
Verifying Time Partitioning in the DEOS S
hedulingKernelJohn Penix (john.penix�nasa.gov)Computational S
ien
es Division, NASA Ames Resear
h CenterWillem Visser (wvisser�email.ar
.nasa.gov) and SeungJoon ParkResear
h Institute for Advan
ed Computer S
ien
e, NASA Ames Resear
h CenterCorina P�as�areanu (p
orina�email.ar
.nasa.gov)Kestrel Te
hnologies, NASA Ames Resear
h CenterEri
 Engstrom, Aaron Larson and Ni
holas WeiningerHoneywell Te
hnology CenterAbstra
t.This paper des
ribes an experiment to use the Spin model
he
king system tosupport automated veri�
ation of time partitioning in the Honeywell DEOS real-time s
heduling kernel. The goal of the experiment was to investigate whether model
he
king with minimal abstra
tion
ould be used to �nd a subtle implementationerror that was originally dis
overed and �xed during the standard formal reviewpro
ess. The experiment involved translating a
ore sli
e of the DEOS s
hedulingkernel from C++ into Promela,
onstru
ting an abstra
t \test-driver" environmentand
arefully introdu
ing several abstra
tions into the system to support veri�
ation.Attempted veri�
ation of several properties related to time-partitioning led to theredis
overy of the known error in the implementation.The
ase study indi
ated several limitations in existing tools to support model
he
king of software. The most diÆ
ult task in the original DEOS experimentwas
onstru
ting an adequate environment to
lose the system for veri�
ation.The �delity of the environment was of
ru
ial importan
e for a
hieving meaningfulresults during model
he
king. In this paper, we des
ribe the initial environmentmodeling e�ort and a follow-on experiment with using semi-automated environmentgeneration methods. Program abstra
tion te
hniques were also
riti
al for enablingveri�
ation of DEOS. We des
ribe an implementation s
heme for predi
ate abstra
-tion, an approa
h based on abstra
t interpretation, whi
h was developed to supportDEOS veri�
ation. 1. Introdu
tionThe
ost of software aspe
ts of
ight
erti�
ation for avioni
s systemshas grown signi�
antly in re
ent years due to the in
reased use and
omplexity of software. This software provides advan
ed
ontrol,
om-muni
ation and safety features at a redu
ed
ost and weight. However,veri�
ation and
erti�
ation of software for high levels of assuran
eis extremely expensive due to the manual e�ort needed to supportthe extensive testing required by the Federal Aviation Administration

 2004 Kluwer A
ademi
 Publishers. Printed in the Netherlands.
fmsd.tex; 26/01/2004; 12:21; p.1

2(FAA) [37℄. Furthermore, the diÆ
ulty of veri�
ation and
erti�
ationwill
ontinue to in
rease due to an industry trend toward IntegrateModular Avioni
s (IMA) to further redu
e
osts. IMA allows multi-ple appli
ations of varying
riti
ality levels to exe
ute on a shared
omputing resour
e [59℄. Part of the
ost savings strategy of IMA isthat software appli
ations will be individually
erti�ed allowing themto be mix-and-mat
hed with avioni
s platforms. This is
urrently notsupported by the FAA
erti�
ation pro
ess whi
h takes the more
on-servative approa
h of
ertifying ea
h platform
on�guration. However,this approa
h is well advised be
ause it is well known that testing isinadequate to assure that arbitrary
ombinations of appli
ations willoperate together safely [12℄.Redu
ing the manual e�ort required to support
erti�
ation whilein
reasing the levels of assuran
e will require signi�
ant advan
es insoftware veri�
ation and
erti�
ation te
hnology. We have been inves-tigating the use of model
he
king to support the analysis of
riti
alavioni
s software systems. Model
he
king is an algorithmi
 formalveri�
ation te
hnique for �nite-state
on
urrent systems [18, 56℄. Orig-inally applied to hardware veri�
ation, model
he
king has be
omea promising te
hnique for analyzing software requirements spe
i�
a-tions [2, 14, 15, 38℄ and software design models [1, 24, 40℄. One reasonfor this trend is that, at high levels of abstra
tion, the s
alabilitylimitations of model
he
king
an be avoided while providing usefulinformation about a system. This is
onvenient be
ause early life-
y
leerrors are expensive to
orre
t later [7℄ and
an often lead to safety
riti
al failures [47℄. However, some software errors
annot be dis
ov-ered in the requirements and design stages. This may be be
ause thedetails of the system are not suÆ
iently elaborated to reveal prob-lems until implementation, or simply be
ause errors are made duringimplementation. NASA has re
ently su�ered from a number of soft-ware implementation problems, in
luding a missing
riti
al se
tion that
aused a deadlo
k in the Deep Spa
e 1 Remote Agent
ontrol sys-tem [35℄ and a variable that was not re-initialized after a spurioussensor signal that led to the loss of the Mars Polar Lander [45℄. Theseerrors are symptoms of the fa
t that software has be
ome a pervasive
omponent of aerospa
e systems and is therefore more
omplex anddiÆ
ult to design and validate.The state of the art for �nding errors at the implementation levelare stati
 analysis [53, 64, 31, 28℄ and testing [6, 13℄. However, testingonly provides a small degree of behavioral
overage of a system, es-pe
ially for
on
urrent systems, where testing has limited
ontrol overthread s
heduling [70, 43℄. Stati
 analysis has better su

ess dealingwith
on
urren
y, but it
an be
hallenging to obtain a

urate re-
fmsd.tex; 26/01/2004; 12:21; p.2

3sults [49℄. Model
he
king, however, has the potential to provide moreextensive behavioral
overage in two ways. First, the model
he
ker
anevaluate every possible interleaving of threads in the system. Se
ond,model
he
king
an use nondeterministi
 environment models to
losea system for veri�
ation. This enables the model
he
ker to generateall
ombinations of environmental behaviors as the
losed system is
he
ked. While in pra
ti
e it is not possible to exhaustively sear
hthis spa
e of behaviors, it provides a
omprehensive starting point forsystemati
 redu
tion and abstra
tion of the state spa
e.This paper des
ribes the analysis of a time partitioning property ofHoneywell's Dynami
 Enfor
ement Operating System (DEOS) s
hedul-ing kernel, using the SPIN model
he
ker. The goal of this experimentwas to investigate whether model
he
king, supported by minimal, well-de�ned abstra
tions,
ould be used to �nd a subtle implementationerror that was originally dis
overed and �xed during the standard for-mal review pro
ess. The analysis was done on a model of the systemvery similar to the original
ode: there is essentially a 1-to-1 map-ping from statements in the original
ode to statements in the model.Therefore, this work
an be
lassi�ed as one of the �rst attempts atprogram model
he
king (or software model
he
king) [3, 22, 39, 42, 68℄.The philosophy of program model
he
king is that programs written inpopular programming languages should be model
he
ked dire
tly in a(semi-)automated fashion. The entire pro
ess used in the investigationis shown in Figure 1. To best understand the feasibility and appli
abil-ity of this approa
h, the pro
ess of translating the sour
e
ode into amodel
he
king language was separated from the pro
ess of abstra
tingthe
ode to permit tra
table veri�
ation. This allowed us to assess thetype and extent of abstra
tion that might be required to apply model
he
king dire
tly to sour
e
ode.During this investigation, we addressed several
hallenges of model
he
king
omplex software systems. First, in order to analyze the kernel,it was
ompleted with an environment that adequately models userthreads running on the kernel, the hardware
lo
k and the systemtimer. Se
ond, the state spa
e of the kernel is very large (exhaust-ing 4 Gigabytes of memory during veri�
ation, without
ompletion),so abstra
tion was required to make veri�
ation tra
table. The main
ontribution of this paper is to demonstrate that model
he
king
anbe used to lo
ate subtle errors in
omplex software systems. A se
ond
ontribution is to motivate and demonstrate how tool support for en-vironment generation and data abstra
tion
an make these te
hniquesmore
ost-e�e
tive so that they may be used in pra
ti
e.The most diÆ
ult task in the original DEOS experiment (Se
tion 2)was
onstru
ting an adequate environment to
lose the system for ver-
fmsd.tex; 26/01/2004; 12:21; p.3

4
Abstraction
Predicate

Model Checker
SPIN Counterexample

Analysis

DEOS Kernel

Promela Model

Completed/Abstracted Model

Yes

Property Holds

No

Environment
Modeling

Refine Model

DEOS Error

Property

Translation

Figure 1. Methodology used to investigate sour
e
ode model
he
king.i�
ation. The �delity of the environment turned out to be of
ru
ialimportan
e for a
hieving meaningful results during model
he
king.To redu
e the size of the state spa
e, the environment model used forveri�
ation
ontains a signi�
ant amount of abstra
tion with respe
tto the modeling of time. In this paper, we des
ribe the initial environ-ment modeling e�ort (Se
tion 3) and a follow-on experiment with usingsemi-automated environment generation methods (Se
tion 3.5).Systemati
 abstra
tion also played a
riti
al role in making theveri�
ation of DEOS tra
table in pra
ti
e. In this paper, we des
ribean extension to predi
ate abstra
tion, an abstra
tion approa
h basedon abstra
t interpretation, to allow it to be used on this
ase study.Se
tion 4 provides an overview of the use of abstra
tion to supportveri�
ation and introdu
es predi
ate abstra
tion. The existing workon predi
ate abstra
tion has been in the
ontext of simple modelingand programming languages. The main
ontribution of our work is theextension of existing abstra
t frameworks to support abstra
tion ofrelationships between
lasses, or inter
lass abstra
tions. We show howa spe
i�
 in�nite state programming pattern that o

urs frequently inpra
ti
e
an be transformed to a �nite state program using predi
ate
fmsd.tex; 26/01/2004; 12:21; p.4

5abstra
tion. We then demonstrate how this approa
h was applied toDEOS to allow tra
table veri�
ation (Se
tion 4.4).Sin
e our initial e�ort to analyze DEOS, a number of subsequentstudies, by ourselves and others, have been performed on DEOS with avariety of di�erent approa
hes. In Se
tion 5 we highlight these a
tivitiesand also look at related work in the area of program analysis via model
he
king. Be
ause the problem of extra
ting models from programs hasre
eived mu
h attention [21, 36, 22, 3, 41, 68, 65℄, we do not presentthe details of our translation [50℄ from C++ to Promela, the inputlanguage of SPIN. Finally, Se
tion 6
ontains
on
lusions and futureresear
h dire
tions.2. Overview of Original DEOS ExperimentFor
erti�
ation of
riti
al
ight software, the FAA requires that fun
-tional software testing a
hieve 100%
overage with a stru
tural
overagemeasure
alled Modi�ed Condition/De
ision Coverage (MC/DC) [58,16℄. Although MC/DC
overage is quite extensive and expensive toa
hieve, Honeywell was still
on
erned that it would not be suÆ
ient toassure
omplex properties in integrated modular avioni
s ar
hite
tures.This
on
ern was based on their experien
e developing and testing theDEOS operating system. During DEOS development, a subtle error inthe time partitioning implementation was not dis
overed by extensivetesting.To address this
on
ern, we performed an experiment to determinewhether model
he
king, with only minimal abstra
tion,
ould providea systemati
 method for dis
overing this error. Honeywell provided anoverview of the basi
 fun
tionality of DEOS and a sli
e of the operatingsystem
ontaining the budgeting and s
heduling algorithms. The NASAteam then applied model
he
king without knowing any details of theDEOS implementation or the error. The sour
e
ode that was analyzedwas 1500 of the approximately 10,000 lines of C++
ode whi
h
om-promise the DEOS kernel. This se
tion introdu
es DEOS and des
ribesthe veri�
ation experiment.2.1. DEOSDEOS is a portable mi
ro-kernel-based real-time operating system usedin Honeywell's Primus Epi
 avioni
s produ
t line. DEOS supports
ex-ible, integrated modular avioni
s appli
ations by providing both spa
epartitioning at the pro
ess level, and time partitioning at the threadlevel. Spa
e partitioning ensures that no pro
ess
an modify the mem-ory of another pro
ess without authorization, while time partitioning
fmsd.tex; 26/01/2004; 12:21; p.5

6
0 4020

5

preempt timerpreempt

5
timer timer

timer
5

5
timer

15
u1: 20/60

u2: 20/60

m: 5/20

idle

preempt

1010

5

60Figure 2. Thread S
heduling in DEOSensures that a thread's a

ess to its CPU time budget
annot be im-paired by the a
tions of any other thread. The
ombination of spa
eand time partitioning makes it possible for appli
ations of di�erent
riti
alities to run on the same platform at the same time, while ensur-ing that low-
riti
ality appli
ations do not interfere with the operationof high-
riti
ality appli
ations [59℄. This noninterferen
e guarantee re-du
es system veri�
ation and maintenan
e
osts by enabling a singleappli
ation to be
hanged and re-veri�ed without re-verifying all of theother appli
ations in the system. DEOS itself is
erti�ed to DO-178BLevel A, the highest possible level of safety-
riti
al
erti�
ation.The DEOS s
heduler enfor
es time partitioning using a Rate Mono-toni
 Analysis (RMA) s
heduling poli
y [62℄. RMA is a general ap-proa
h for assuring that various system laten
y requirements
an bemet during real-time thread s
heduling. The basi
 me
hanism in RMAis the assignment of high-priorities to threads with the most stringentreal-time requirements. Figure 2 shows an example DEOS s
hedulingtime line. In the example, the system
ontains a main thread, two userthreads (
hildren of the main thread) and the spe
ial idle thread whi
hruns when no other threads are s
hedulable. The main thread runs inthe fastest period, and therefore also at the highest priority, with a bud-get of 5 out of 20 time units. The user threads run in a period 3 times aslong as the main thread, ea
h with a budget of 20/60 time units. In theexample, all of the threads are s
heduled and appropriately allo
atedtheir requested budget within their respe
tive periods. Threads areinterrupted when they use all of their budget (timer interrupt) or whena thread of higher priority be
omes s
hedulable (preemption). The idlethread runs at the end of the sequen
e to take up the sla
k time in thesystem that is not requested by any thread.Many real-time operating systems are at least partially stati
allys
heduled, whi
h makes it relatively easy to analyze the possible ex-e
ution sequen
es in the system. DEOS, however, supports fully dy-nami

reation and deletion of threads and pro
esses at runtime. Whenthreads are
reated within a pro
ess, they re
eive some budget from
fmsd.tex; 26/01/2004; 12:21; p.6

7the main thread for that pro
ess. When they are deleted, the bud-get is returned to the main thread. DEOS also provides a ri
h setof thread syn
hronization and inter-pro
ess
ommuni
ation primitives.As a result of this
omplexity, the number of possible interleavingsof program exe
ution in DEOS is enormous, and
al
ulations su
h ass
hedulability analyses must often be made at runtime. This makessystemati
 veri�
ation of time partitioning a diÆ
ult task.2.2. Model Che
king DEOSBe
ause there are no model
he
kers that take C++ as input, theDEOS
ode had to be translated into the input notation for a model
he
ker. A methodi
al, 1-to-1 mapping between the
ode and the model
he
ker input was used to separate abstra
tion from translation to more
learly understand what abstra
tions were ne
essary. We
hose theSpin model
he
ker [40℄ sin
e Promela, the input language for Spin,is the
losest model
he
king language to C++. Promela is a pro
essbased imperative language supporting
omplex data-stru
tures (e.g.re
ords and arrays) and allows
ommuni
ation with shared memoryand message passing. An overview of the Promela language, as usedin this paper, is provided in Se
tion 3.1. The translation was based onmodeling
lasses as re
ords and using arrays of these re
ords to storeobje
t data, similar to the te
hnique used by Havelund and Pressburgerfor Java [36℄. We will not dis
uss the details of the translation be
ausethis has been subsumed by re
ent work in model extra
tion [22℄ anddire
t model
he
king [68℄. To model
he
k DEOS, an environment was
onstru
ted to model the possible behaviors of user threads, the system
lo
k and the system timer. Se
tion 3 des
ribes the environment thatwas
onstru
ted for veri�
ation of the kernel.Veri�
ation in Spin involves systemati
 exe
ution of all possiblepro
ess interleavings in a program. It dete
ts assertion violations, dead-lo
ks and supports model
he
king of linear temporal logi
 (LTL) [51,67℄ formulae. In LTL, a pattern of states is de�ned that
hara
terizesall possible intended behaviors of a system. We des
ribe LTL operatorsusing Spin's ASCII notation. LTL is a propositional logi
 with the stan-dard
onne
tives &&, ||, -> and !. It in
ludes three temporal operators:<>p says p holds at some point in the future, [℄p says p holds at allpoints in the future, and the binary pUq operator says that p holds atall points up to the point where q holds (p until q).The main aspe
t of DEOS that we were interested in verifying wasthe time partitioning property: that ea
h thread in the kernel is guaran-teed to have a

ess to its
omplete CPU budget during ea
h s
hedulingperiod. Two approa
hes to spe
ifying time partitioning properties in
fmsd.tex; 26/01/2004; 12:21; p.7

8
5 12 12

timer timer

0 4020

m : 5/20

u1: 20/60

u2: 20/60

timer

8

15
delete: m = 12/20

60

idle

preempt

8

preempt

Figure 3. Error s
enarioterms of events in the DEOS kernel were investigated. The �rst, usingassertions over program variables, was not e�e
tive but led to someinsight in the design [50℄. The se
ond approa
h used a liveness propertystated in terms of labeled program events referred to from within anLTL property spe
i�
ation. This approa
h led to the redis
overy of theknown error.To spe
ify time partitioning using liveness, we had to identify a
ondition that would always o

ur if time partitioning was maintained.We hypothesized that, in the
ase where there is sla
k in the system(i.e. the main and user threads do not request 100% CPU utilization),the idle thread should run during every longest period1. To spe
ify thisproperty, labels were pla
ed in the program to identify when the idlethread starts running and where the longest period begins and ends.The property is then spe
i�ed as:[℄(beginperiod -> (!endperiod U idle))meaning that it is always ([℄) the
ase that, when the longest periodbegins, it will not end until (U) the idle thread runs. That is, idle willalways run between the begin and end of the longest period.Spin automati
ally generates a �nite state automaton that monitorsthe system for violations of the LTL property. Veri�
ation is done overthe
ombination of the property automaton and the system model. This
auses a potential in
rease of the state spa
e by a fa
tor of 4 in thisexample, be
ause the property monitor has 4 states. In pra
ti
e, thein
rease is approximately two fold, be
ause not all states are rea
hable.The property was
he
ked using several DEOS
on�gurations andenvironments. In a
on�guration with 2 user threads and with dynami
thread
reation and deletion enabled, Spin reported the error s
enarioshown in Figure 3. In this
on�guration, the main thread runs in thefastest period (period 0) with an initial budget of 19/20 time-units. Twouser threads are
reated to run in the next fastest period, period 1, withbudgets of 20/60 time-units. To
reate the CPU budget for ea
h user1 This is a ne
essary, not suÆ
ient,
ondition of time partitioning.
fmsd.tex; 26/01/2004; 12:21; p.8

9thread, 7/20 is taken from the main thread, leaving it with a budgetof 5/20 time-units. The total budget requested in this
on�guration is55/60 time-units, leaving 5 units for the idle thread to �ll at the endof period 1.Figure 3 shows a s
heduling sequen
e where user thread 1 deletesitself (before being interrupted) at the end of the �rst period 0. At thispoint, its budget (20/60 or 7/20 time-units) is given ba
k to the mainthread, giving it 12/20 units. The s
heduling then
ontinues normallyto the end of the period 1 boundary. At this point, Spin signals anerror be
ause the idle thread did not run between the two period oneboundaries. Noti
e that user thread 2 only ran for 16 (8+8) time unitsand not the 20 it requested, so time partitioning was violated. Theerror stems from the fa
t that when user thread 1 deleted itself, itimmediately returned its budget to the main thread. This leaves themain thread with a remaining budget of 24 (12+12) time-units anduser thread 2 with 20, with only 40 left in period 1. The result is thatuser thread 2 does not get all of the CPU time it requested.This was the same bug that was dis
overed by Honeywell during
ode inspe
tions. This
ould indi
ate that model
he
king
an providea systemati
 and automated method for dis
overing errors. However,there were several problems. The state spa
e of the
on�guration re-quired to show the bug was too large to be exhaustively veri�ed. Itwas not apparent that the model
ould even be sear
hed exhaustivelyto a depth ne
essary to guarantee dis
overy of the error. In addition,after adding the �x to the
ode, we were unable to perform exhaustiveveri�
ation. To guarantee the error would be dis
overed and to permitexhaustive veri�
ation of the �x, abstra
tion had to be applied.3. Environment ModelingIn the original experiment the most
hallenging task was developing anenvironment model to allow eÆ
ient analysis of time partitioning. TheDEOS kernel re
eives
alls from threads that run on the kernel andresponds to both periodi
 system
lo
k interrupts (
alled system ti
ks)and timer interrupts from the hardware via interrupt handling routines.The �delity of the environment was of
ru
ial importan
e for a
hievingmeaningful results during model
he
king. Spe
i�
ally, modeling timein di�erent ways led to trade-o�s between result validity and statespa
e size. In this se
tion, we introdu
e the Promela language of Spinand des
ribe the initial environment modeling e�ort. We then des
ribehow semi-automated te
hniques for environment generation, previously
fmsd.tex; 26/01/2004; 12:21; p.9

10only tested on small examples, redu
ed most of the e�ort involved inthe
onstru
tion of the original environment model.3.1. Brief Overview of PromelaA Promela program
onsists of a
olle
tion of pro
esses that
ommu-ni
ate via bu�ered
hannels and shared global variables. A pro
ess bodyis a sequen
e of lo
al variable and
hannel de
larations, and statements.Pro
esses
an be parameterized with variables, in
luding
hannels. Apro
ess P is started with the statement: run P(...). A
hannel is abounded �rst-in-�rst-out bu�er. Pro
esses
an read and write messagesof a de
lared type to
hannels.Basi
 statements in
lude assignment statements and
hannel
om-muni
ation statements. The skip statement is a no-operation state-ment. Statements
an either be exe
utable or blo
ked in a parti
ularstate. Two kinds of statements
an blo
k:
hannel
ommuni
ations(des
ribed below) and boolean expressions o

urring as statements.A boolean expression blo
ks if it evaluates to 0 and is otherwise equiv-alent to skip. Statements
an be
omposed sequentially, as in s1;s2,and
an be grouped together using
urly bra
kets: f...g. A
omposedstatement is exe
utable if its �rst statement is exe
utable.A Promela if-statement has a sequen
e of options ea
h pre
ededby a double-
olon. Only one of the statements is exe
uted, and onlyone where the �rst sub-statement {
alled the guard { is exe
utable.When several statements have exe
utable guards, the
hoi
e of thestatement is non-deterministi
. When no guard is exe
utable, the if{statement blo
ks. The spe
ial else statement
an be used at most on
eas the �rst sub-statement of an option, and it will be
ome exe
utableif all other options are non-exe
utable. There is a
orresponding do-statement whi
h is exe
uted repeatedly until a break statement isen
ountered.Pro
esses
ommuni
ate over
hannels using send and re
eive state-ments. For example, a pro
ess sends the value 5 to a
hannel
 byexe
uting the statement
!5, while another pro
ess
an re
eive thisvalue in the variable x by exe
uting
?x. If a
hannel is full, then asend-statement will blo
k. Similarly, if the
hannel is empty, a read-statement will blo
k. If the size of the
hannel is de�ned as 0,
ommu-ni
ation is by rendezvous; the sending pro
ess blo
ks until a re
eivingpro
ess reads the value, and vi
e versa.3.2. The DEOS KernelFigure 4 illustrates the Promela environment
onstru
ted to model
he
k the DEOS kernel. There is a box for ea
h
on
urrently exe
uting
fmsd.tex; 26/01/2004; 12:21; p.10

11
User Thread 1

Idle Thread

Main Thread

User Thread n

System Tick Generator

Timer

create(budget,period)

finishedForPeriod

resume(id)
stop(id)

resume(1)

finishedForPeriod

stop(0)

stop(1)

delete(id)

resume(0)

start(time)

getTimeRemaining

timerInterrupt

systemTickInterrupt

coldStartKernel();

DEOS Kernel

START_A_THREAD();

START_THE_TIMER();
createMainThread();
do

//idle thread

//for idle

::fromThread?create(budget,period) ->

::fromThread?delete(id) ->
toThread!getId(id);

deleteThread(id);

START_THE_TIMER();
::fromThread?finishedForPeriod ->

START_A_THREAD();

waitUntilNextPeriod();
START_A_THREAD();
START_THE_TIMER();

::fromSystem?systemTickInterrupt ->
old = Scheduler_itsRunningThread;
Scheduler_handleSystemTickInterrupt();
if
::old != Scheduler_itsRunningThread ->

STOP_A_THREAD(old);
START_A_THREAD();
START_THE_TIMER();

::fromTimer?timerInterrupt ->

::else
fi;

// check for preemption

old = Scheduler_itsRunningThread();
Scheduler_handleTimerInterrupt();
if // special case for idle
::old != Scheduler_itsIdleThread ->

STOP_A_THREAD(old);
START_A_THREAD();

::else
fi;
START_THE_TIMER();

od;

createThread(id,period,budget);

Figure 4. DEOS Kernel and its Environmentpro
ess: the kernel, the idle thread, the main thread, n user threadsto be s
heduled by DEOS, the system ti
k generator and the timerpro
ess. The dotted box around the last two is to indi
ate that thesystem ti
k generator and the timer were eventually
ombined intoone pro
ess. Rendezvous
ommuni
ation between pro
esses is a
hievedusing syn
hronous message passing, illustrated by the labeled arrowsin the �gure. Dotted arrows indi
ate values being returned in responseto some messages. In the following se
tions, we dis
uss the di�erent
omponents of the DEOS kernel and its environment in detail.It is important to note that in the real system, there are not sepa-rate \pro
esses" for the DEOS kernel and the threads: there is reallyone thread of
ontrol with
ontext swit
hes initiated by kernel
odeto swit
h threads. However, this style of s
heduling did not map wellonto the Promela s
heduling semanti
s. Therefore, the kernel (trans-
fmsd.tex; 26/01/2004; 12:21; p.11

12lated
ode) and the threads (environment
ode) were put into di�erentPromela pro
esses and
ontext swaps were modeled by sending startand stop messages to the thread pro
esses.The kernel
ode intera
ts with its environment through a wrapperthat maps messages from the environment to methods in the trans-lated
ode. The wrapper
ode is shown inside the DEOS kernel box inFigure 4. After initializing the kernel and starting the idle thread andmain thread, the pro
ess sits in a loop and rea
ts to messages from theenvironment.The kernel
an re
eive three messages from a thread, dire
tly
orre-sponding to DEOS API
alls:
reate, delete and finishedForPeriod(yield). The kernel
an also re
eive interrupt messages whi
h evoke theinterrupt handler methods of the kernel. The systemTi
kInterruptmessage is generated periodi
ally (at the frequen
y of the s
hedulingperiod of the highest priority threads) and indi
ates that a threadof higher priority than the
urrently exe
uting thread may be
omes
hedulable. A timerInterrupt message indi
ates that a thread hasexhausted its budget and must be stopped immediately.In response to messages, the kernel
an send messages to start andstop threads and to start the timer for a spe
i�
 amount of time. Forexample, in DEOS, only the
urrently running thread
an delete itself,so a new thread must be s
heduled in response to the delete
all.If a thread is preempted, it is important to �nd out how mu
h timestill remains from its budget, sin
e it may get another
han
e to runwithin the
urrent period. This is done by sending a getTimeRemainingmessage to the timer, and the value returned in the reply is used toupdate the thread's remaining budget data.3.3. ThreadsWe distinguish among three types of threads: the idle thread, the mainthread and user threads. The User threads have most fun
tionality:they
an be stopped,
an yield the CPU and
an de
ide to terminate.The Promela
ode for the user threads is shown in Figure 5. Mes-sages are sent as data re
ords over
hannels, where the �rst �eld inthe re
ord denotes the message type. Messages have the form
han-nel!message type, data, data. For message types where some data isunne
essary, 0's are used as pla
e holders. In the �gure, a nondetermin-isti
 if statement is used to implement a
on
ise environment modelwhere all possible thread behaviors are examined. Syn
hronization isused to ensure that when the kernel sends a resume(id) message onlythe thread with the
orresponding id will re
eive it2. The simpli
ity2 eval(id) allows syn
hronization only when the message data mat
hes id.
fmsd.tex; 26/01/2004; 12:21; p.12

13of this model
an be
ontrasted to the
omplexity of the interruptgenerator presented in the next se
tion.pro
type UserThread(
han fromS
heduler, toS
heduler;byte myBudget, periodIndex)f byte id;byte threadState = threadStatusNotCreated;toS
heduler!
reate(myBudget,periodIndex);fromS
heduler?getId(id);threadState = threadStatusDormant;do::fromS
heduler?resume,eval(id) ->threadState = threadStatusA
tive;if::fromS
heduler?stop,eval(id);::toS
heduler!finishedforperiod,0,0;::toS
heduler!delete,id,0 -> goto terminate;fi;threadState = threadStatusDormant;od;terminate: skip;gFigure 5. The DEOS User Thread Model.3.4. InterruptsModeling the generation of hardware
lo
k and timer interrupts was themost diÆ
ult part of
onstru
ting the environment for DEOS. Promelaand Spin do not provide spe
ial support for real-time
lo
ks, so thetimers had to be modeled expli
itly. The
hallenge was to determinethe level of abstra
tion at whi
h real-time needed to be modeled.To verify the time partitioning features of the DEOS kernel, thetime-related interrupts had to be
oordinated to avoid \impossible"behaviors. Without
oordination, system ti
k interrupts might o

urseveral times, ea
h indi
ating that 20 time units had passed, but thetimer, set for 10 time units, would never go o�. To allow the ne
essarylevel of
oordination, the SystemTi
kGenerator and Timer were
om-bined into one pro
ess, shown in Figure 6. The
ombined timer modelkeeps tra
k of the time that has been used in a period and makes surethat a system ti
k interrupt o

urs only when the appropriate amountof time has been used.Promela does not dire
tly support sending and re
eiving messagesbased on evaluating a
ondition, but this
an be implemented using atwo element array of
hannels, with the
ondition used as the index
fmsd.tex; 26/01/2004; 12:21; p.13

14pro
type TIMER() fbyte Remaining time = 0;/* time remaining for thread after timer
ounteddown from Start time */byte Used time = 0;/* time used in period sin
e last ti
k; must beless than or equal to uSe
sInFastestPeriod */byte Start time = 0;/* time the timer was started with */byte Y=0; /* time used by a thread */bool ti
k sin
e start = FALSE;bool started=FALSE;bool timer went off = FALSE;do/* Start Timer */::S
hed2Timer?start,Start time ->ti
k sin
e start = FALSE;started = TRUE;timer went off = FALSE;/* Get Time Remaining */::S
hed2Timer?getTimeRemaining,0 ->started = FALSE;if::ti
k sin
e start ->Timer2S
hed[1℄!timeRemaining,Remaining time;::timer went off ->assert(Remaining time == 0);Timer2S
hed[1℄!timeRemaining,Remaining time;::else ->/* Y: 0 <= Y <= uSe
sInFastestPeriod - Used time AND *//* 0 <= Y <= Start time */if::(uSe
sInFastestPeriod - Used time) <= Start time ->Y = uSe
sInFastestPeriod - Used time;::((uSe
sInFastestPeriod - Used time)/2) <= Start time ->Y = (uSe
sInFastestPeriod - Used time)/2;::Y = 0;fi;Remaining time = Start time - Y;Timer2S
hed[1℄!timeRemaining,Remaining time;Used time = Used time + Y;fi;/* Timer Interrupt -
hannel array tri
k for
onditional send */::Timer2S
hed[started℄!timerintrpt,0 ->Remaining time = 0;Used time = (Used time + Start time)timer went off = TRUE;/* System Ti
k -
hannel array tri
k for
onditional send */::Ti
k2S
hed[((Start time+Used time)>= uSe
sInFastestPeriod) && started℄!ti
kintrpt,0 ->Y = uSe
sInFastestPeriod - Used time;Remaining time = Start time - Y;Used time = 0;ti
k sin
e start = TRUE;odgFigure 6. Final DEOS timer model
fmsd.tex; 26/01/2004; 12:21; p.14

15to sele
t whi
h
hannel will be used for
ommuni
ation.3 For example,for a
ondition p and
hannel array
, a
onditional send is
[p℄!xand the
orresponding re
eive is
[1℄?y. These two statements willonly syn
hronize if p is true (i.e. equal to 1). This te
hnique was usedto
ontrol whether a timer interrupt or a system ti
k message wouldbe sent to the kernel on the Timer2S
hed
hannel. A timer interruptmessage
an only be sent if the timer has been started. A ti
k interruptmessage
an only be sent when the timer has been started and theamount of time sin
e the previous ti
k interrupt is greater or equal tothe amount of time between ti
ks (uSe
sInFastestPeriod).The behavior of the timer is guided by two variables: the time re-maining from the thread's budget (Remaining time) and the amountof time elapsed sin
e the last ti
k (Used time). These variables areupdated in response to ea
h of the messages the timer pro
ess
anre
eive as follows:Start timer - Start time is assigned the value re
eived from thekernel (the thread's budget) with whi
h the timer is started.Timer interrupt - Indi
ates that the thread exhausted it's budget, sothe Remaining time must be 0. The amount of time used withinthe period is the previously used time plus the amount of time thetimer was started with (Start time).System ti
k - The time remaining in a thread's budget (i.e. the timeleft on the timer when the system ti
k o

urs) must be
al
ulated.First, the amount of time the thread used is
al
ulated, whi
h isthe total time in the period (uSe
sInFastestPeriod) minus thetime previously used in the period (Used time). The amount oftime remaining on the timer, Remaining Time, is then the amountof time the thread was started with minus the time the threadused. Furthermore, sin
e a system ti
k just o

urred, Used time isreset to zero for the next period.Get time remaining - To limit the number of potential exe
utionpaths and avoid state spa
e explosion, we limited the
hoi
es asto the amount of time that a thread
ould exe
ute. In
ases wherethe interrupts do not
onstrain the amount of time that has passedduring thread exe
ution, the timer nondeterministi
ally
hooseshow mu
h time a thread uses. It
hooses from three possibilities:3 Standard
onditional statements
annot be used be
ause the
ondition eval-uation and message
ommand must be exe
uted atomi
ally. Spin does not allowmessages to be sent inside atomi
 se
tions be
ause messages indi
ate global stateswhere threads must be interleaved.
fmsd.tex; 26/01/2004; 12:21; p.15

16 either it used no time, or it used all of its time (or all of the timeleft in the period, if that is smaller), or it used half of the timebetween the
urrent time and the end of the period. These
aseswere sele
ted based on intuition similar to that used in sele
tingboundary
ases during testing, with the middle value in
luded forgood measure. Experiments that varied this abstra
tion showedthat the middle value in
reased the state spa
e by approximatelytwofold, but did not improve error dete
tion.3.4.1. Dis
ussionThe de
ision was made to use an abstra
tion of time, rather than oneof the real-time extensions of SPIN (e.g. RT-SPIN [66℄ and DTSPIN[9℄), sin
e we believed the inherent
omplexity of these te
hniqueswould add an unne
essary layer of ineÆ
ien
y during model
he
k-ing. Furthermore, the abstra
tions used were under-approximations (asubset) of timing behavior rather than over-approximations (a super-set)4. This de
ision was in
uen
ed by the fa
t that the property being
he
ked (time-partitioning) was dependent on time, and experimentswith over-approximation of timing behavior lead to many spuriouserrors. Veri�
ation using an under-approximation of time does notprovide a full guarantee that properties are true. However, any errorsdete
ted will be real errors, as long as any other data abstra
tionsthat are used do not over-approximate behavior. In Se
tion 4 we de-s
ribe a pre
ise abstra
tion that
an be safely
ombined with the timeunder-approximation to preserve errors.3.5. Environment Modeling Using LTL AssumptionsThe most diÆ
ult part of de�ning the environment of DEOS was de-veloping the model for the interrupt generation that would allow us to
he
k time partitioning. Developing and validating the interrupt modelin Figure 6 took approximately 2 man-months. Also, despite our beste�orts, this model is hard to understand and maintain. Be
ause theseissues are serious barriers to the adoption of model
he
king as a tool to�nd errors in programs, automated methods for generating environmentmodels were investigated.This se
tion presents the appli
ation of the �lter-based methodsdes
ribed by Dwyer et al. [30, 54℄ to generate the environment thatmodels the generation of interrupts. Starting with the most generalde�nition of the environment, a set of LTL environment assumptions isestablished and used to re�ne the environment de�nition. This re�ned4 See Se
tion 4.1 for more pre
ise de�nitions of over- and under-approximation.
fmsd.tex; 26/01/2004; 12:21; p.16

17pro
type skeleton1 TIMER() fbyte Start time;byte Remaining time;do/* SYSTEM TICK GENERATOR *//* send a ti
k interrupt to the s
heduler */:: Ti
k2S
hed[1℄!ti
kintrpt,0;/* TIMER *//* s
heduler starts the timer with value Start time */:: S
hed2Timer?start,Start time;/* s
heduler asks for Remaining time */:: S
hed2Timer?getTimeRemaining,0;/* timer returns value Remaining time */:: Timer2S
hed[1℄!timeRemaining,Remaining time;/* send a timer interrupt to s
heduler */:: Timer2S
hed[1℄!timerintrpt,0;:: skip; /* some internal, non-observable a
tion */odgFigure 7. Timer skeletonenvironment is used to redis
over the error in DEOS. Moreover, theenvironment is pre
ise enough su
h that when used with the
orre
tedversion of the kernel, no spurious errors are reported.The most general environment for properties stated in LTL is theuniversal environment that is
apable of exe
uting any sequen
e ofoperations in the system's interfa
e. Under the assume-guarantee rea-soning paradigm [52℄, assumptions about the environment
an be ex-pressed in LTL and used to
onstrain the behavior of the universalenvironment [54℄. In parti
ular, if the environment assumption � andthe guarantee are LTL formulas, one
an simply
he
k the formula� ! . The LTL assumption
an also be used to synthesize a re�nedenvironment, in whi
h
ase � is eliminated from the formula to be
he
ked [54℄.3.5.1. Universal Environment for the DEOS S
hedulerTo build the DEOS timer model systemati
ally, the interfa
e betweenthe timer and the s
heduler was identi�ed and used to build the envi-ronment skeleton in Figure 7. This environment is
apable of invokingany sequen
e of interfa
e operations. However, to verify time parti-
fmsd.tex; 26/01/2004; 12:21; p.17

18pro
type skeleton2 TIMER() fbyte
lo
k = 0;byte Start time;byte Remaining time = 0;do/* SYSTEM TICK GENERATOR *//* send a ti
k interrupt to the s
heduler */:: Ti
k2S
hed[1℄!ti
kintrpt,0;/* reset */
lo
k=uSe
sInFastestPeriod;/* TIMER *//* s
heduler starts the timer with value Start time */:: S
hed2Timer?start,Start time;/* estimate Remaining time */if:: Start time >
lo
k -> Remaining time=Start time-
lo
k;
lo
k=0;:: Start time <=
lo
k -> Remaining time=0;
lo
k=
lo
k-Start time;:: Remaining time = Start time;/* put half time option here */fi;/* s
heduler asks for Remaining time */:: S
hed2Timer?getTimeRemaining,0;/* timer returns value Remaining time */:: Timer2S
hed[1℄!timeRemaining,Remaining time;/* send a timer interrupt to s
heduler */:: Timer2S
hed[1℄!timerintrpt,0;odgFigure 8. Timer skeleton with Remaining time variabletioning, the model must be re�ned to
apture the relationship betweenStart time and Remaining time. This was done by introdu
ing a thirdvariable,
lo
k, to re
ord the time remaining in a period.The resulting
ode for the timer is shown in Figure 8. The underlyingprin
iple is variable time advan
e [63, 10℄: at ea
h event, the time atwhi
h the next event will o

ur is
al
ulated. When the timer is started,depending on the amount of time the timer is started with and theamount of elapsed time in the period, the next event is predi
ted (eithertimer or system ti
k interrupt) and the remaining time and elapsed timeis
al
ulated a

ordingly. Spe
i�
ally, when the timer is started witha value spe
i�ed in Start time, the remaining time is estimated asfollows:� If Start time is greater than the
urrent value of
lo
k, then asystem ti
k interrupt will o

ur, so Remaining time for the
urrent
fmsd.tex; 26/01/2004; 12:21; p.18

19pro
type U TIMER() fbyte
lo
k = 0;byte Start time;byte Remaining time = 0;do/* SYSTEM TICK GENERATOR *//* send a ti
k interrupt to the s
heduler */:: Ti
k2S
hed[
lo
k==0℄!ti
kintrpt,0;/* reset */
lo
k=uSe
sInFastestPeriod;/* TIMER *//* s
heduler starts the timer with value Start time */:: S
hed2Timer?start,Start time -> start:skip;/* estimate Remaining time */if:: Start time >
lo
k -> Remaining time=Start time-
lo
k;
lo
k=0;:: Start time <=
lo
k -> Remaining time=0;
lo
k=
lo
k-Start time;:: Remaining time = Start time;/* put half time option here */fi;/* s
heduler asks for Remaining time */:: S
hed2Timer?getTimeRemaining,0;/* timer returns value Remaining time */:: Timer2S
hed[Remaining time>0℄!timeRemaining,Remaining time;timeRemainingGT0:skip;:: Timer2S
hed[Remaining time==0℄!timeRemaining,0;/* send a timer interrupt to s
heduler */:: Timer2S
hed[1℄!timerintrpt,0 -> timerinterrupt:skip;odgFigure 9. Timer with restri
ted rendezvous on ti
kintrptthread will be greater than zero, and
lo
k is reset to the periodduration, uSe
sInFastestPeriod, to indi
ate that it will be thebeginning of the next s
heduling period.� If Start time is less than or equal to the
urrent value of
lo
k,then a timer interrupt will o

ur, so the Remaining time for the
urrent thread will be zero and the
lo
k will be de
reased.� Nondeterministi
ally, the environment
an set Remaining time tobe Start time and leave
lo
k un
hanged, whi
h
orresponds tothe situation that the thread
onsumed no time.
fmsd.tex; 26/01/2004; 12:21; p.19

203.5.2. Environment AssumptionsThe timer in Figure 8 is still too approximate, leading to spurious
ounterexamples, be
ause period ti
ks and resets of the
lo
k
an o

urarbitrarily. The problem is that
lo
k should not be reset unless itsvalue is zero (as would happen in a real system
lo
k). This environmentassumption (�1)
an be en
oded in LTL as follows:[℄(ti
kinterrupt -> !new ti
kinterrupt U (
lo
k==0 || [℄!new ti
kinterrupt))Assumption �1 says that after a system ti
k interrupt o

urs, a newti
k interrupt
an not o

ur unless the value of the
lo
k is zero. Thisassumption
an more e�e
tively be en
oded in the timer model, byrestri
ting the rendezvous on ti
kintrpt to o

ur only when
lo
k iszero, as shown in the
ode for U TIMER in Figure 9.Che
king the timing property using this restri
ted environment givesanother infeasible
ounterexample: after a timer interrupt o

urs andthe kernel asks for the remaining time, the value returned is greaterthan zero. This would not happen in a \realisti
" environment, sin
ea timer interrupt signi�es that there is no remaining time left for the
urrent thread.This situation
an be
aptured by the following environment as-sumption (�2):[℄(timerinterrupt -> !timeRemainingGT0 U (start || [℄!timeRemainingGT0))This assumption states that, after a timer interrupt o

urs and thekernel asks for the remaining time, the environment
annot return avalue greater than zero, unless the timer is started again. Noti
e that inFigure 9, labels were inserted (e.g., start:) to de�ne the predi
ates andwe split the rendezvous based on the returned value of Remaining time,e.g. predi
ate timeRemainingGT0 is true when the timer thread is atlabel timeRemainingGT0).When using U TIMER and assumption �2 as a �lter, i.e. when
he
k-ing the
ombined formula:([℄(timerinterrupt -> !timeRemainingGT0 U (start || [℄!timeRemainingGT0))) ->[℄(beginperiod -> !endperiod U idle)the same error found in the original DEOS experiment is reported. Theassumption e�e
tively \�ltered out" tra
es that did not
orrespond toreal exe
utions of the system.

fmsd.tex; 26/01/2004; 12:21; p.20

21
12timerInterruptstart(time) timerInterrupttimeRemaining=0timeRemaining>0getTimeRemainingstart(time)

systemTi
kInterruptgetTimeRemainingtimeRemaining=0timerInterruptsystemTi
kInterruptstart(time)getTimeRemainingtimeRemaining>0timeRemaining=0 7
0systemTi
kInterrupt

Figure 10. Synthesized assumption graph3.5.3. ResultsThe time partitioning property was
he
ked using both the U TIMERin Figure 9, with the LTL assumption �2 en
oded in the formula be-ing
he
ked, and, alternatively, with the environment automati
allysynthesized from �2.The synthesis pro
edure (des
ribed in detail in [54℄) uses a tableau-like method similar to the one used in SPIN for generating never
laimsto
he
k LTL properties. The method takes an LTL formula represent-ing the environment assumption, and
onstru
ts an automaton that
an be represented as a graph (and automati
ally translated to Ada,Java, or Promela). The graph is a maximal model of the environmentassumption, meaning that for every
omputation whi
h satis�es theassumption, there is a
orresponding path in the graph, and that every�nite path in the graph is the pre�x of some
omputation that satis�esthe assumption.The state graph for the synthesized environment from assumption�2 is shown in Figure 10. The labels on the edges denote the allowedinterfa
e operations su
h as rendezvous between environment and ker-nel, together with the
ode to be exe
uted for ea
h rendezvous. Forexample, the label systemTi
kInterrupt is a pla
e-holder for:Ti
k2S
hed[
lo
k==0℄!ti
kintrpt,0 ->
lo
k=uSe
sInFastestPeriod;Node 0 designates the initial state. The
orresponding Promela
ode isa straight forward implementation of this state ma
hine with additionsto update
lo
k and Remaining time as in U TIMER.
fmsd.tex; 26/01/2004; 12:21; p.21

22 Veri�
ation was done using Spin version 3.2.5a on a SUN ULTRA 60(360 MHz) with 1G of RAM. following table gives data for ea
h of themodel
he
king runs (using U TIMER, S TIMER and the original TIMER).The table shows the total of user and system time in se
onds to
onvertLTL formulas to the Spin \never
laim" format (tnever), the time toexe
ute the model
he
ker (tMC), the memory used in veri�
ation inMbytes (mem) and the number of steps in the shortest error tra
e.Environment tnever tMC mem error tra
e depthU TIMER 1:49.97 1.3 3.633 1988S TIMER 0.1 0.1 2.609 1554TIMER 0.1 0.1 2.609 1619In
onforman
e with the data from [54℄, synthesized environmentsenable faster model
he
king and better use of memory. The time forgenerating the never
laim with the assumption en
oded into the for-mula to be
he
ked is the dominant time. The time for environmentsynthesis is negligible, espe
ially
onsidering synthesized environments
an be reused a
ross veri�
ation runs.We repeated the experiment with a new version of the DEOS kernel,with the error
orre
ted by the developers (and with the abstra
tiondes
ribed in Se
tion 4). Spin exhaustively sear
hed the state spa
e andreported the following data:Environment tMC memU TIMER 1:38.1 102.289S TIMER 8.8 23.172TIMER 2.9 12.996The environments were pre
ise enough so that no errors, real or spu-rious, were reported. The original, hand-
oded environment and thesynthesized environment exhibit relatively similar uses of time andmemory,
ompare against the �ltered property.3.5.4. Con
lusionsThis se
tion shows that �lter-based environment generation is viablein pra
ti
e. The e�ort involved was relatively small, taking one person-week to a

omplish,
ompared to two person-months for the originalenvironment. The environment was built without looking at the
odefor the kernel; only the
ode for the original environment was inspe
ted.This se
ond experiment did have the advantage of looking at
ode that
fmsd.tex; 26/01/2004; 12:21; p.22

23was previously analyzed. The error was known, and also the
on�gura-tion of the system (i.e. at least two user threads are ne
essary in orderto �nd the error). However, the environment assumptions were not gen-erated from this previous experien
e; they were derived systemati
allyfrom the spurious
ounterexamples found by Spin.The most striking advantage of the �lter-based approa
h is thestru
tured way in whi
h environment assumptions are en
oded. Duringthe original environment development, assumptions were dis
overed inmu
h the same way as in the �lter-based approa
h, but these assump-tions were just hard-
oded into the environment model in an ad-ho
fashion. With the �lter based approa
h the assumptions were �rst intro-du
ed as LTL (�lter) properties, and only if the implementation in thea
tual
ode was straight-forward, were they added to the
ode. An en-vironment was also synthesized dire
tly from the LTL �lter properties.The synthesized environment performed very similar to the hand-buildenvironment.In the following se
tion we address the other major barrier to theadoption of model
he
king in program analysis: the need for auto-mated, or semi-automated, abstra
tion te
hniques to redu
e the size ofthe state spa
e that must be analyzed.4. Program Abstra
tion for Veri�
ationIn the original experiment, the error was dete
ted without introdu
ingabstra
tions within the DEOS
ode itself (the abstra
tion was in theenvironment). However, it was not possible to guarantee of �ndingthe error or to verify the
orre
ted
ode. Therefore, abstra
tions forsome parts of the DEOS
ode were investigated to permit more exten-sive veri�
ation. This se
tion provides an overview of abstra
tion forprogram veri�
ation, des
ribes predi
ate abstra
tion and presents ex-tensions to predi
ate abstra
tion to support obje
t-oriented programs.The appli
ation of predi
ate abstra
tion to DEOS to enable exhaustiveveri�
ation is then des
ribed.4.1. Program Abstra
tionAbstra
tions are used to redu
e the size of a program's state-spa
ein an attempt to over
ome the memory limitations of model
he
kingalgorithms. Abstra
tions
an be
hara
terized in terms of their e�e
ton a property (or
lass of properties) being veri�ed, or the way thatthey approximate the behavior of the system being veri�ed.An abstra
tion is weakly preserving if a set of properties that are truein the abstra
t system has
orresponding properties in the
on
rete
fmsd.tex; 26/01/2004; 12:21; p.23

24system that are also true. An abstra
tion is strongly preserving if aset of properties with truth-values either true or false in the abstra
tsystem has
orresponding properties in the
on
rete system with thesame truth-values. An abstra
tion is often designed to preserve a singlespe
i�
 property, making strong preservation useful in pra
ti
e. Nev-ertheless, abstra
tions that are only weakly preserving
an be mu
hmore aggressive in redu
ing the state-spa
e and therefore are morepopular for veri�
ation purposes. In pra
ti
e, the role of veri�
ation isoften to support rapid and e�e
tive debugging during development andevolution. Therefore, we de�ne an abstra
tion as error preserving if aset of properties that are false in the abstra
t system has
orrespondingproperties in the
on
rete system that are also false.A se
ond way to
lassify abstra
tions is with respe
t to the relation-ship between the behavior of the abstra
t system and the
on
rete sys-tem. For a rea
tive software system, program behavior
an be de�ned asthe set of possible program exe
ution paths5, where an exe
ution pathis an in�nite sequen
e of program states. Over-approximation o

urswhen more behaviors are present in the abstra
t system than were inthe original \
on
rete" system. The drawba
k of over-approximation isthat it may add behaviors that invalidate a property in the abstra
tsystem that is true in the
on
rete system. Under-approximation o
-
urs when behaviors are removed when going from the
on
rete to theabstra
t system. Program testing
an be viewed as analysis of an under-approximation: a set of test
ases (or a rea
tive test driver) leads thesystem through a subset of the possible program exe
utions.To
ombine abstra
tion with model
he
king, either an abstra
tstate graph is generated during model
he
king by exe
uting the
on-
rete transitions over abstra
ted data, or the
on
rete transitions areabstra
ted stati
ally (i.e. before model
he
king) and the resulting ab-stra
t transition system is
he
ked. There has been work in automatingboth approa
hes by using de
ision pro
edures, either during state gen-eration [25, 60℄ or stati
ally [20, 61℄. In the stati
 approa
h, whereabstra
t transitions are generated, the number of
alls to the de
isionpro
edures is bound by the size (lines of
ode) of the
on
rete system.Be
ause the dynami
 approa
h uses the de
ision pro
edures as the statespa
e is explored, it will in most
ases require many more
alls to thede
ision pro
edures than the stati
 approa
h. However, the dynami
 ap-proa
h
an be more pre
ise sin
e it uses information about the
urrentabstra
t state to determine the abstra
t transition. This information
an be used to eliminate potential next states that
annot be eliminatedstati
ally, thus providing a more pre
ise over-approximation. In the5 Also
alled tra
es or
omputations.
fmsd.tex; 26/01/2004; 12:21; p.24

25DEOS study, the stati
 approa
h was used be
ause it appeared morelikely to s
ale to large programs. The pre
ision problem is addressed bygeneralizing the stati
ally generated transitions to be de�ned in termsof multiple abstra
t predi
ates, in
reasing the amount of informationabout the abstra
t state that
an be used to de�ne the transitions [61℄.4.2. Predi
ate Abstra
tionPredi
ate abstra
tion, introdu
ed by Graf and Saidi [33℄, is a form ofover-approximation whi
h forms the basis of a number of automatedabstra
tion tools [25, 60, 61, 3, 39℄. The basi
 idea of predi
ate ab-stra
tion is to repla
e a
on
rete variable with a boolean variable thatevaluates to a given boolean formula (a predi
ate) over the originalvariable. This
on
ept is easily extended to handle multiple predi
atesand, more interestingly, predi
ates over multiple variables. For example,
onsider a program with two integer variables, x and y, whi
h
an growin�nitely. Sin
e this program will have an in�nite state-spa
e, model
he
king
annot be
omplete in general. However,
loser inspe
tion mayreveal that the only relationship of interest between the two variablesis whether or not they are equal. We
an then de�ne a predi
ate torepresent this relationship, B � x = y, and use it to
onstru
t anabstra
t transition system as follows:� wherever the
ondition x = y appears in the program we repla
eit with the
ondition B = true and� whenever there is an operation involving x or y we repla
e it withan operation
hanging the value of B appropriately.When generating the abstra
t transition system, over-approximation
an o

ur when not enough information is available to
al
ulate a de-terministi
 next a
tion or state in the abstra
t system. For example,the operation x := x + 1 leads to over-approximation in the abstra
ttransition system (by introdu
ing nondeterminism) in the
ase whereB is false (x 6= y) be
ause the
on
rete result depends upon informa-tion that is not available in the abstra
t state (spe
i�
ally, whethery = x � 1). The abstra
t transition system for this example showingthe e�e
ts of the
on
rete operations y := x and x := x + 1 is shownin Figure 11.System invariants
an be used to
onstru
t more pre
ise abstra
-tions (i.e. less nondeterminism and over-approximation). For example,
onsider the example program in Figure 12, whi
h is an extremely sim-pli�ed version of part of DEOS. In this program, x is �rst in
remented
fmsd.tex; 26/01/2004; 12:21; p.25

26
x = y x 6= y?y := x + x := x+ 1� y := x 3x := x+ 1 ?x := x+ 1

Figure 11. Abstra
t transition system for B � x = yint x,y,z = 0;while(true) fwhile(+)x := x + 1;if (y != x) fy := x;z := z + 1;gz := z - 1;gFigure 12. Simple example programone or more times6 and then y is updated with the value of x. Thisprogram has the property that z will always be greater than or equalto zero, be
ause the
onditional will always exe
ute. This program willbe diÆ
ult to model
he
k be
ause x and y in
rement inde�nitely.Figure 13a shows an abstra
t version of the program based on thepredi
ate B � x = y, with operations as shown in Figure 11. The resultof exe
uting the abstra
t
ode
orresponding to multiple in
rements ofx (the while(+) loop) is that B will be either true or false. Afterexiting this loop, if B is true, then the
onditional will be skipped,and z
an be de
remented below zero. Therefore, this abstra
t programdoes not preserve the property z � 0. However, we
an use the programinvariant x � y to re�ne the abstra
tion. This invariant
an be used toeliminate the
ase where x = y � 1 and allow the
on
rete transitionx := x + 1 to always be abstra
ted to B := false. That is, be
ause6 The shorthand while(+) indi
ates the loop will non-deterministi
ally exe
uteone or more times.
fmsd.tex; 26/01/2004; 12:21; p.26

27bool B = true;int z = 0;while(true) fwhile(+) fif (B = true) then B := falseelse B := true or false;gif (B = false) fB := true;z := z + 1;gz := z - 1;g (a)
bool B = true;int z = 0;while(true) fwhile(+) fB := false;gif (B = false) fB := true;z := z + 1;gz := z - 1;g (b)Figure 13. Example program abstra
ted using
riterion x = y (a) alone and (b)with invariant x � yx is always greater than or equal to y, x being in
remented
an neverresult in x and y being equal. The re�ned program, shown in Figure 13b,maintains the invariant on z.This example illustrates a spe
ial
ase in predi
ate abstra
tion: whenthe predi
ate abstra
tion does not introdu
e nondeterminism, over-approximation does not o

ur and strong preservation is a
hieved [60℄.In the next se
tion we show that a spe
i�

lass of in�nite state pro-grams, o

urring frequently in pra
ti
e,
an be transformed to �nitestate programs by a predi
ate abstra
tion that does not introdu
enondeterminism.4.3. Abstra
tions for Obje
t-Oriented ProgramsMost work on abstra
tion has been on simple modeling or programminglanguages as both the sour
e and target languages for abstra
tion.There has been re
ent work to apply these te
hniques to C programs [42,3℄. However, to apply these te
hniques to obje
t-oriented systems thefollowing issues must be addressed:� what kinds of abstra
tions will be appropriate or ne
essary forobje
t-oriented programs� what additional
omplexity is introdu
ed into the generated ab-stra
t transition system (or program) to support these abstra
-tions.The types of entities that
an be abstra
ted in obje
t-oriented soft-ware are variables,
lasses and relationships between
lasses. Relation-

fmsd.tex; 26/01/2004; 12:21; p.27

28 Company Person* *employs
Employmenthire dateFigure 14. Using Asso
iation Classes to Model Asso
iation Attributesships between
lasses in
lude relationships between variables or
ontrollabels in di�erent
lasses, and the multipli
ity and variability of asso-
iations between
lasses. The behavior of variables and
lasses
an beboth under-approximated and over-approximated. Over-approximationof
lasses
an be a
hieved by extending abstra
t interpretation te
h-niques for individual variables to obje
t-oriented languages, as imple-mented in the Bandera toolkit [22℄. In Bandera, these te
hniques havebeen extended to
lasses by
omponent-wise abstra
tion of ea
h �eldin a
lass [29℄. Under-approximation te
hniques for verifying obje
t-oriented models are primarily
on
erned with limiting the number ofobje
ts instantiated for a
lass [44℄.These existing abstra
tion te
hniques do not support abstra
tionof relationship between
lasses. We have developed a te
hnique forextending predi
ate abstra
tion to in
lude predi
ates relating variablesfrom di�erent
lasses [69℄. A problem en
ountered during that workwas determining how to maintain the obje
t-oriented stru
ture of theprogram when adding abstra
t predi
ate variables. Here, we extendour previous approa
h to support abstra
tion of more general stru
-tural relationships between
lasses, or inter
lass abstra
tions, usingasso
iations.In obje
t-oriented modeling and design, asso
iations are used to rep-resent stru
tural relationships between
lasses [8℄. For example, the fa
tthat a Person works for a Company
an be modeled by an asso
iation
alled \employs" between the
lass Person and the
lass Company. Ifwe wish to in
lude a hire date in the model, and there is a many-to-many relationship between
ompanies and people it is not
lear where

fmsd.tex; 26/01/2004; 12:21; p.28

29to put this attribute. To solve this problem an asso
iation
lass
an beaÆliated with the asso
iation, as shown in Figure 14 [8℄.To illustrate how program abstra
tions
an be stru
tured aroundasso
iations and asso
iation
lasses, we use a simpli�ed example fromDEOS. The target of our abstra
tion is a general pattern where a
ounter is used to indi
ate that an event has o

urred. This is a formof abstra
t time-stamping that is
ommon in
on
urrent programming.This pattern
onsists of an Event
lass
ontaining a
ounter and anynumber of Listener
lasses whi
h monitor the o

urren
e of events bykeeping a lo
al
opy of the event
ounter and
omparing the two valuesto determine if the event has o

urred. A
lass diagram representingthis pattern is shown in Figure 15a. The Event
lass
ontains
odethat in
rements the
ounter (T0 :
ount++), and the Listener
lass
ontains statements for
omparing the lo
al and the Event
ounter(T1 :
ount == last
ount) as well as setting the lo
al
ounter to theEvent
ounter (T2 : last
ount :=
ount).During model
he
king, this pattern leads to a large state spa
e be-
ause the
ounters in
rement inde�nitely. However, the behavior of theListener (and hen
e the system) is only determined by whether thesetwo variables are equal, not by exa
t values. Therefore, a variable, p,de�ned by the abstra
t predi
ate P �
ount == last
ount, is intro-du
ed. To represent this abstra
tion, an asso
iation
lass is introdu
edthat en
apsulates the new variable, as shown in Figure 15b.The abstra
t statements that modify the abstra
t variable be
ome:T0 : p := false, T1 : p and T2 : p := true. This is a pre
ise ab-stra
tion, sin
e similar to the example in the previous se
tion, thereis an invariant
ount � last
ount, that removes the possible nonde-terminism when
ount++ is abstra
ted. In pra
ti
e,
ount rolls over(say at MAXINT) and this may seem to invalidate our abstra
tion.However, the
orre
t behavior of the real system implementation alsorequires the assumption that
ount does not roll over and
at
h upwith last
ount. Therefore, this abstra
tion does not introdu
e anystronger assumptions on the system than those imposed by the im-plementation, and is therefore a strongly preserving abstra
tion of the
ode.Asso
iation
lasses
an be realized by repla
ing the asso
iation
lasswith a standard
lass that is asso
iated with the original two
lasses,and removing the original asso
iation, as shown in Figure 15
 [11℄.This approa
h leads to the
reation of a new obje
t to represent ea
habstra
ted asso
iation. In the
ase of a single predi
ate abstra
tion theresult would be an obje
t that en
apsulates only one bit. To eliminatethis overhead, a slightly di�erent approa
h to realizing asso
iation
lasses for predi
ates was used: the new
lass en
apsulates a two di-
fmsd.tex; 26/01/2004; 12:21; p.29

30
Event
ount Listenerlast
ount1 *

(a)Event
ount Listenerlast
ount1 *
EqualCountersp (b)Event
ount Listenerlast
ount1 *1 1EqualCountersp (
)Figure 15. Using Asso
iations to Represent Inter
lass Abstra
tions

fmsd.tex; 26/01/2004; 12:21; p.30

31Event
ount Listenerlast
ount1 11 1EqualCountersp[n,m℄Figure 16. Realizing Inter
lass Abstra
tions for Single Predi
atesmensional array of bits representing the state of the entire abstra
tasso
iation, as shown in Figure 16, where n and m are the number ofEvents and Listeners in the system [69℄ (allowing the more general
aseof multiple events per listener).4.4. Abstra
ting DEOSIn order to allow exhaustive veri�
ation of the DEOS model, it wasne
essary to apply abstra
tion to the program. The goal was to in-trodu
e abstra
tion
arefully and sele
tively to study how abstra
tionis applied during veri�
ation. First, a simple, ad-ho
 abstra
tion wasintrodu
ed into the system. Then, this abstra
tion was re�ned usingpredi
ate abstra
tion.4.4.1. Ad-ho
 Abstra
tionThe initial abstra
tion was guided by our intuition that the system'sbehavior is
y
li
 in nature: at the end of the longest s
heduling period,the system should return to a state where all threads are available tobe s
heduled with all of their budget available. However, simulationsshowed extremely long tra
es indi
ating that some data was being
ar-ried over these longest period boundaries. Spe
i�
ally, the itsPeriodIddata member for the StartOfPeriodEvent
lass is in
remented everytime the end of the
orresponding period was rea
hed. In addition,itsLastExe
ution, in the Thread
lass, also in
reases monotoni
allyas it is periodi
ally assigned the value of the itsPeriodId
ounterfor the StartOfPeriodEvent
orresponding to the thread's s
hedulingperiod.
fmsd.tex; 26/01/2004; 12:21; p.31

32void StartOfPeriodEvent::pulseEvent(DWORD systemTi
kCount) f
ountDown =
ountDown - 1;if (
ountDown == 0) fitsPeriodId = itsPeriodId + 1;...ggvoid Thread::startChargingCPUTime() f// Ca
he
urrent period for multiple uses here.periodIdentifi
ation
p = itsPeriodi
Event->
urrentPeriod();...// Has this thread run in this period?if (
p == itsLastExe
ution) f// Not a new period. Use whatever budget is remaining....gelse f// New period, get fresh budgets....// Re
ord that we have run in this period.itsLastExe
ution =
p;...g...gFigure 17. Sli
e for itsPeriodIdThe se
tions of the DEOS kernel
ode whi
h involve itsPeriodIdand itsLastExe
ution is shown in Figure 17. These variables areused to determine whether or not a thread has exe
uted in the
ur-rent period; If it has not, then its budget
an be safely reset. Whena thread starts running, itsLastExe
ution is assigned the value ofitsPeriodId (the return value of
urrentPeriod(), stored in thetemporary variable
p) whenever the two are not equal. Therefore,itsLastExe
ution will always in
rease by exa
tly one if a thread iss
heduled every period. In this
ase, both variable types
an be repla
edwith mu
h smaller ranges (namely bits) and still maintain the exa
tbehavior of the system.7 The DEOS developers assured us that theversion of DEOS being
onsidered did, in fa
t, ensure that a threadis s
heduled every period. Therefore, we
hanged itsPeriodId to bein
remented modulo 2. This
hange allowed exhaustive analysis of theentire state spa
e of both the defe
tive and
orre
ted version of DEOS.7 The two variables are either equal or di�erent by one, hen
e only one bit isrequired to represent the range of possible relationship between the variables.
fmsd.tex; 26/01/2004; 12:21; p.32

334.4.2. Predi
ate Abstra
tionIn the full DEOS system there are syn
hronization me
hanisms, su
has events and semaphores, that may
ause threads to wait for arbitraryamounts of time (whi
h is not possible in our sli
e of the system). Inthis
ase, our assumption that a thread will exe
ute every period, and
onsequently the preservation property of the abstra
tion, breaks down.Therefore, a more general solution was required if the abstra
tion wasto be used in a broader veri�
ation
ontext.It was (eventually) re
ognized that this part of DEOS is an instantia-tion of the abstra
t time-stamping te
hnique, introdu
ed in Se
tion 4.3,where StartOfPeriodEvent is the Event and the Thread
lasses are theListeners. The Thread
lasses
he
k whether a new period has beenentered by
omparing the itsPeriodId of the
urrent period (analo-gous to
ount) with their own itsLastExe
ution �eld (analogous tolast
ount). The asso
iation based predi
ate abstra
tion from Se
-tion 4.3 was then used to do a pre
ise abstra
tion of the DEOS kernel
ode and
ombined with the under-approximating timer environment.It is interesting to note that the abstra
ted algorithm
ould not beused as the a
tual DEOS implementation be
ause, to enable predi
tives
heduling, exe
ution time spent inside the kernel must be bounded.Updating the array of event bits is proportational to the number ofthreads in the system, whi
h is not bounded.5. Related Work5.1. Continued Work on DEOSAfter the original experiment, the model was expanded to analyze sla
k-s
heduling, whi
h allows threads to request \sla
k" time not used byother threads. With no prior knowledge of Promela or Spin, a Honeywelldeveloper was able to translate and insert the sla
k-s
heduling
ode intothe Promela model within one day. On the �rst model
he
king run aftermaking these
hanges, Spin dis
overed an error in the new
ode. Thedeveloper had translated a slightly outdated version of the DEOS
ode,and the error un
overed by Spin had been dis
overed by Honeywellthe previous week. The developer reported that it originally took 3days to dis
over what was wrong, whereas with the model
he
ker itwas easy to replay and understand the error tra
e. The original DEOSmodel has been expanded to be of high �delity with the
urrent DEOSimplementation and is updated with major
ode updates.The initial work on DEOS
learly indi
ated that hand translationwas not a pra
ti
al approa
h. This motivated the development of Java
fmsd.tex; 26/01/2004; 12:21; p.33

34PathFinder (JPF) [68℄, a model
he
ker that analyzes Java programsdire
tly. Subsequently, we translated DEOS from C++ to Java - anafternoon's work - and have used this version to evaluate JPF andBandera. Using Bandera, ba
kwards dependen
y analysis from the timepartitioning assertion identi�ed itsPeriodId (Se
tion 4.4) as a
andi-date �eld for abstra
tion. A range abstra
tion, where values 0 and 1are
on
rete and all negative numbers and all numbers greater than 1map to abstra
t values, was used to abstra
t this �eld. Type inferen
ethen determined that two other �elds (itsLastExe
ution and
p fromFigure 17) also required being abstra
ted to the range type. Althoughthis abstra
tion introdu
ed many spurious errors, JPF was dire
tedto only sear
h for \real"
ounterexamples to for
e the abstra
tion tobe pre
ise, and the time-partitioning error was found within a fewse
onds [55, 29, 34℄.5.2. Related Resear
hSin
e 1997, there has been an in
reasing amount of resear
h applyingmodel
he
king to analyze programs written in popular programminglanguages. Previously, the program analysis was done by manual model
onstru
tion before model
he
king.The �rst system to automati
ally analyze programs with a model
he
ker was Verisoft [32℄. Verisoft addresses the state spa
e problem bysimply not storing states. It therefore relies on s
heduler
ontrol andguided sear
h to a
hieve bene�ts over testing. Verisoft has been su

ess-fully applied in analyzing a number of large systems (see Verisoft paperin this Spe
ial issue). A similar state-less model
he
ker that analyzesJava programs was later developed by Stoller [65℄. We partially addressthe state-spa
e problem in DEOS by using under-approximation in thetimer model. In this
ase we are operating similar to stateless model
he
king, where there is an impli
it assumption that it is not ne
essaryto
over all states of the system to have a marked improvement overtesting.Several program model
he
kers are based on automated model-extra
tion, where the program is translated into the input notation ofan existing model
he
ker. Bandera [22℄ translates Java programs toa number of ba
k-end model
he
kers, in
luding Spin [40℄, dSpin [27℄,SMV [48℄, Bogor [57℄, and JPF8. Bandera also supports abstra
tion bytransforming the Java programs to \abstra
t" Java programs whi
hare then translated. JCAT [26℄ translates Java to Spin and dSpin.FeaVer [42℄ translates C
ode to Spin. SLAM [3℄ translates C
ode to8 JPF works on byte
ode
lass�les, hen
e translation here means
ompile it witha Java
ompiler
fmsd.tex; 26/01/2004; 12:21; p.34

35boolean programs as input for the Bebop model
he
ker [5℄. FeaVer andSLAM in
orporate abstra
tion methods into the translation pro
ess.FeaVer's abstra
tion is semi-automated, while SLAM uses predi
ateabstra
tion [3℄ and abstra
tion re�nement [4℄ to automated abstra
tionduring model
he
king.To support experimentation with abstra
tions for obje
t-orientedprograms, a prototype tool was developed to automati
ally generateabstra
ted programs written in Java. Given a Java program and anabstra
tion
riteria, the tool generates an abstra
t Java program interms of new abstra
t variables and remaining
on
rete variables. Theresulting Java program, implementing the abstra
t transition system,
an be tested or analyzed using a Java model
he
ker. The tool is aprototype and is not advan
ed enough to abstra
t a Java version ofDEOS. However, it was used to abstra
t part of a Java version of theRemote Agent software, allowing su

essful model
he
king [69℄.6. Con
lusions and Future WorkIn this experiment, the Spin model
he
ker was used su

essfully to re-dis
over a subtle error in the time partitioning of the DEOS s
hedulingkernel that was not un
overed during extensive testing. The initial goalof the study was to show that model
he
king
an augment stru
tural
overage based testing, su
h as the 100% MC/DC
overage requiredby the FAA
erti�
ation pro
ess for avioni
s software. The experimentshowed that model
he
king, augmented by minimal abstra
tion,
ould�nd errors in real programs that MC/DC testing did not. Additional
ontributions of this paper were to show that �lter-based environmentgeneration and predi
ate abstra
tion for obje
t-oriented programs
anbe used e�e
tively to redu
e the e�ort of applying model
he
king toreal programs.We
ontinue to work on extending the appli
ability of predi
ate ab-stra
tion and integrating it with related abstra
tion te
hniques [22, 29℄.We have also re
ently augmented the Java PathFinder model
he
kerwith the
apability to do analysis by symboli
 exe
ution [46℄. Thisallows the model
he
ker to analyze programs with symboli
 data,i.e. where variables do not have
on
rete values, by using
onstraintsolving to eliminate infeasible paths. This generalizes many abstra
tionapproa
hes, but
omes with several resear
h issues, su
h as eÆ
ientappli
ation of widening [23℄.In the area of environment generation, the pro
ess must be fur-ther stru
tured and automated to redu
e the
ost of applying model
he
king. Although our results indi
ate that a �lter-based approa
h
fmsd.tex; 26/01/2004; 12:21; p.35

36is bene�
ial, the pro
ess of dis
overing new �lters to
onstrain theenvironment must be improved. There is a
lose relationship betweenenvironment generation in the �lter-based approa
h and abstra
tionre�nement as used during
onservative abstra
tions (e.g. predi
ate ab-stra
tion as dis
ussed in the next se
tion): in both
ases one starts withan over-approximation of system/environment behaviors and guidedby
ounterexamples one eventually
reates a suÆ
iently pre
ise sys-tem/environment for analysis. Automating this pro
ess has re
eiveda great deal of attention in abstra
tion re�nement [3, 39, 4, 17℄, butsimilar approa
hes in environment generation are still la
king. Due tothe
lose relationship between these two areas, re
ent improvementsin abstra
tion re�nement should be investigated in the
ontext of en-vironment generation. We have also begun to investigate methods forautomati
ally synthesizing environments of software
omponents, su
hthat the
omponents satisfy given properties [19℄.Our view of environment generation is from the perspe
tive of astand-alone veri�
ation a
tivity, with people, possibly other than thesoftware developers, doing the analysis by model
he
king. However, it
an also be viewed from the perspe
tive of integrating model
he
kingwith traditional testing a
tivities. In this
ase, the environment
ouldbe
onstru
ted by modifying an existing test-harness. However, thete
hnique of using nondeterminism to over-approximate the environ-ment is a paradigm shift from traditional testing whi
h is based onexpli
it test sequen
es. Our experien
e with allowing developers to
reate environments for model
he
king is that they are in
lined touse the same environment as for testing, and hen
e do not exploit theability of the model
he
ker to automati
ally explore the environmentinput/response
hoi
es in addition to the s
heduling
hoi
es. Therefore,for model
he
king to work in pra
ti
e, it may be ne
essary to developmethods for generalizing or
onverting test drivers or test
ases intoveri�
ation environments.A
knowledgmentsKlaus Havelund
ontributed the
ontent of the Promela overview; anyerrors are due to our severe editing. We thank Phil Oh, Robert Gold-man, Klaus Havelund, Charles Pe
heur, Mi
hael Lowry, Thomas Uribe,Hassen Saidi, Matt Dwyer, John Hat
li�, David Dill, Satyaki Das,Jens Skakkabaek, Darren Co�er, Murali Rangarajan, Dimitra Gian-nakopoulou, Flavio Lerda, Alex Gro
e, Oksana Tka
huk, Cindy Kongfor numerous te
hni
al dis
ussions that
ontributed to this work. Wealso thank the many reviewers who have provided
omments on this
fmsd.tex; 26/01/2004; 12:21; p.36

37work as it progressed. This work was funded by the NASA Informa-tion Te
hnology Base Resear
h Program, with follow-on support fromthe Computing, Information and Communi
ation Te
hnology Programand the Engineering for Complex Systems Program, all supported byNASA's OÆ
e of Aerospa
e Te
hnology.Referen
es1. R. Allen, D. Garlan, and J. Ivers. Formal modeling and analysis of the HLA
omponent integration standard. In Pro
. 6th SIGSOFT FSE, Lake BuenaVista, Florida, November 1998. ACM.2. J. M. Atlee and J. Gannon. State-based model
he
king of event-driven systemsrequirements. IEEE TSE, 19(1):24{40, January 1993.3. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Abstra
tionsfor Model Che
king C Programs. In Pro
. of TACAS 2001, volume 2031 ofLNCS, Genova, Italy, April 2001. Springer-Verlag.4. T. Ball, A. Podelski, and S. K. Rajamani. Relative Completeness of Abstra
tionRe�nement for Software Model Che
king. In Pro
. of TACAS 2002., volume2280 of LNCS, Grenoble, Fran
e, April 2002. Springer-Verlag.5. T. Ball and S. Rajamani. Bebop: A symboli
 Model Che
ker for BooleanPrograms. In Pro
. 7th International SPIN Workshop, volume 1885 of LNCS,Stanford University, California, USA, August 2000. Springer-Verlag.6. B. Beizer. Software Testing Te
hniques. 2nd ed, Van Nostrand Reinhold, NewYork, 1990.7. B. Boehm. Software Engineering E
onomi
s. Prenti
e Hall, 1981.8. G. Boo
h, J. Rumbaugh, and I. Ja
obson. The Uni�ed Modeling LanguageUser Guide. Addison-Wesley, 1998.9. D. Bosna
ki and D. Dams. Integrating real time into Spin: A prototypeimplementation. In Pro
. FORTE/PSTV XVIII, pages 423{439. Kluwer, 1998.10. E. Brinksma and A. Mader. Veri�
ation and optimization of a PLC
ontrols
hedule. In Pro
. 7th SPIN Workshop, pages 73{92. Springer-Verlag, 2000.11. B. Bruegge and A. H. Dutoit. Obje
t-Oriented Software Engineering: Conquer-ing Complex and Changing Systems. Prenti
e Hall, 2000.12. R. W. Butler and G. B. Finelli. The infeasibility of quantifying the reliabilityof life-
riti
al real-time software. IEEE TSE, 19(1):3{12, 1993.13. J. Falk C. Kaner and H.Q. Nguyen. Testing
omputer Software. 2nd ed, Wiley,1993.14. W. Chan, R. Andersen, P. Beame, D. Jones, D. Notkin, and W. Warner. De
ou-pling syn
hronization from lo
al
ontrol for eÆ
ient symboli
 model
he
kingof state
harts. In Pro
. 21st International Conferen
e on Software Engineering,pages 142{151, Los Angeles, May 1999. ACM Press.15. W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin,and J. D. Reese. Model
he
king large software spe
i�
ations. IEEE TSE,24(7):498{520, July 1998.16. J.J. Chilenski and S.P. Miller. Appli
ability of modied
ondition/de
ision
overage to software testing. Software Engineering Journal, 9(5), Sep 1994.17. E. Clarke, A. Gupta, J. Kukula, and O. Stri
hman. SAT based Abstra
tion-Re�nement using ILP and Ma
hine Learning Te
hniques. In Pro
. 14th
fmsd.tex; 26/01/2004; 12:21; p.37

38 Conferen
e on Computer-Aided Veri�
ation, LNCS. Springer-Verlag, July2002.18. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automati
 Veri�
ation of Finite-State Con
urrent Systems Using Temporal Logi
 Spe
i�
ations. ACM Trans.on Programming Languages and Systems, 8(2):244{263, April 1986.19. J. M. Cobleigh, D. Giannakopoulou, and C. S. P�as�areanu. Learning assump-tions for
ompositional veri�
ation. In Pro
. of TACAS 2003, volume 2619 ofLNCS. Springer-Verlag, April 2003.20. M. Col�on and T. Uribe. Generating �nite-state abstra
tions of rea
tive sys-tems using de
ision pro
edures. In Pro
. 10th Conferen
e on Computer-AidedVeri�
ation, volume 1427 of LNCS. Springer-Verlag, July 1998.21. J. Corbett. Constru
ting
ompa
t models of
on
urrent Java programs. InM. Young, editor, Pro
. Intl. Symposium on Software Testing and Analysis,Software Engineering Notes, pages 1{10. SIGSOFT, ACM, Mar
h 1998.22. J. C. Corbett, M. B. Dwyer, J. Hat
li�, S. Lauba
h, C. S. Pasareanu, Robby,and H. Zheng. Bandera : Extra
ting �nite-state models from Java sour
e
ode.In Pro
. 22nd Intl. Conf. on Software Engineering. ACM Press, June 2000.23. P. Cousot and R. Cousot. Comparing the Galois
onne
tion and widen-ing/narrowing approa
hes to abstra
t interpretation. In M. Bruynooghe andM. Wirsing, editors, Pro
. Fourth International Symposium on ProgrammingLanguage Implementation and Logi
 Programming, volume 631 of LNCS, pages269{295, Leuven, Belgium, 1992. Springer-Verlag.24. Z. Dang and R. Kemmerer. Using the ASTRALModel Che
ker to Analyze Mo-bile IP. In Pro
. IEEE 21st International Conferen
e on Software Engineering,pages 132{141, Los Angeles, May 1999. ACM Press.25. S. Das, D. Dill, and S. Park. Experien
e with predi
ate abstra
tion. In Pro
.International Conferen
e on Conputer-aided Veri�
ation (CAV'99), volume1633 of LNCS, pages 160{171. Springer-Verlag, 1999.26. C. Demartini, R. Iosif, and R. Sist. A deadlo
k dete
tion tool for
on
urrentJava programs. Software Pra
ti
e and Experien
e, 29(7):577{603, July 1999.27. C. Demartini, R. Iosif, and R. Sisto. dSPIN: A Dynami
 Extension of SPIN.In Pro
. 6th SPIN Workshop, volume 1680 of LNCS. Springer-Verlag, 1999.28. N. Dor, M. Rodeh, and S. Sagiv. Dete
ting memory errors via stati
 pointeranalysis (preliminary experien
e). In Workshop on Program Analysis ForSoftware Tools and Engineering, pages 27{34. ACM, 1998.29. M. Dwyer, J. Hat
li�, R. Joehanes, S. Lauba
h, C. Pasareanu, Robby,W. Visser, and H. Zheng. Tool-supported Program Abstra
tion for Finite-stateVeri�
ation. In Pro
. 23rd International Conferen
e on Software Engineering,Toronto, Cananda., May 2001. ACM Press.30. M. Dwyer and C. Pasareanu. Filter-based model
he
king of partial systems.In Pro
. 6th ACM SIGSOFT FSE. ACM SIGSOFT, November 1998.31. D. Evans. Stati
 dete
tion of dynami
 memory errors. In Conferen
e onProgramming Language Design and Implementation, pages 44{53. ACM, 1996.32. P. Godefroid. Model
he
king for programming languages using Verisoft. InSymp. on Prin
iples of Programming Languages, pages 174{186. ACM, 1997.33. S. Graf and H. Saidi. Constru
tion of abstra
t state graphs with PVS. In Pro
.9th International Conferen
e on Computer Aided Veri
ifa
tion, volume 1254of LNCS, pages 72{83. Springer-Verlag, 1997.34. A. Gro
e and W. Visser. Model
he
king Java programs using stru
turalheuristi
s. In Pro
. Intl. Symp. on Software Testing and Analysis. ACM Press,July 2002.
fmsd.tex; 26/01/2004; 12:21; p.38

3935. K. Havelund, M. Lowry, S. Park, C. Pe
heur, J. Penix, W. Visser, and J. L.White. Formal analysis of the remote agent before and after
ight. In 5thNASA Langley Formal Methods Workshop. NASA, 2000.36. K. Havelund and T. Pressburger. Model
he
king Java programs using JavaPathFinder. Intl. Journal on Software Tools for Te
hnology Transfer, 1999.37. K. J. Hayhurst, C. A. Dorsey, J. C. Knight, N. G. Leveson, and G. F. M
-Cormi
k. Streamlining software aspe
ts of
erti�
ation: Report on the SSACsurvey. Te
hni
al Report NASA/TM-1999-209519, NASA Langley Resear
hCenter, 1999.38. C. Heitmeyer. Using abstra
tion and model
he
king to dete
t safety violationsin requirements spe
i�
ations. IEEE TSE, 24(11):927{948, nov 1998.39. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstra
tion. InPro
. Symp. on Prin
iples of Programming Languages, pages 179{190. ACM,2002.40. G. Holzmann. The model
he
ker SPIN. IEEE TSE, 23(5):279{295, 1997.41. G. J. Holzmann and M. H. Smith. An automated veri�
ation method fordistributed systems software based on model extra
tion. IEEE TSE, 28(4):364{377, April 2002.42. G.J. Holzmann. Logi
 veri�
ation of ansi-

ode with spin. In Pro
. 7thInternational SPIN Workshop, volume 1885 of LNCS, pages 131{147. SpringerVerlag, Sep. 2000.43. G. Hwang, K. Tai, and T. Hunag. Rea
hability testing: An approa
h totesting
on
urrent software. Journal of Software Engineering and KnowledgeEngineering, 5(4), De
ember 1995.44. D. Ja
kson and M. Vaziri. Finding bugs with a
onstraint solver. In Mary JeanHarrold, editor, Pro
. International Symposium on Software Testing and Anal-ysis, Software Engineering Notes, pages 14{25, Portland, Oregon, August 2000.ACM Press.45. JPL Spe
ial Review Board. Report on the loss of the Mars Polar Lander andDeep Spa
e 2 missions, Mar
h 2000.46. S. Khurshid, C. S. P�as�areanu, and W. Visser. Generalized symboli
 exe
utionfor model
he
king and testing. In Pro
. of TACAS 2003, volume 2619 ofLNCS. Springer-Verlag, April 2003.47. R. Lutz. Analyzing software requirements errors in safety-
rit
al embedded sys-tems. In Pro
. IEEE International Symposium on Requirements Engineering.IEEE Computer So
iety, January 1993.48. K.L. M
Millan. Symboli
 Model Che
king. Kluwer A
ademi
, 1993.49. G. Naumovi
h, G. S. Avrunin, and L. A. Clarke. Data
ow analysis for
he
kingproperties of
on
urrent Java programs. In Pro
. 21st International Conferen
eon Software Engineering, pages 399{410. ACM Press, May 1999.50. J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger. Veri�
ationof time partitioning in the deos s
heduler kernel. In Pro
. 22nd InternationalConferen
e on Software Engineering. ACM Press, June 2000.51. A. Pnueli. The Temporal Logi
 of Programs. In 18th annual IEEE-CSSymposium on Foundations of Computer S
ien
e, pages 46{57, 1977.52. A. Pnueli. In transition from global to modular temporal reasoning about pro-grams. In K. Apt, editor, Logi
 and Models of Con
urrent Systems, volume 13,pages 123{144, New York, 1984. Springer.53. PolySpa
e. http://www.polyspa
e.
om.
fmsd.tex; 26/01/2004; 12:21; p.39

4054. C. P�as�areanu, M. Dwyer, and M. Huth. Assume-guarantee model
he
king ofsoftware: A
omparative
ase study. In Pro
. 6th SPIN Workshop, volume 1680of LNCS. Springer-Verlag, 1999.55. C.S. P�as�areanu, M.B. Dwyer, and W. Visser. Finding feasible
ounter-exampleswhen model
he
king abstra
ted Java programs. In Pro
. of TACAS 2001,volume 2031 of LNCS. Springer-Verlag, 2001.56. J.P. Queille and J. Sifakis. Spe
i�
ation and Veri�
ation of Con
urrent Systemsin CESAR. In International Symposium on Programming, volume 137 of LNCS.Springer-Verlag, 1982.57. Robby, M. B. Dwyer, and J. Hat
li�. Bogor: an extensible and highly-modularsoftware model
he
king framework. In ESEC 9/FSE 10, pages 267{276, Sep2003.58. RTCA Spe
ial Committee 167. Software
onsiderations in airborne systems andequipment
erti�
ation. Te
hni
al Report DO-178B, RTCA, In
., de
 1992.59. J. Rushby. Partitioning for safety and se
urity: Requirements, me
hanisms,and assuran
e. NASA Contra
tor Report CR-1999-209347, NASA LangleyResear
h Center, June 1999. Also to be issued by the FAA.60. H. Saidi. Modular and In
remental Analysis of Con
urrent Software Sys-tems. In Pro
. 14th IEEE International Conferen
e on Automated SoftwareEngineering, pages 92{101. IEEE Computer So
iety, O
tober 1999.61. H. Saidi and N. Shankar. Abstra
t and model
he
k while you prove. In Pro
.11th Conferen
e on Computer-Aided Veri�
ation, volume 1633 of LNCS, pages443{454. Springer-Verlag, July 1999.62. Sha, Klein, and J. Goodenough. Rate monotoni
 anaysis for real-time systems.Foundations of Real-Time Computing, pages 129{155, 1991.63. G.S. Shedler. Regenerative Sto
hasti
 Simulation. A
ademi
 Press, 1993.64. Mi
rosoft Spe
 and Che
k Workshop, 2001. http://resear
h.mi
rosoft.
om/spe
n
he
k/.65. S. D. Stoller. Model-
he
king multi-threaded distributed Java programs. InSPIN Model Che
king and Software Veri�
ation, volume 1885 of LNCS, pages224{244. Springer-Verlag, August 2000.66. S. Tripakis and C. Cour
oubetis. Extending Promela and Spin for real time.In Pro
. of TACAS 1996, volume LNCS 1055. Springer, 1998.67. M. Vardi. An Automata-Theoreti
 Approa
h to Linear Temporal Logi
. InF. Moller and G. Birtwistle, editors, Logi
s for Con
urren
y, pages 238{266.LNCS, 1043, Springer Verlag, 1996.68. W. Visser, K. Havelund, G. Brat, and S. Park. Model
he
king programs. InPro
. 14th IEEE International Automated Software Engineering Conferen
e.IEEE Computer So
iety, September 2000.69. W. Visser, S. Park, and J. Penix. Using predi
ate abstra
tion to redu
eobje
ted-oriented programs for model
he
king. In Mats P. E. Heimdahl, editor,Pro
. Third ACM Workshop on Formal Methods in Software Pra
ti
e, pages3{12, Portland, Oregon, August 2000. ACM Press.70. C. D. Yang, A. L. Souter, and L. L. Pollo
k. All-du-path
overage for parallelprograms. In International Symposium on Software Testing and Analysis, pages153{162. ACM Press, 1998.

fmsd.tex; 26/01/2004; 12:21; p.40

