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Abstract

This paper presents a novel niching algo-
rithm, probabilistic crowding. Like its pre-
decessor deterministic crowding, probabilis-
tic crowding is fast, simple, and requires no
parameters beyond that of the classical GA.
In probabilistic crowding, subpopulations are
maintained reliably, and we analyze and pre-
dict how this maintenance takes place.

This paper also identifies probabilistic crowd-
ing as a member of a family of algo-
rithms, which we call integrated tourna-
ment algorithms. Integrated tournament al-
gorithms also include deterministic crowd-
ing, restricted tournament selection, elitist
recombination, parallel recombinative simu-
lated annealing, the Metropolis algorithm,
and simulated annealing.

1 INTRODUCTION

The two main objectives of niching algorithms are (i)
to converge to multiple, highly fit, and significantly
different solutions, and (ii) to slow down convergence
in cases where only one solution is required. Different
algorithms have been developed to fulfil these objec-
tives [Goldberg and Richardson, 1987] [Harik, 1995]
[Mahfoud, 1995]. One of these algorithms is known as
deterministic crowding [Mahfoud, 1995]. Strengths of
deterministic crowding are that it is simple, fast, and
requires no parameters in addition to those of a clas-
sical GA. Deterministic crowding has also been found
to work well on test functions as well as in applica-
tions. However, deterministic crowding also has some
weak points. There is a lack of analysis of convergence;
as a result it is not entirely clear what deterministic
crowding computes. Considering the internal work-
ings of the algorithm, the main problem appears to be
that there is no restorative pressure—species of higher
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fitness tend to win over species of lower fitness—thus
niches may get lost even though they should not be
according to their fitness.

This paper introduces a new niching algorithm, prob-
abilistic crowding. As the name suggests, probabilis-
tic crowding is an offspring of deterministic crowding,
and as such inherits many of its pleasant characteris-
tics. The main difference is the use of a probabilistic
rather than a deterministic acceptance function. No
longer do stronger individuals always win over weaker
individuals, they win proportionally according to their
fitness, thus we get a restorative pressure. Using a
probabilistic acceptance function is shown to give sta-
ble, predictable convergence according to the niching
rule, a gold standard for niching algorithms. We show
this both analytically and experimentally.

A second purpose of this paper is to briefly review
the family of algorithms to which both deterministic
and probabilistic crowding belongs, integrated tour-
nament algorithms. Other members of this class are
restricted tournament selection [Harik, 1995], elitist
recombination [Thierens and Goldberg, 1994], paral-
lel recombinative simulated annealing [Mahfoud and
Goldberg, 1995], the Metropolis algorithm [Metropo-
lis et al., 1953], and simulated annealing [Kirkpatrick
et al., 1983]. Common to these algorithms is that com-
petition is localized and occurs between what we might
call a family of similar individuals. It turns out that
slight variations in how the family is formed is crucial
to whether one obtains a niching algorithm or not, and
more generally this class of algorithms is interesting
because it is very efficient and gives a wide spectrum
of functionality which can be attained by changing a
few parameters.

The rest of this paper is organized as follows. Section
2 presents integrated tournament algorithms. Section
3 introduces the probabilistic crowding algorithm. In
Section 4, we analyze certain variants of probabilistic
crowding. Section 5 and 6 gives empirical evidence
that probabilistic crowding works well, while Section 7



concludes and points out directions for future research.

2 INTEGRATED TOURNAMENT
ALGORITHMS

In traditional GAs, mutation and recombination is
done first, and then selection (or replacement) is per-
formed second, without regard to similarity between
individuals. Many algorithms, such as probabilistic
crowding, deterministic crowding, parallel recombina-
tive simulated annealing, restricted tournament se-
lection, the Metropolis algorithm, and simulated an-
nealing work differently, although this distinction has
not always been clearly expressed in the literature.
What these algorithms, which we shall call integrated
tournament algorithms, have in common is that the
processes of mutation, recombination, and replace-
ment are all integrated. Intuitively, integrated tourna-
ment algorithms can give niching through local tour-
naments: Similar individuals compete for spots in the
population, and fit individuals replace those that are
less fit, at least probabilistically. The exactly nature
of the tournament depends on the algorithm, and is
a crucial factor in deciding whether we get a nich-
ing algorithm or not. For instance, elitist recombi-
nation [Thierens and Goldberg, 1994] is an integrated
tournament algorithms, but it is not a niching algo-
rithm.

An early integrated tournament algorithm is the
Metropolis algorithm, which originated in physics
[Metropolis et al., 1953], and consists of generation and
acceptance steps [Neal, 1993]. In the generation step, a
new state (or individual) is generated from an existing
state; in the acceptance step, the new state is accepted
or rejected with some probability. Two common accep-
tance probability distributions are the Metropolis and
the Boltzmann distributions. The Boltzmann distri-
bution is

exp(—E;/T)
exp(—E;/T) + exp(—E;/T)’

Pr(E;) = 1)

where E; and E; are the energies of the old and new
states (individuals) respectively.

Simulated annealing is essentially the Metropolis al-
gorithm with temperature added. The temperature
controls the probability of accepting a higher-energy
(less fit) state (individual). At high temperature,
this probability is very high, but it decreases with
the temperature. Simulated annealing consists of it-
erating the Metropolis algorithm at successively lower
temperatures, and this way it finds an estimate of the
global optimum [Kirkpatrick et al., 1983] [Laarhoven
and Aarts, 1987]. Both the Metropolis rule and the

Boltzmann rule achieve the Boltzmann distribution

exp(fEi/T) (2)
>jexp(—E;/T)’
where Pr(E;) is the probability of having a state ¢ with

energy E; at equilibrium, 7' is temperature. If cooling
is slow enough, one is guaranteed to find the optimum.

Within the field of genetic algorithms proper, an early
integrated tournament approach is preselection. Cav-
icchio introduced preselection, in which a child re-
places an inferior parent [Goldberg, 1989]. DeJong
turned preselection into crowding [DeJong, 1975]. In
crowding, an individual is compared to a randomly
drawn subpopulation of ¢ members, and the most sim-
ilar member among the c is replaced. Good results
with ¢ = 2 and ¢ = 3 were reported by DeJong on
multimodal functions.

In order to integrate simulated annealing and genetic
algorithms, the notion of Boltzmann tournament se-
lection was introduced [Goldberg, 1990]. Two motiva-
tions for Boltzmann tournament selection were asymp-
totic convergence (as in simulated annealing) and pro-
viding a niching mechanism. The Boltzmann (or logis-
tic) acceptance rule, shown in Equation 1, was used.
Boltzmann tournament selection was the basis for par-
allel recombinative simulated annealing (PRSA) [Mah-
foud and Goldberg, 1995]. PRSA also used Boltzmann
acceptance, and introduced the following two rules for
handling children and parents: (i) In double acceptance
and rejection, both parents compete against both chil-
dren. (ii) In single acceptance and rejection, each par-
ent competes against a pre-determined child in two dis-
tinct competitions. Like simulated annealing, PRSA
uses a cooling schedule. Both mutation and crossover
are used, to guarantee convergence to the Boltzmann
distribution at equilibrium. Three different variants
of PRSA were tested empirically with good results,
two of these have proofs of global convergence. Deter-
ministic crowding [Mahfoud, 1995] is similar to PRSA.
Differences are that deterministic crowding matches
up parents and children by minimizing some distance
measure, and it uses the deterministic acceptance rule
of always picking the best fit individual in each parent
and child pair.

Another integrated tournament algorithm is the gene-
invariant GA (GIGA). In GIGA, children replace the
parents [Culberson, 1992]. Parents are selected, a
family constructed, children selected, and parents re-
placed. Family construction amounts to creating a set
of pairs of children, and from this set one pair is picked
according to some criterion, such as highest average fit-
ness or highest maximal fitness. The genetic invariance
principle is that the distribution over any one position
on the gene does not change over time. GIGA with no



mutation obeys the genetic invariance principle, so the
genetic material of the initial population is retained.
In addition to selection pressure provided by selection
of better child pairs in a family, there is selection pres-
sure due to sorting of the population combined with
selection of adjacent individuals.

Restricted tournament selection is another integrated
tournament algorithm [Harik, 1995]. The approach
is a modification of standard tournament selection,
based on local competition. Two individuals x and
y are picked, and crossover and mutation is performed
in the usual way, creating new individuals x’ and y’.
Then w individuals are randomly chosen for x’, and
among these the closest one, x”, competes with x’ for
a spot in the new population. A similar procedure is
applied to y’. The parameter w is called the window
size. The window size is set to be a multiple of s, the
number of peaks to be found: w = ¢ X s, where c is a
constant. Restricted tournament selection illustrates
that integrated tournament algorithms only need to be
have their operations conceptually integrated; the key
point is that individuals compete locally (with similar
individuals) for a spot in the population.

In summary, important dimensions of integrated tour-
nament algorithms are the form of the acceptance
rule, whether temperature is used, which operators are
used, and whether the algorithm gives niching or not.
The importance of the distinction between probabilis-
tic and deterministic acceptance is as follows. It seems
easier to maintain a diverse population with proba-
bilistic acceptance, and this is the goal of niching algo-
rithms. Processes similar to probabilistic acceptance
occur elsewhere in nature, for instance in chemical re-
actions and in statistical mechanics.

Concerning operators, one important distinction is
whether similar individuals are brought together to
compete implicitly or explicitly. The implicit ap-
proach, of which PRSA, deterministic crowding, prob-
abilistic crowding are examples, integrate the opera-
tions of variation and selection. The explicit approach,
examples of which are crowding and restricted tourna-
ment selection, search for similar individuals in the
population. So in addition to variation and selection,
there is a search step. Note that explicit versus implicit
is a matter of degree, since even deterministic crowding
with crossover searches for a given child for the closest
among the parents. Whether the integrated tourna-
ment algorithm gives niching or not depends on the
nature of the family competition. If the family com-
petition is based on similarity, such that two or more
similar individuals compete for a place in the popula-
tion, the result is niching, else no niching is obtained.
For example, deterministic crowding, restricted tour-
nament selection, and probabilistic crowding are nich-

ing algorithms, while elitist recombination and GIGA
are not.

3 PROBABILISTIC CROWDING
ALGORITHM

Probabilistic crowding is based on the deterministic
crowding algorithm [Mahfoud, 1995]; the two main dif-
ferences being (i) the probabilistic acceptance rule and
(ii) the fact that we have a variant without crossover
at all.

Let x and y be two similar individuals that have been
picked to compete to replace one of these two individ-
uals in the next generation. Similarity comes about
implicitly, when mutation only is employed, or explic-
itly, by using a distance measure in connection with
crossover or explicit search for family members. In
probabilistic crowding, x and y compete in a proba-
bilistic tournament. The probability of x winning is

given by:
f)

Px = p(X) = X+ 1) (3)

where f is the fitness (or objective) function. Notice
that probabilistic crowding is primarily a distance-
based niching algorithm, since competition occurs
within families, between similar individuals. Here, the
family consists of two members x and y, but this can
easily be generalized to larger families.

Three variants of the probabilistic crowding algorithm
have been investigated: Variant M (with mutation
only), Variant M&C (with mutation and crossover),
and Variant C (with crossover only). These variants
differ in the way in which one attains x and y; and
also when crossover is used a measure of distance is
needed.

One of the most important questions to ask about an
integrated tournament algorithm is what the charac-
teristics of its steady-state (equilibrium) distribution
are. In particular, we are interested in this for niches.
A niche is a set of fitness function values that have
the same local optimum under some local search algo-
rithm; see [Mahfoud, 1995] for details. The notation
x € X will be used to indicate that individual x is a
member of niche X. Let ¢ be the number of niches,
and X; the ¢-th niche. The niching rule

fi

:q—
j=1fj

gives allocation of IV; individuals to X;. Here, f; is a
measure of fitness in niche X, for example fitness of
best fit, average fitness, or fitness sum. The niching
rule, which can be derived from the sharing rule [Gold-
berg and Richardson, 1987], is considered a gold stan-

N; (4)



dard for niching algorithms. In the following we will
see how probabilistic crowding gives this rule as a spe-
cial case.

4 ANALYSIS OF PROBABILISTIC
CROWDING

We analyze probabilistic crowding, first the special
case with two niches, second the more general case
with several niches. Two kinds of analyses are pro-
vided: at steady state and of the form of convergence
of the population. We assume some variation operator,
which typically would be mutation or crossover. In the
analysis we consider one representative per niche; for
example if the niche is X, the representative is x. We
perform a deterministic analysis, thus focusing on the
mean in the stochastic processing of a GA.

4.1 TWO NICHES, SAME JUMP
PROBABILITIES

Suppose we have a variation operator that results in
two types of jumps; short jumps and long jumps.
When an individual is treated with a short jump it
stays within its niche, when it is treated with a long
jump it jumps to some other niche. The probabilities
are ps and p; respectively, and ps + p; = 1. That is,
we either jump short or long.

Consider mother m (individual before variation opera-
tor was applied) and daughter d (individual after vari-
ation operator was applied). Suppose we have niches
X and Y, and think about how X can gain individuals
from one generation to the next. (i) The first possi-
bility is m € X. The first case is that the daughter d
stays in the mother m’s niche if a short jump is made;
in this case it doesn’t matter whether m or d win since
both are in the same niche. The second case is that
the daughter jumps and loses. (The case where the
daughter jumps and wins is a loss for X, and is not
participating in the difference equation below.) (ii)
The second possibility is that m € Y. Now, gain for
niche X happens when the daughter jumps to X and
wins.

The above argument can be formalized in a difference
equation. Let the proportion of individuals in niche
Z at generation t be Z(t). By assumption we have
two niches, X and Y, and the proportions of interest
at time t are denoted X () and Y (¢) respectively. Note
that X (¢t) + Y(t) = 1 for any ¢. This gives rise to the
following difference equation

X(t+1) = pX(t) +pipX(t) + pipxY (t) (5)
= X(t) — pX(t) + pipx-

We will solve this equation in two ways—considering

the steady state and getting a closed form formula. At
steady state we have X (¢ + 1) = X (t) = X, substi-
tuting this into Equation 5 leads to

Xos = Xos—iXos + piDx (6)
= Px
f(x)
f(x)+ f(y)’

where x € X, y € Y. In words, we get the niching rule
of Equation 4 at steady state, as one would hope for.

Now we turn to obtaining a closed form formula. Con-
sidering two niche proportions X (¢) and Y (¢), we have

) = X (t) + pipxX(t) + Pk Y (t) (7)

X(t+1
t+1) = pY(t) +pipyY (1) + pipy X (t)

Y(

The solution to the above system of difference equa-
tions can be written as:

Px + PLX (0) — pipx X (0) — plpxY (0)(8)
= py — X (0) + pepxX (0) + plpxY (0),
and we see how as t tends to infinity we get the niching
rule, expressed as px and py, for both niches.

For illustration, suppose X(0) = Y (0) = 1 in the ini-
tial population. This gives solutions:

V() = byt (5o mpl )
X() = px+(%*px)pi,

and again we see how we get the desired result as t
tends to infinity. Also note that a smaller p; gives
faster convergence to the niching rule proportion. In
summary, we see that initialization does not affect the
fact that the niching rule is achieved in the limit.

4.2 TWO NICHES, DIFFERENT JUMP
PROBABILITIES

Here we relax the assumption of equal jump probabili-
ties for the two niches. Rather than jump probabilities
ps and p;, we have jump probabilities p;; for jumping
from niche X; to niche X, where ¢, j € {0,1}. We also
use the notation X;(¢) for the proportion of individu-
als in niche X; at time ¢. The facts p1; + p12 = 1 and
P21 + poo = 1 are used below, too.

We obtain an expression for X (¢ + 1) using reasoning
similar to that used for Equation 5. At steady state
we have X;(t+ 1) = X;(t) = X, leading to

Xy = pu1 Xy + px X1 — p11px X1 — p21Px X1 + P21Px



which after some manipulation simplifies to the follow-
ing allocation ratio for niche X;

X,=—2ra P )
Px, + prz Pxy + P12Px-
Here, p12 = % is denoted the transmission ratio from

X; to Xy. In general, we have that p;; is the trans-
mission ratio from niche X; to X;. Clearly, p;2 is large
if the in-flow into X, is large relative to the out-flow
from X3. We may compare Equation 10 to the niching
rule proportion N; according to Equation 4:

Px,

Ny et P (11)
Obviously, letting p12 = 1 in Equation 10 gives the
same allocation as Equation 11. pjo > 1 means that
niche Xy will have a larger subpopulation at equilib-
rium than under perfect niching, giving X; a smaller
subpopulation, while p;5 < 1 means that Xs’s sub-
population at equilibrium will be smaller than under
perfect niching, giving X; a larger subpopulation.

The size of a niche as well as the operators used will
have an impact on p12 and ps;. Disregarding the effect
of operators, a large Xy niche will have p;5 > 1 and
therefore give a smaller subpopulation for X;. Like-
wise, a small Xy niche will have p;j2 < 1 and thus a
larger subpopulation for Xj.

Along similar lines, the ratio for niche Xy turns out to
be

X2 — pX2 — pr
%pxl + Px, P21Px, + Px, ’

with pg; = B2

P12’
Finally, note that the same result can be established
by solving these two simultaneous difference equations:

Xi(t+1)
Xo(t+1)

P11X1(t) + P12px X1 (1) + p210x X2 (1)
P22 Xo(t) + pa1py Xa(t) + prapy X1 (1),

which yields fairly complex solutions which can be
solved by eliminating all terms with generation ¢ in
the exponent. These solutions can then be simplified,
giving exactly the same result as above.

4.3 MULTIPLE NICHES, DIFFERENT
JUMP PROBABILITIES

Here we generalize from two to ¢ niches. Let the proba-
bility of transfer from the i-th to j-th niche under the
variation operator be p;;, where 23:1 pij = 1. The
probability of the individual x; € X; winning over the
individual x; € X is

* f(Xi)
Pu =T+ 1x5)

We can now set up the following system of i difference
equations:

Xi(t+1) = Zpijpiji(t) + ijip;‘ijj(t)
J J

Unfortunately, these equations are hard to solve. But
by introducing the assumption of local balance (known
as detailed balance in physics [Laarhoven and Aarts,
1987]), progress can be made. The condition is [Neal,
1993, p. 37]

Xipijpji = X;pjipi;- (12)
The local balance assumption is that individuals (or
states) are in equilibrium: The probability of an in-
dividual x; being transformed into another individual
x; is the same as the probability of the second indi-
vidual x; being transformed into the first individual
xX;. We can assume this is for a niche rather than for
an individual, similar to what we did above, thus giv-
ing Equation 12. On the left-hand side of Equation 12
we have the probability of escaping niche X;, on the
right-hand side of Equation 12 we have the probability
of escaping niche X;. Simple rearrangement gives

Pjibij f(x)
_ X, = pyi X 13
PijPj; ! ! f(x5) ’ (13)

where x; and x; are representatives for niches X; and
X; respectively. Now we introduce X +---+ X, = 1.
Consider the k-th niche, and express all other niches,
using Equation 13, in terms of this niche. After some
manipulation, this gives

X;

f(xk)
23:1 prif (%)’

where we define pyr = 1. This is the most general
theoretical result in this paper, and it generalizes the
niching rule of Equation 4. Notice how the transmis-
sion ratio pg; from X to X; generalizes the transmis-
sion ratio pig from Equation 10.

X, = (14)

In order to validate the theoretical developments so
far, we perform experiments in the next two sections.

5 EXPERIMENTS USING
IDEALIZED OPERATORS

The purposes of these experiments are: (i) Check that
the deterministic difference equation analysis models
the stochastic situation well; (ii) Check that the ap-
proach of picking a candidate from each niche is rea-
sonable in the analysis. In order to achieve these goals,
we use quite large population sizes in the following.

The experiments in this first section are done using
a fitness function with only ¢ discrete niches each of
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Figure 1: Predicted results (solid circles) versus exper-
imental results (open circles) for probabilistic crowd-
ing.

size one, mutation probability p; idealized as uniform
change to one of the other niches and the probabilistic
crowding acceptance rule to choose the winner.

51 TWO NICHES, SAME JUMP
PROBABILITIES

We use Equation 9, here with f(x) = 1, f(y) = 4.
This gives

and
4 (1 4 4 3
Yt) ==+ (=—=)pt == - =pt.
(t) 5+<2 5>ps 5~ 1P

We let ¢ = 2, ps = 0.8, use population size 100, and let
the GA run for 50 generations. A plot of experimental
versus predicted results for niche X is provided in Fig-
ure 1. A ‘mutation’ probability p; = 1—p, = 0.2 might
seem high, but recall that this operation gives jumps
between niches, and is not the usual bit-wise mutation.
In the figure, we notice that the experimental results
follow the prediction very well. There is some noise,
but this is as expected, since a probabilistic acceptance
rule is used.

5.2 MULTIPLE NICHES, SAME JUMP
PROBABILITIES

Consider the function f(z) = z, where x is an integer
between 1 and 8 inclusive, so ¢ = 8. Here we can use
Equation 14 with p;; = 1, giving

L f(x:)
Xi= 3:1 fas)’ (13)
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Figure 2: Predicted (solid circles) and experimental
(open circles) results for niches Xy, Xy, and Xg. Pre-
dicted is steady-state expected proportion of popula-
tion; experimental is measured proportion starting at
generation one.

with for example X7 = 1/36, X4 = 4/36, and Xg =
8/36.

A plot of experimental versus predicted results for p; =
0.8 is provided in Figure 2. A population size of n =
360 is used, and the GA is run for 50 generations. With
the proportions just mentioned for X, X4, and Xg, we
get predicted population sizes nX; = 10, nX, = 40,
and nXg = 80. Again, we notice that the empirical
results follow the predicted results very well, although
there is a certain level of noise also in this case, as
expected.

An analysis of the amount of noise can be performed
as follows. Consider the GA’s operation as n Bernoulli
trials where the probability of picking from the i-th
niche is given by Equation 15, so p; = X;. This gives
a binomial distribution, where p; = np;, 02 = np;(1 —
p;). For niche X; we get 0 & 3.1, and similarly for X4
and Xg we get 0 =~ 6.0 and 0 ~ 7.9 respectively. The
fact that the noise increases with the fitness of a niche,
as seen in Figure 2, is therefore not surprising.

6 EXPERIMENTS USING
TRADITIONAL OPERATORS

In this section, we introduce traditional mutation and
crossover operators into the probabilistic crowding ex-
periments. A population size of n = 200, and 100
generations is used. Two probabilistic crowding vari-
ants are investigated, variant M and variant M&C. For
the variant M, mutation probability 0.1 is used; for the
variant M&C, crossover probability 0.6 and mutation
probability 0.3 is used.



Interval of F1 F2
function domain P M M+C P M M-+C
0.00 — 0.04 0.00083 | 0.0027 | 0.0019 | 0.0012 | 0.0016 | 0.0019
0.04 — 0.08 0.041 0.027 | 0.032 | 0.061 0.062 0.078
0.08 —0.12 0.12 0.14 0.11 0.17 0.26 0.34
0.12—-0.16 0.041 0.021 | 0.025 | 0.061 0.055 0.047
0.16 — 0.20 0.00083 | 0.0014 | 0.0014 | 0.0012 | 0.0017 | 0.0022
0.20 — 0.24 0.00083 | 0.0011 | 0.0026 | 0.0012 | 0.0020 | 0.0023
0.24 — 0.28 0.041 0.021 | 0.024 | 0.058 0.043 0.049
0.28 — 0.32 0.12 0.16 0.17 0.16 0.23 0.19
0.32 — 0.36 0.041 0.025 | 0.029 | 0.055 0.046 0.042
0.36 — 0.40 0.00083 | 0.0019 | 0.0024 | 0.0011 | 0.0012 | 0.0019
0.40 — 0.44 0.00083 | 0.0016 | 0.0018 | 0.00097 | 0.0012 | 0.0018
0.44 —0.48 0.041 0.024 | 0.029 | 0.046 0.032 0.030
0.48 — 0.52 0.12 0.13 0.10 0.12 0.11 0.088
0.52 — 0.56 0.041 0.029 | 0.029 | 0.041 0.026 0.028
0.56 — 0.60 0.00083 | 0.0018 | 0.0017 | 0.00078 | 0.0019 | 0.0026
0.60 — 0.64 0.00083 | 0.0015 | 0.0024 | 0.00067 | 0.0016 | 0.0015
0.64 — 0.68 0.041 0.024 | 0.025 | 0.031 0.018 0.015
0.68 — 0.72 0.12 0.18 0.16 0.080 0.043 0.033
0.72 - 0.76 0.041 0.024 | 0.027 | 0.026 0.018 0.015
0.76 — 0.80 0.00083 | 0.0020 | 0.0032 | 0.00048 | 0.0010 | 0.00055
0.80 — 0.84 0.00083 | 0.0014 | 0.0030 | 0.00039 | 0.0011 | 0.0011
0.84 — 0.88 0.041 0.026 | 0.028 | 0.017 0.012 0.011
0.88 — 0.92 0.12 0.14 0.15 0.044 0.024 0.0096
0.92 — 0.96 0.041 0.027 | 0.032 | 0.014 0.0086 | 0.0066
0.96 — 1.00 0.00083 | 0.0015 | 0.0024 | 0.00025 | 0.00055 | 0.0014

Table 1: Experimental results for probabilistic crowding on the F1 and F2 functions, aggregated over all gener-
ations. The ‘P’ columns show predicted allocations, while the ‘M’ and ‘M+C’ columns show actual allocations
for probabilistic crowding with mutation only and with mutation and crossover respectively.

Table 1 shows results from the experiments. Results
are presented for the F1 and F2 test functions [Gold-
berg and Richardson, 1987], where

Fl(z) =
F2(z) =

sin®(57x)

e~2n2)(55%)° sin®(57x).

The question is whether one should focus on niche al-
location, peak allocation, or a combination of both.
The last alternative is chosen here, since the strength
of probabilistic crowding is how individuals are evenly
allocated. According to this, the functions have been
split up into 25 equally-sized intervals on the X-axis.
These intervals are presented as rows in the table. The
columns present results for test functions F1 and F2.

The main result in Table 1 is that for both F1 and
F2, the probabilistic crowding variants M and M+C
give allocation of trials close to that predicted. This
confirms that Equation 14 (and its special cases as pre-
sented) can be applied also when classical GA opera-
tors are used, at least for a certain class of fitness func-
tions. There are two qualifications here. First, note

that there is a small ‘smoothing’ effect for the intervals
of lowest fitness, for example the interval 0.00 — 0.04.
This is mostly due to allocations in early generations,
when individuals are distributed more uniformly, ac-
cording to the uniform random initialization. Second,
there is a slightly higher allocation than predicted to
intervals of high fitness, such as the intervals 0.08—0.12
and 0.28 —0.32. It is currently not clear what the rea-
son is for this slightly higher allocation.

7 CONCLUSION AND FUTURE
WORK

A novel niching algorithm, probabilistic crowding, has
been introduced.  Probabilistic crowding has been
shown theoretically as well as empirically to give reli-
able niching according to a novel, general niching rule,
a rule which generalizes the niching rule known from
previous research. The two core ideas in probabilistic
crowding are (i) to hold tournaments between similar
individuals, and (ii) to let tournaments be probabilis-
tic. These two principles leads to a niching algorithm



which is simple, predictable, and fast. Probabilistic
crowding also does not have any additional parameters
compared to classical GAs, which is often an advan-
tage. The algorithm belongs to a family of algorithms,
integrated tournament algorithms, which are also de-
fined and presented in this paper.

Future work includes the following. First, experiments
on harder fitness functions, such as complex Bayesian
networks, would be interesting. Second, the relation-
ship to Metropolis and simulated annealing could be
investigated further, in particular the use of tempera-
ture. A third issue is population sizing. Fourth, the
approach of holding a probabilistic tournament could
be extended to include the distance function and pos-
sibly also the mating step.
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