11. Abstract transition system for B=z =y

int x,y,z = 0;

while(true) {
while(+)
X =X + 1;

N
n

N
1

[y

Figure 12. Simple example program

one or more times® and then y is updated with the value of x. This
program has the property that z will always be greater than or equal
to zero, because the conditional will always execute. This program will
be difficult to model check because x and y increment indefinitely.
Figure 13a shows an abstract version of the program based on the
predicate B = x = y, with operations as shown in Figure 11. The result
of executing the abstract code corresponding to multiple increments of
x (the while(+) loop) is that B will be either true or false. After
exiting this loop, if B is true, then the conditional will be skipped,
and z can be decremented below zero. Therefore, this abstract program
does not preserve the property z > 0. However, we can use the program
invariant = > y to refine the abstraction. This invariant can be used to
eliminate the case where £ = y — 1 and allow the concrete transition
x := x + 1 to always be abstracted to B := false. That is, because

5 The shorthand while(+) indicates the loop will non-deterministically execute
one or more times.
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bool B = true;

. bool B = true;
int z = 0;

int z = 0;

while(true) { while(true) {

while(+) { )
if (B = true) then B := false Wh;1?£+laise'
else B := true or false; } ' ’

if (B = false) { if (B = false) {
B := true: B := true;

) ' !

Z =z - 1 z =z - 1;

) ’ I

(a) (b)

Figure 13. Example program abstracted using criterion z = y (a) alone and (b)
with invariant z < y

x is always greater than or equal to y, x being incremented can never
result in x and y being equal. The refined program, shown in Figure 13b,
maintains the invariant on z.

This example illustrates a special case in predicate abstraction: when
the predicate abstraction does not introduce nondeterminism, over-
approximation does not occur and strong preservation is achieved [60].
In the next section we show that a specific class of infinite state pro-
grams, occurring frequently in practice, can be transformed to finite
state programs by a predicate abstraction that does not introduce
nondeterminism.

4.3. ABSTRACTIONS FOR OBJECT-ORIENTED PROGRAMS

Most work on abstraction has been on simple modeling or programming
languages as both the source and target languages for abstraction.
There has been recent work to apply these techniques to C programs [42,
3]. However, to apply these techniques to object-oriented systems the
following issues must be addressed:

— what kinds of abstractions will be appropriate or necessary for
object-oriented programs

— what additional complexity is introduced into the generated ab-
stract transition system (or program) to support these abstrac-
tions.

The types of entities that can be abstracted in object-oriented soft-
ware are variables, classes and relationships between classes. Relation-
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Company ¢ cmploys * Person

Employment

hire_date

Figure 14. Using Association Classes to Model Association Attributes

ships between classes include relationships between variables or control
labels in different classes, and the multiplicity and variability of asso-
ciations between classes. The behavior of variables and classes can be
both under-approximated and over-approximated. Over-approximation
of classes can be achieved by extending abstract interpretation tech-
niques for individual variables to object-oriented languages, as imple-
mented in the Bandera toolkit [22]. In Bandera, these techniques have
been extended to classes by component-wise abstraction of each field
in a class [29]. Under-approximation techniques for verifying object-
oriented models are primarily concerned with limiting the number of
objects instantiated for a class [44].

These existing abstraction techniques do not support abstraction
of relationship between classes. We have developed a technique for
extending predicate abstraction to include predicates relating variables
from different classes [69]. A problem encountered during that work
was determining how to maintain the object-oriented structure of the
program when adding abstract predicate variables. Here, we extend
our previous approach to support abstraction of more general struc-
tural relationships between classes, or interclass abstractions, using
associations.

In object-oriented modeling and design, associations are used to rep-
resent structural relationships between classes [8]. For example, the fact
that a Person works for a Company can be modeled by an association
called “employs” between the class Person and the class Company. If
we wish to include a hire date in the model, and there is a many-to-
many relationship between companies and people it is not clear where
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to put this attribute. To solve this problem an association class can be
affiliated with the association, as shown in Figure 14 [8].

To illustrate how program abstractions can be structured around
associations and association classes, we use a simplified example from
DEOS. The target of our abstraction is a general pattern where a
counter is used to indicate that an event has occurred. This is a form
of abstract time-stamping that is common in concurrent programming.
This pattern consists of an Event class containing a counter and any
number of Listener classes which monitor the occurrence of events by
keeping a local copy of the event counter and comparing the two values
to determine if the event has occurred. A class diagram representing
this pattern is shown in Figure 15a. The Event class contains code
that increments the counter (7T : count++), and the Listener class
contains statements for comparing the local and the Event counter
(T} : count == last_count) as well as setting the local counter to the
Event counter (7% : last_count := count).

During model checking, this pattern leads to a large state space be-
cause the counters increment indefinitely. However, the behavior of the
Listener (and hence the system) is only determined by whether these
two variables are equal, not by exact values. Therefore, a variable, p,
defined by the abstract predicate P = count == last_count, is intro-
duced. To represent this abstraction, an association class is introduced
that encapsulates the new variable, as shown in Figure 15b.

The abstract statements that modify the abstract variable become:
To : p := false, 71 : p and Ty : p := true. This is a precise ab-
straction, since similar to the example in the previous section, there
is an invariant count > last_count, that removes the possible nonde-
terminism when count++ is abstracted. In practice, count rolls over
(say at MAXINT) and this may seem to invalidate our abstraction.
However, the correct behavior of the real system implementation also
requires the assumption that count does not roll over and catch up
with last_count. Therefore, this abstraction does not introduce any
stronger assumptions on the system than those imposed by the im-
plementation, and is therefore a strongly preserving abstraction of the
code.

Association classes can be realized by replacing the association class
with a standard class that is associated with the original two classes,
and removing the original association, as shown in Figure 15c¢ [11].
This approach leads to the creation of a new object to represent each
abstracted association. In the case of a single predicate abstraction the
result would be an object that encapsulates only one bit. To eliminate
this overhead, a slightly different approach to realizing association
classes for predicates was used: the new class encapsulates a two di-
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Figure 15. Using Associations to Represent Interclass Abstractions
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Figure 16. Realizing Interclass Abstractions for Single Predicates

mensional array of bits representing the state of the entire abstract
association, as shown in Figure 16, where n and m are the number of
Events and Listeners in the system [69] (allowing the more general case
of multiple events per listener).

4.4. ABSTRACTING DEOS

In order to allow exhaustive verification of the DEOS model, it was
necessary to apply abstraction to the program. The goal was to in-
troduce abstraction carefully and selectively to study how abstraction
is applied during verification. First, a simple, ad-hoc abstraction was
introduced into the system. Then, this abstraction was refined using
predicate abstraction.

4.4.1. Ad-hoc Abstraction

The initial abstraction was guided by our intuition that the system’s
behavior is cyclic in nature: at the end of the longest scheduling period,
the system should return to a state where all threads are available to
be scheduled with all of their budget available. However, simulations
showed extremely long traces indicating that some data was being car-
ried over these longest period boundaries. Specifically, the itsPeriodId
data member for the Start0fPeriodEvent class is incremented every
time the end of the corresponding period was reached. In addition,
itsLastExecution, in the Thread class, also increases monotonically
as it is periodically assigned the value of the itsPeriodId counter
for the Start0fPeriodEvent corresponding to the thread’s scheduling
period.
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void StartOfPeriodEvent::pulseEvent( DWORD systemTickCount ) {
countDown = countDown - 1;
if ( countDown == 0 ) {
itsPeriodId = itsPeriodId + 1;

}

void Thread::startChargingCPUTime() {
// Cache current period for multiple uses here.
periodIdentification cp = itsPeriodicEvent->currentPeriod();

// Has this thread run in this period?
if ( cp == itsLastExecution ) {
// Not a new period. Use whatever budget is remaining.

}
else {
// New period, get fresh budgets.
// Record that we have run in this period.
itsLastExecution = cp;
}
}

Figure 17. Slice for itsPeriodId

The sections of the DEOS kernel code which involve itsPeriodId
and itsLastExecution is shown in Figure 17. These variables are
used to determine whether or not a thread has executed in the cur-
rent period; If it has not, then its budget can be safely reset. When
a thread starts running, itsLastExecution is assigned the value of
itsPeriodId (the return value of currentPeriod(), stored in the
temporary variable cp) whenever the two are not equal. Therefore,
itsLastExecution will always increase by ezactly one if a thread is
scheduled every period. In this case, both variable types can be replaced
with much smaller ranges (namely bits) and still maintain the exact
behavior of the system.” The DEOS developers assured us that the
version of DEOS being considered did, in fact, ensure that a thread
is scheduled every period. Therefore, we changed itsPeriodId to be
incremented modulo 2. This change allowed exhaustive analysis of the
entire state space of both the defective and corrected version of DEOS.

" The two variables are either equal or different by one, hence only one bit is
required to represent the range of possible relationship between the variables.
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4.4.2. Predicate Abstraction

In the full DEOS system there are synchronization mechanisms, such
as events and semaphores, that may cause threads to wait for arbitrary
amounts of time (which is not possible in our slice of the system). In
this case, our assumption that a thread will execute every period, and
consequently the preservation property of the abstraction, breaks down.
Therefore, a more general solution was required if the abstraction was
to be used in a broader verification context.

It was (eventually) recognized that this part of DEOS is an instantia-
tion of the abstract time-stamping technique, introduced in Section 4.3,
where Start0fPeriodEvent is the Event and the Thread classes are the
Listeners. The Thread classes check whether a new period has been
entered by comparing the itsPeriodId of the current period (analo-
gous to count) with their own itsLastExecution field (analogous to
last_count). The association based predicate abstraction from Sec-
tion 4.3 was then used to do a precise abstraction of the DEOS kernel
code and combined with the under-approximating timer environment.

It is interesting to note that the abstracted algorithm could not be
used as the actual DEOS implementation because, to enable predictive
scheduling, execution time spent inside the kernel must be bounded.
Updating the array of event bits is proportational to the number of
threads in the system, which is not bounded.

5. Related Work

5.1. CONTINUED WORK ON DEOS

After the original experiment, the model was expanded to analyze slack-
scheduling, which allows threads to request “slack” time not used by
other threads. With no prior knowledge of Promela or Spin, a Honeywell
developer was able to translate and insert the slack-scheduling code into
the Promela model within one day. On the first model checking run after
making these changes, Spin discovered an error in the new code. The
developer had translated a slightly outdated version of the DEOS code,
and the error uncovered by Spin had been discovered by Honeywell
the previous week. The developer reported that it originally took 3
days to discover what was wrong, whereas with the model checker it
was easy to replay and understand the error trace. The original DEOS
model has been expanded to be of high fidelity with the current DEOS
implementation and is updated with major code updates.

The initial work on DEOS clearly indicated that hand translation
was not a practical approach. This motivated the development of Java
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PathFinder (JPF) [68], a model checker that analyzes Java programs
directly. Subsequently, we translated DEOS from C++ to Java - an
afternoon’s work - and have used this version to evaluate JPF and
Bandera. Using Bandera, backwards dependency analysis from the time
partitioning assertion identified itsPeriodId (Section 4.4) as a candi-
date field for abstraction. A range abstraction, where values 0 and 1
are concrete and all negative numbers and all numbers greater than 1
map to abstract values, was used to abstract this field. Type inference
then determined that two other fields (itsLastExecution and cp from
Figure 17) also required being abstracted to the range type. Although
this abstraction introduced many spurious errors, JPF was directed
to only search for “real” counterexamples to force the abstraction to
be precise, and the time-partitioning error was found within a few
seconds [55, 29, 34].

5.2. RELATED RESEARCH

Since 1997, there has been an increasing amount of research applying
model checking to analyze programs written in popular programming
languages. Previously, the program analysis was done by manual model
construction before model checking.

The first system to automatically analyze programs with a model
checker was Verisoft [32]. Verisoft addresses the state space problem by
simply not storing states. It therefore relies on scheduler control and
guided search to achieve benefits over testing. Verisoft has been success-
fully applied in analyzing a number of large systems (see Verisoft paper
in this Special issue). A similar state-less model checker that analyzes
Java programs was later developed by Stoller [65]. We partially address
the state-space problem in DEOS by using under-approximation in the
timer model. In this case we are operating similar to stateless model
checking, where there is an implicit assumption that it is not necessary
to cover all states of the system to have a marked improvement over
testing.

Several program model checkers are based on automated model-
extraction, where the program is translated into the input notation of
an existing model checker. Bandera [22] translates Java programs to
a number of back-end model checkers, including Spin [40], dSpin [27],
SMV [48], Bogor [57], and JPF®. Bandera also supports abstraction by
transforming the Java programs to “abstract” Java programs which
are then translated. JCAT [26] translates Java to Spin and dSpin.
FeaVer [42] translates C code to Spin. SLAM [3] translates C code to

& JPF works on bytecode classfiles, hence translation here means compile it with
a Java compiler
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boolean programs as input for the Bebop model checker [5]. FeaVer and
SLAM incorporate abstraction methods into the translation process.
FeaVer’s abstraction is semi-automated, while SLAM uses predicate
abstraction [3] and abstraction refinement [4] to automated abstraction
during model checking.

To support experimentation with abstractions for object-oriented
programs, a prototype tool was developed to automatically generate
abstracted programs written in Java. Given a Java program and an
abstraction criteria, the tool generates an abstract Java program in
terms of new abstract variables and remaining concrete variables. The
resulting Java program, implementing the abstract transition system,
can be tested or analyzed using a Java model checker. The tool is a
prototype and is not advanced enough to abstract a Java version of
DEOS. However, it was used to abstract part of a Java version of the
Remote Agent software, allowing successful model checking [69].

6. Conclusions and Future Work

In this experiment, the Spin model checker was used successfully to re-
discover a subtle error in the time partitioning of the DEOS scheduling
kernel that was not uncovered during extensive testing. The initial goal
of the study was to show that model checking can augment structural
coverage based testing, such as the 100% MC/DC coverage required
by the FAA certification process for avionics software. The experiment
showed that model checking, augmented by minimal abstraction, could
find errors in real programs that MC/DC testing did not. Additional
contributions of this paper were to show that filter-based environment
generation and predicate abstraction for object-oriented programs can
be used effectively to reduce the effort of applying model checking to
real programs.

We continue to work on extending the applicability of predicate ab-
straction and integrating it with related abstraction techniques [22, 29].
We have also recently augmented the Java PathFinder model checker
with the capability to do analysis by symbolic execution [46]. This
allows the model checker to analyze programs with symbolic data,
i.e. where variables do not have concrete values, by using constraint
solving to eliminate infeasible paths. This generalizes many abstraction
approaches, but comes with several research issues, such as efficient
application of widening [23].

In the area of environment generation, the process must be fur-
ther structured and automated to reduce the cost of applying model
checking. Although our results indicate that a filter-based approach
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is beneficial, the process of discovering new filters to constrain the
environment must be improved. There is a close relationship between
environment generation in the filter-based approach and abstraction
refinement as used during conservative abstractions (e.g. predicate ab-
straction as discussed in the next section): in both cases one starts with
an over-approximation of system/environment behaviors and guided
by counterexamples one eventually creates a sufficiently precise sys-
tem/environment for analysis. Automating this process has received
a great deal of attention in abstraction refinement [3, 39, 4, 17], but
similar approaches in environment generation are still lacking. Due to
the close relationship between these two areas, recent improvements
in abstraction refinement should be investigated in the context of en-
vironment generation. We have also begun to investigate methods for
automatically synthesizing environments of software components, such
that the components satisfy given properties [19].

Our view of environment generation is from the perspective of a
stand-alone verification activity, with people, possibly other than the
software developers, doing the analysis by model checking. However, it
can also be viewed from the perspective of integrating model checking
with traditional testing activities. In this case, the environment could
be constructed by modifying an existing test-harness. However, the
technique of using nondeterminism to over-approximate the environ-
ment is a paradigm shift from traditional testing which is based on
explicit test sequences. Our experience with allowing developers to
create environments for model checking is that they are inclined to
use the same environment as for testing, and hence do not exploit the
ability of the model checker to automatically explore the environment
input/response choices in addition to the scheduling choices. Therefore,
for model checking to work in practice, it may be necessary to develop
methods for generalizing or converting test drivers or test cases into
verification environments.
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