
A High-Level Certification Language
for Automatically Generated Code

Ewen Denney
RIACS / NASA Ames

M/S 269-2, Moffett Field, CA 94035, USA
edenney@email.arc.nasa.gov

Bernd Fischer
School of Electronics and Computer Science
University of Southampton, England
B.Fischer@ecs.soton.ac.uk

Abstract
Program verification using Hoare-style techniques requires many
logical annotations. We have previously shown that a generic an-
notation inference algorithm can be used to weave in all annota-
tions required to certify safety properties for automatically gener-
ated code. The algorithm is implemented as part of our AUTOCERT
system. It uses patterns to capture generator- and property-specific
code idioms and property-specific meta-program fragments to con-
struct the annotations. It is customized by specifying the code pat-
terns and integrating them with the meta-program fragments for an-
notation construction. However, the latter part has so far involved
tedious and error-prone low-level term manipulations, which has
made customization difficult.
Here, we describe an annotation schema compiler that simpli-

fies and largely automates this customization task. It takes a collec-
tion of high-level declarative annotation schemas tailored towards
a specific code generator and safety property, and generates all glue
code required for interfacing with the generic algorithm core, thus
effectively creating a customized annotation inference algorithm.
The compiler raises the level of abstraction and simplifies schema
development and maintenance. It also takes care of some more rou-
tine aspects of formulating patterns and schemas, in particular han-
dling of irrelevant program fragments and irrelevant variance in the
program structure, which reduces the size, complexity, and number
of different patterns and annotation schemas that are required. This
paper further contributes to developing a declarative and generative
approach to logical annotations. The improvements described here
make it easier and faster to customize the system to a new safety
property or a new generator. We have been able to show different
properties for a variety of programs generated by our AUTOBAYES
and AUTOFILTER generators. We have also applied AUTOCERT
to code derived from MathWorks Real-Time Workshop, and show
some initial results.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification; I.2.2 [Artificial Intelligence]: Deduc-
tion and Theorem Proving; I.2.3 [Artificial Intelligence]: Auto-
matic Programming

General Terms Algorithms, Verification

Copyright Association for Computing Machinery. ACM acknowledges that this con-
tribution was authored or co-authored by a contractor or affiliate of the U.S. Govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

Copyright c© ACM [to be supplied]. . . $5.00.

Keywords automated code generation, program verification, soft-
ware certification, Hoare calculus, logical annotations, automated
theorem proving

1. Introduction
The verification of program safety and correctness using Hoare-
style techniques requires large numbers of logical annotations
(principally loop invariants, but also pre- and post-conditions)
that must be woven into the program. These annotations consti-
tute cross-cutting concerns, which makes it hard to generate the
annotations in parallel with the code. For example, verifying even a
single array access safe may need annotations throughout the entire
program to ensure that all the information about the array and the
indexing expression that is required for the proof is available at the
access location.
In previous research [8], we have shown that for the case of cer-

tifying safety properties for automatically generated code, a gener-
ic annotation inference algorithm can be applied to weave the an-
notations into the program. The algorithm uses techniques similar
to aspect-oriented programming and exploits the idiomatic struc-
ture of automatically generated code and the relative simplicity
of safety properties. It uses patterns to capture the generator- and
property-specific code idioms and property-specific meta-program
fragments associated with these patterns to construct the annota-
tions. This allows us to handle domain-specific properties more
easily than certification approaches based on abstract interpreta-
tion. The algorithm is implemented as part of our AUTOCERT sys-
tem for the safety certification of automatically generated code. It
constructs an abstracted control-flow graph (CFG), using the pat-
terns to collapse the code idioms into single nodes. Then, it travers-
es this graph and follows all paths from use-nodes backwards to
all corresponding definitions. The algorithmic core of AUTOCERT
(i.e., CFG construction and transversal) is fully generic. It is cus-
tomized for a given code generator and safety property by specify-
ing the code patterns and integrating them with the implementation
of the meta-program fragments for annotation construction. How-
ever, while the former part can build on a clean, declarative pattern
language, the latter part has so far involved tedious and error-prone
low-level term and program manipulations. This has made it more
difficult than necessary to customize and extend our system and has
slowed down our progress.
Here, we describe an annotation schema compiler that simpli-

fies and largely automates this customization task, in continuation
of our general line of research. It takes a collection of annotation
schemas tailored towards a specific code generator and safety prop-
erty, and generates all glue code required for interfacing with the
generic algorithm core, thus effectively creating a customized an-
notation inference algorithm. The compiler allows us to represent

all the knowledge required to handle a class of specific certification
situations declaratively and in one central location (i.e., in the an-
notation schemas), which raises the level of abstraction and simpli-
fies development and maintenance. The compiler also takes care of
some more routine aspects of formulating patterns and schemas, in
particular handling of irrelevant program fragments (“junk”) and ir-
relevant variance in the program structure (e.g., the order of branch-
es in conditionals), which reduces the size, complexity, and number
of different patterns and annotation schemas that are required. Tak-
en together, the improvements described here make it easier and
faster to customize the generic annotation inference algorithm to a
new safety property or a new generator.
In this paper, we thus build on but substantially improve over

our previous work on annotation inference for automatically gen-
erated code [8]. We make new technical, empirical, and method-
ological contributions. Technically, our main contributions are the
development of the schema compiler and the implicit junk han-
dling by the compiler. Compared to [8], we have also extended the
pattern language by additional constraint operators, which makes it
more expressive and allows more context-sensitivity in the patterns,
thus minimizing reliance on the use of arbitrary meta-programming
functionality in the guards. Empirically, our main contribution here
is a significantly extended evaluation of our general annotation in-
ference approach. Based on the extensions described here, we were
able to show several safety properties (initialization-before-use, ar-
ray bounds, and matrix symmetry) for a variety of programs gener-
ated by our AUTOBAYES [12] and AUTOFILTER [31] generators.
We have also started to apply AUTOCERT to some code derived
from Real-Time Workshop, and we report on the first experiences
we have gained so far. Methodologically, this paper is a further
contribution to developing a declarative and generative approach
to logical annotations. It is also a step towards our ultimate goal,
developing a programmable certification language for automated
code generators.
The remainder of this paper is organized as follows. The next

section gives some general background on the safety certification
of automatically generated code. Section 3 then summarizes the
underlying annotation inference algorithm as far as is required here;
more details can be found in [8]. Section 4 contains a description
of the different aspects of the annotation schema compiler, while
Section 5 focuses on the practical experience we have gained so
far. The final two sections discuss related work and conclude with
an outlook on future work.

2. General Background
In this section we briefly summarize our approach to safety cer-
tification of automatically generated code. We split the certifica-
tion problem into two phases: an untrusted annotation construction
phase, and a simpler but trusted verification phase where the stan-
dard machinery of a verification condition generator (VCG) and au-
tomated theorem prover (ATP) is used to fully automatically prove
that the code satisfies the required properties. We further simpli-
fy the problem by restricting our attention to the certification of
specific safety properties, rather than arbitrary functional require-
ments. We then exploit both the highly idiomatic structure of auto-
matically generated code and the restriction to specific safety prop-
erties to automate the annotation generation as well. Since generat-
ed code only constitutes a limited subset of all possible programs,
no new “eureka” insights are required at annotation inference time.
Since safety properties are simpler than functional correctness, the
required annotations are also simpler and more regular.
Safety Certification The purpose of safety certification is to
demonstrate that a program does not violate certain conditions dur-
ing its execution. A safety property [6] is an exact characterization

of these conditions based on the operational semantics of the lan-
guage. A safety policy is a set of Hoare rules designed to show
that safe programs satisfy the safety property of interest. In this
paper, we focus on three example properties, variable initializa-
tion before use (init), array bounds (array), and matrix symmetry
(symm). init ensures that each variable or individual array element
has been explicitly assigned a value before it is used. array re-
quires each access to an array element to be within the specified
upper and lower bounds of the array. Both are typical examples
of language-specific properties, but our approach can be used with
other, domain-specific properties such as matrix symmetry as well.
symm ensures that the covariance matrices that are manipulated by
the programs generated by AUTOFILTER remain symmetric. See
[6, 7, 8] for more details and the rules of different safety policies.
VC Processing and Annotations As usual in Hoare-style veri-
fication, a VCG traverses annotated code and applies the calculus
rules of the safety policy to produce verification conditions (VCs).
These are then simplified, completed by an axiomatization of the
relevant background theory and passed to an off-the-shelf ATP. If
all VCs are proven, we can conclude that the program is safe with
respect to the safety policy, and, given the policy is sound, also the
safety property. Note that the annotations only serve as “hints” or
lemmas that must be established in their own right. Consequently,
they can remain untrusted—a wrong annotation cannot compro-
mise the assurance provided by the system.
Idiomatic Code Automated code generators derive lower-level
code from higher-level, declarative specifications, usually by com-
bining a finite number of building blocks (e.g., templates, compo-
nents, or schemas) following a finite number of combination meth-
ods (e.g., template expansion, component composition, or schema
application). This usually results in highly idiomatic code, i.e., code
that exhibits some regular structure beyond the syntax of the pro-
gramming language and that uses similar constructions for similar
problems. For example, Figure 1 shows the example of the three
matrix initialization idioms employed by AUTOFILTER and AUTO-
BAYES. The idioms are essential to our approach because they
(rather than the building blocks or combination methods) determine
the interface between the code generator and the inference algo-
rithm. For each generator and each safety property, our approach
thus requires a customization step in which the relevant idioms are
identified and formalized as patterns. This gives us two additional
benefits. First, it allows us to apply our technique to black-box gen-
erators as well. Second, it also allows us to handle optimizations:
as long as the resulting code can be described by patterns neither
the specific optimizations nor their order matter.

A[1,1]:= a1,1;
. . .

A[1,m]:= a1,m;
A[2,1]:= a2,1;
. . .

A[n,m]:= an,m;

(a)

for i:= 1 to n do
for j:= 1 to m do
B[i,j]:= b;

(b)

for i:= 1 to n do
for j:= 1 to m do
if i=j then
C[i,j]:= c

else
C[i,j]:= c′;

(c)

Figure 1. Idiomatic matrix initializations in AUTOBAYES and
AUTOFILTER

System Architecture Figure 2 shows the overall architecture of
our AUTOCERT certification system. At its core is the original (un-
modified) code generator which is complemented by the annota-
tion inference subsystem, including the pattern library and the an-
notation templates, as well as a certification subsystem, consisting
of the standard components of Hoare-style verification approach-
es, i.e., VCG, simplifier, ATP, proof checker, and domain theory.

safety
policy

model

trusted

untrusted

checker

proofs proof

certificate

rewrite
rules

axioms / lemmas

VCsVCs

domain
theory

code

simplifier

 code

 ATPVCG

code
 generator

code

CFG

CFG
builder

schema compiler

guards &
actions

schemas

patterns

annotated code

annotated code

inference
engine

proofs

annotation inference system

certification system

Figure 2. AUTOCERT system architecture

These components and their interactions are described in more de-
tail in [6, 9, 30]. As in the proof-carrying code approach [23], the ar-
chitecture distinguishes between trusted and untrusted components,
shown in Figure 2 in red (dark grey) and blue (light grey), respec-
tively. Trusted components must be correct because any errors in
them can compromise the assurance provided by the overall sys-
tem. Untrusted components, on the other hand, are not crucial to
the assurance because their results are double-checked by at least
one trusted component. In particular, the assurance provided by our
approach does not depend on the correctness of the two largest (and
most complicated) components: the original code generator, and
the ATP; instead, we need only trust the safety policy, the VCG, the
domain theory, and the proof checker. Moreover, the entire annota-
tion inference subsystem (including the pattern library and annota-
tion schemas) also remain untrusted since the resulting annotations
simply serve as lemmas for the subsequent analysis steps.

3. Annotation Inference Algorithm
The key knowledge that drives the annotation construction is the set
of idiomatic coding patterns which are used in a program. Howev-
er, we need to distinguish different classes of patterns, in particular,
definitions, uses, and barriers. Definitions describe idioms that es-
tablish the safety property of interest for a given variable, while us-
es refer to locations where the property is required. Barriers repre-
sent any statements that require annotations, i.e., principally loops.
These patterns are specific to the given safety property, but the al-
gorithm remains the same for each property. In the case of initial-
ization safety, the definitions are the different initialization blocks,
while the uses are statements which read a variable (i.e., contain
an rvar). In the case of array bounds safety, the definitions corre-
spond to fragments which set the values of array indices, while the
uses are statements which access an array variable. In both cases,
barriers are loops.
The inference algorithm itself is then based on two related key

observations. First, it is sufficient to annotate only in reverse along
all CFG-paths between uses (where the property is required) and
definitions (where it is established). Second, along each path it is

sufficient to annotate only with the definition’s post-condition, or
more precisely, the definition’s post-condition under the weakest
pre-condition transformation that is implemented in the VCG.
The top-level function of the inference algorithm builds and tra-

verses the CFG and returns the overall result by side-effects on the
underlying program P . It reduces the inference efforts by limiting
the analysis to certain program hot spots which are determined by
the so-called “hot variables” described in [8]. Note that the hot vari-
ables are computed before the graph construction (and thus before
the actual annotation phase), in order to minimize the work in the
subsequent stages. For each hot variable the algorithm then com-
putes the abstracted CFG and iterates over all paths in the CFG that
start with a hot use, before it finally constructs the annotations for
the paths.

3.1 Abstracted Control Flow Graphs
The algorithm follows the control flow paths from variable use
nodes backwards to all corresponding definitions and annotates
the barrier statements along these paths as required (see the next
two sections for details). However, it does not traverse the usual
control flow graphs but abstracted versions, in which entire code
fragments matching specific patterns are collapsed into individual
nodes. Since the patterns can be parameterized over the hot vari-
ables, separate abstracted CFGs are constructed for each given hot
variable. The construction is based on a straightforward syntax-
directed algorithm as for example described in [17].1 The only vari-
ation is that the algorithm first matches the program against the dif-
ferent patterns, and in the case of a match constructs a single node
of the class corresponding to the successful pattern, rather than us-
ing the standard construction and recursively descending into the
statements subterms.
In addition to basic-nodes representing the different statement

types of the programming language, the abstracted CFG can thus

1 Since the generators only produce well-structured programs, a syntax-
directed graph construction is sufficient. However, we could, if necessary,
replace the graph construction algorithm by a more general version that can
handle ill-structured programs with arbitrary jumps.

contain nodes of the different pattern classes. The algorithm is
based on the notions of the use- and definition-nodes and uses bar-
rier-, barrier-block- and block-nodes as optimizations. The latter
three represent code chunks that the algorithm regards as opaque (to
different degrees) because they contain no definition for the given
variable. They can therefore be treated as atomic nodes for the pur-
pose of path search, which drastically reduces the number of paths
that need be explored. barrier-nodes represent any statements that
require annotations, i.e., principally loops. They must therefore be
re-expanded and traversed during the annotation phase of the algo-
rithm. In contrast, block-nodes are completely irrelevant to the hot
variable because they neither require annotations (i.e., contain no
barriers) nor contribute to annotations (i.e., in our running example
they contain no occurrence of the hot variable in an lvar-position).
They can thus also remain atomic during the annotation phase, i.e.,
are not entered on path traversal. Blocks are typically loop-free se-
quences of assignments and (nested) conditionals. barrier-blocks
constitute a further optimization by combining the other two con-
cepts: they are essentially barriers wrapped into larger blocks.

3.2 Annotation of Paths
For each hot use of a hot variable, the path computation in the
previous section returns a list of paths to putative definitions. They
have been identified by successful matches, but without the safety
proof we cannot tell which, if any, of the definitions are relevant. In
fact, it may be that several separate definitions are needed to fully
define a variable for a single use. Consequently, all paths must be
annotated.
Paths are then annotated in two stages. First, unless it has al-

ready been done during a previous path, the definition at the end
of the path is annotated. Second, the definition’s post-condition
(which has to hold at the use location and along the path as well) is
taken as the initial annotation and propagated back along the path
from the use to the definition. Since this must take computations
and control flow into account, the current annotation is updated
as the weakest pre-condition of the previous annotation. Both the
computation of pre-conditions and the insertion of annotations are
done node by node rather than statement by statement.

3.3 Annotation of Nodes
The path traversal described above calls the actual annotation rou-
tines (whether implemented manually or generated from the anno-
tation schemas) when it needs to annotate a node. Three classes of
nodes need to be annotated: definitions, barriers, and basic nodes
which are also loops. However, the most important (and interest-
ing) class is the definitions.
The definitions comprise the core of the whole system because

their annotations (more precisely, their final post-conditions) are
used as initial values for annotation along the paths. For example,
for each of the three different initialization blocks shown in Fig-
ure 1, a separate annotation schema can be defined, which in each
case inserts a final (outer) post-condition

∀i, j · 1 ≤ i ≤ N ∧ 1 ≤ j ≤ M ⇒ xinit[i, j] = INIT

establishing that the matrix x is initialized. However, the schemas
also need to maintain the “internal” flow of information within a
definition. Hence, the schemas dealing with the situations shown in
Figure 1(b) and 1(c) also need to insert an inner post-condition, as
well as inner and outer loop invariants.
Note that even after a pattern has been successfully matched,

an annotation schema might still fail its guards. For example, the
schema handling the binary assignment idiom in Figure 1(a) simply
matches against a sequence of assignments, but requires that the
indices of the first and last assignments are the lower and upper
bound of the array, respectively.

P ::= x x ∈ X
| f(P1, . . . , Pn) f ∈ Σ
| | P? | P* | P+ | P1 ...P2

| P1 ; P2 | P1||P2 | P1 <+P2

| P1 //P2 | P1 \\ P2 | P1 ⊃ P2 | P1 ⊃/ P2 | P1 ⊂/ P2

| I

I | P ← U | P @ x

U ::= &(A {,A}) | &&(A {,A}) | 〈prim-op〉

A ::= inv F | pre F | post F F ∈ F

Figure 3. Grammar of annotated patterns

4. Annotation Schema Representation and
Compilation

An annotation schema is a declarative representation of the knowl-
edge required to handle a class of specific certification situations.
Its main components are a code pattern that describes both the
structure of the object program fragments to which the schema is
applicable and where the annotations will be added, and two lists
of run-time guards and actions that will be first executed when the
pattern is matched against the object program, and then used to
compute the actual annotations that are added. While the patterns
are formulated in the extended pattern language described in Sec-
tion 4.1, the guards and actions are simply arbitrary code fragments
in the underlying meta-programming language (in our case, Pro-
log), eliminating the need for a dedicated action language.
The annotation schema compiler takes a collection of annota-

tion schemas tailored towards a specific code generator and safety
property, and compiles it down into a customized annotation in-
ference algorithm. Since we are reusing the core annotation infer-
ence algorithm outlined above and described in more detail in [8],
which is implemented in Prolog, the output of the compiler is sim-
ply a set of Prolog clauses. Since the annotation schema compiler
is implemented in Prolog as well, annotation schemas can simply
be represented by Prolog facts or clauses, as shown for example in
Figure 4. The representation of schemas is explained in more detail
in Section 4.2 while the schema compiler itself is described in Sec-
tion 4.5. Sections 4.3 and 4.4 describe pattern pre-processing and
refinement, respectively.

4.1 Extended Pattern Language
The annotation inference algorithm uses patterns to capture the
idiomatic code structures and pattern matching to find the cor-
responding code fragments and build the CFG. The annotation
schemas use an extended version of these patterns that also pro-
vides additional operators to support the interaction with the meta-
program fragments which construct the annotations.
The pattern language is essentially a tree-based regular expres-

sion language similar to XML-based languages like XPath [2]; Fig-
ure 3 shows its grammar. The language supports matching of tree
literals f(P1, . . . Pn) over a given signature Σ, wildcards () and
the usual regular operators for optional (?), list (*) and non-empty
list (+) patterns, as well as alternation (||) and concatenation (;)
operators. ... is an ellipsis operator, which allows the concise for-
mulation of enumerations. P1 ...P2 is compiled into P1;P*;P2,
where P = lcs(P1, P2) is the least common subsumer (or anti-
unifier) of P1 and P2. This is computed by replacing any two dif-
ferent subterms at corresponding positions in the two terms by a
fresh variable. <+ is a committed choice operator, which is similar
to alternation, but tries the alternatives in a left-to-right order, and

commits to the first match, i.e., does not backtrack into the other
alternatives.
Unlike a “pure” regular expression language, our pattern lan-

guage allows us, to some limited degree, to express context depen-
dencies. This can be achieved by two different mechanisms, con-
strained patterns and pattern meta-variables. Constrained patterns
generalize the idea of lookahead that is well-known from regular
expression matching. A constrained pattern P1 opP2 consists of a
base pattern P1 that must be matched against the input, and will
eventually be returned as match result, and a constraining pattern
P2 that can rule out potential base matches, depending on the given
constraint operator op. Possible constraint operators are lookahead
(//) and its complement (\\), which only check the right siblings
of the term matched against the base pattern (i.e., work horizontal-
ly), and various forms of subterm matching, which only check its
descendants and ancestors (i.e., work vertically). Hence, P1 ⊃ P2

matches all terms that match P1 and have at last one subterm that
matches P2; similarly, P1⊃/P2 matches all terms that match P1 and
have no subterm that matches P2.2 In contrast to the inward-looking
operators ⊃ and ⊃/ , the ⊂/ -operator looks outward: P1 ⊂/P2 checks
for instances of P1 which are not within any enclosing occurrence
of P2. This has proved very useful to rule out accidental matches.
Uninstantiated pattern meta-variables match any term but, unlike
a wildcard, they then become instantiated with the matched term
and subsequently match only against further instances of the first
match. For example, the pattern ([]:=)+ matches the entire
statement list A[1]:=1;A[2]:=2;B[1]:=1 while the pattern
(x[]:=)+ matches only the two assignments to A but not the
final assignment to B, due to the instantiation of x with A.
Another extension of the pattern language describes interactions

I with the meta-program fragments constructing the actual annota-
tions. The two operators ← and @ supporting this interaction will be
stripped away before the pattern is used for matching purposes, but
they are used to compile the guards and actions of the correspond-
ing schema. The weave-operation P ←U executes an update action
U on the program fragment matched against P when the annotation
schema is applied, and thus weaves in the annotation. U can be an
arbitrary meta-program operation prim-op of type TΣ → TΣ, but
typically it just adds a list of annotations to the target fragment, and
we provide two built-in operations for this case. &(A) simply adds
the annotations A to the target fragment, while &&(A) recursively
addsA to all barriers inside the target fragment. This is mostly used
for the “junk” handling described in Section 4.3. In both cases, an-
notations are simply formulas F ∈ F , labeled with their purpose as
invariant, pre- or post-condition. The access-operator P @ x binds
the variable x to the term matched against P , so that it can be re-
ferred to in the guards and actions. This is similar to the use of
pattern meta-variables, but allows P to be further instantiated.3
The match procedure traverses terms first top-down and then

left-to-right over the direct subterms, returning as result triples
where the first two arguments are the root position and length of
the match of the top-level pattern, and the third is a substitution
with bindings for the pattern meta-variables. The meta-variables
are instantiated eagerly (i.e., as close to the root as possible) but
instantiations are undone if the enclosing pattern fails later on. List
patterns follow the usual “longest match” strategy used in tradition-
al regular expression matching. Lookahead and subterm matching
are implemented in a straightforward way, but the performance of
the pattern matcher has been sufficient so far.
The match procedure also supports a limited form of matching

modulo theory: users can specify how tree literal patterns can

2 In [8], these were denoted by P2 ∈ P1 and P2 ∈/P1, respectively.
3This feature is similar to the layered pattern matching using the as-operator
in SML.

schema(for assign
, SP
, def(A)
, (for (I := to)@ Index do

((A[*⊃/ I; I; *⊃/ I])@ AI := ⊃/ A) ← &(post PostAI)
) ← &(inv Inv, post Post)

, default
, []
, [anngen upd(SP, AI, PostAI),

anngen for(SP, AI, Index, Inv, Post)]
) :- SP=init ; SP=range().

Figure 4. Annotation schema for assign

be mapped onto terms.4 We use this to handle some irrelevant
syntactic variance in the programs, for example, to identify block
patterns of the form {*;P;*} with single statements matching
P . This feature has proved very useful, but it has to be used with
care, since the indiscriminate use of such mappings can increase
the search space for matching substantially and can also lead to
unintended matches and hence a loss of control.

4.2 Schema Representation
An annotation schema bundles together all knowledge that is re-
quired by the annotation inference algorithm to handle a class of
specific certification situations. In addition to the pattern and the
run-time guards and actions this also includes the safety policy or
policies under which the schema is applicable and the node class
that will be attached to the matched object program fragments.
Since our schema compiler is implemented in Prolog, we simply
represent schemas by Prolog facts or clauses. This allows us to use
arbitrary Prolog code as compile-time guards and actions to the
schemas and thus to further simplify their formalization. In the ex-
ample shown in Figure 4,5 we can thus use the same schema (with
appropriately parameterized actions) for two of the different safety
properties init and range (a vector satisfies range(dim(A, N)) if
all its entries are within the bounds of the N th dimension of array
A), although we concentrate on init here. The schema clauses al-
so contain some additional information that is used by the schema
compiler, namely the schema name (for reference purposes), and
the name of a pattern pre-processing predicate (here default)
which can be used to simplify the description of the patterns and
the advice. See Section 4.3 for details.
The for assign schema shown in Figure 4 is designed to an-

notate loops that initialize arrays element by element. For example,
in order to facilitate a proof that
for i := 1 to N do
a[i] := b[i];

actually initializes the array a, the schema needs to construct an
appropriate loop invariant and post-condition, resulting in the an-
notated loop
for i := 1 to N inv ∀ j · 1 ≤ j < i ⇒ ainit[j] = INIT do
a[i] := b[i];
post ainit[i] = INIT

post ∀ j · 1 ≤ j ≤ N ⇒ ainit[j] = INIT

4Our implementation is not based on full matching modulo equational
theories as for example used in Maude [4]. It is thus incomplete for certain
theories.
5Here, and in the rest of the paper, we type-set the patterns using concrete
syntax to improve the legibility of the schemas. Our implementation uses
standard Prolog terms, but supporting concrete syntax would be easy [13].

The first step in designing this schema is to specify the core
pattern that will be used to identify instances of the general loop
structure in the program. Here we are looking for single for-loops
with arbitrary lower and upper bounds, where the loop body con-
sists of an update of an arbitrary array A, in which the loop’s index
variable I is used as index. We allow additional indices left and
right of I , provided they contain no further occurrences of I (thus
restricting the schema to arrays effectively used as vectors), and
require that the right-hand side of the assignment contains no fur-
ther occurrences of the arrayA that is being initialized. This can be
expressed concisely in our pattern language:

for I := to do
A[*⊃/ I; I; *⊃/ I] := ⊃/ A

The second step is to add ←-operations to splice the constructed
annotations into the appropriate locations. As outlined above, we
need an invariant Inv and post-condition Post on the loop itself.
However, we also need to specify a post-condition PostAI on the
individual array-update, which will be used by the pattern pre-
processing described following section. This yields

(for I := to do
(A[*⊃/ I; I; *⊃/ I] := ⊃/ A) ← &(post PostAI)

) ← &(inv Inv, post Post)

The third and final step is to add the guards and the actions that
actually construct the annotations. Here, guards are not required
and the actions consists of calls to two predicates provided by
our meta-programming kernel. anngen upd and anngen for
construct the post-condition for a single array-update and the loop
invariant and post-condition, respectively. Both predicates require
access to specific parts of the actual program fragment matched
against the pattern, in particular the complete left-hand side of the
array-update. Since this is not bound by a pattern meta-variable—
note that A only contains the name of the array, not the entire
access—the pattern used in the schema contains additional vari-
ables like AI that are bound to the relevant subterms and then
used to pass them into the predicates (see Figure 4). In the above
example, we thus get the annotations PostAI ≡ ainit[i] = INIT,
Inv ≡ ∀j · 1 ≤ j < i ⇒ ainit[j] = INIT, and Post ≡ ∀j · 1 ≤ j ≤
N ⇒ ainit[j] = INIT, as expected.
The use of specialized meta-programming functionality such as

anngen upd could be considered to be somewhat non-declarative,
since it requires understanding of a potentially large and compli-
cated meta-programming kernel. However, in our opinion (and
experience), this is unavoidable to achieve genericity: unless we
severely limit the range of safety policies, we need some flexible
mechanism to construct the core annotations. The advantage of us-
ing the schema compiler is that it minimizes the user’s exposure
to this, and helps separating out the fully declarative aspects (i.e.,
the pattern) from the “less declarative” aspects (i.e., the guards and
actions). Also, since these functions encapsulate general induction
principles, very few of them are needed.

4.3 Pattern Pre-processing
Often, even auto-generated code does not exactly fit the pattern
specified in a schema, but contains additional but irrelevant “junk”
statements, i.e., statements that are irrelevant to the current hot vari-
able. Such junk can be part of the original program structure, or it
can be introduced by optimizations (e.g., loop-invariant computa-
tions that are hoisted out of an inner loop). Consider for example
the for for assign schema shown in Figure 5, which can be
used to annotate doubly nested for-loops initializing a single ma-
trix A. But this schema should also apply in situations where the
outer loop contains additional statements before or after the inner

schema(for for assign
, init
, def(A)
, (for (I := to)@ IndexI do

(for (J := to)@ IndexJ do
((A[(I;J) <+(J;I)])@ AI := ⊃/ A) ← &(post PostAI)

) ← &(inv InvJ, post PostJ)
) ← &(inv InvI, post PostI)

, default
, []
, [anngen upd(init, AI, PostAI),

anngen for(init, AI, IndexI, IndexJ,
InvI, PostI, InvJ, PostJ)]

).

Figure 5. Annotation schema for for assign

loop, and similarly for the inner loop, e.g., if, as the result of a loop
fusion, two matrices are initialized at the same time.
Extending the schema to cover these cases is a two-staged

process. First, the junk statements need to be “matched away”,
which can be achieved by adding list wildcards to the arguments
of the statement patterns. Some care must be taken to ensure that
these do not conflict with the proper pattern; we thus add additional
constraints to the list wildcards (see Figure 6). However, the junk
fragments can also contain statements that match barrier patterns
and thus require annotations as well. These fragments will not be
annotated during the CFG traversal because they have become part
of the definitions. Consequently, the junk fragments must in the
second stage be annotated by the definition schema as well.
The entire process can be automated because the annotations re-

quired for the different junk positions can be derived systematically
from the annotations given in the original pattern using the notion
of current annotation:
• On entry to a loop pattern, the current annotation is set to the
invariant attached to the loop (or to true, if no invariant is given),
and its old value is saved.

• On exit from a loop pattern, the current annotation is restored
to the saved value, and the post-condition attached to the loop
(if any) is added to it.

• For any other pattern, the attached post-condition (if any) is
added to it.

The current annotation is then used to annotate any barriers that
are contained in the junk fragments. The annotation schema com-
piler simply keeps the current annotation while it pre-processes
the patterns, and whenever it inserts a list wildcard to match junk
fragments, it also splices in a recursive update (i.e., using the &&-
operator) with the current annotation. Figure 6 shows the pattern
that results from applying this default pre-processing to the pattern
specified in Figure 5. Of course, the default can be overridden by
specifying the full pattern.
The definition of current annotations, and their use in the junk

fragments, reflects the role loop invariants play in the Hoare-
calculus. Since the loop invariant contains all information required
to prove the body, all irrelevant loops (i.e., barriers) in the body
need to maintain it, and all relevant loops (i.e., nested loops) need
to contain a complete invariant as well as a sufficient post-condition
by themselves.

4.4 Pattern Refinement
The primary declarative knowledge used to certify a class of auto-
generated programs with respect to a safety property is the set
of annotation schemas. Although schemas provide a concise and

(for (I := to)@ IndexI do {
(* ⊃/ for J := to do {

(* ⊃/ (A[(I;J) <+(J;I)] := ⊃/ A)) ;
(A[(I;J) <+(J;I)] := ⊃/ A)
*

}) ← &&(inv InvI);
(for (J := to)@ IndexJ do {
(* ⊃/ (A[(I;J) <+(J;I)] := ⊃/ A)) ← &&(inv InvI ∧ InvJ);
((A[(I;J) <+(J;I)])@ AI := ⊃/ A) ← &(post PostAI)
* ← &&(inv InvI ∧ InvJ∧PostAI)

}) ← &(inv InvJ, post PostJ)
* ← &&(inv InvI ∧PostJ)

}) ← &(inv InvI, post PostI)

Figure 6. Pre-processed version of the for for assign pattern

schema(for assign refined
,
, def(A)
, (for I := to do A[; I] := ⊃/ A) ⊂/ (for do)
, default
, []
, []
).

Figure 7. Refined annotation schema for assign refined

high-level representation of this knowledge, it is clearly desirable
to minimize the number of schemas. One approach is to make the
schemas sufficiently general so that they can handle all cases of
interest (e.g., all properties, as in Figure 4). However, not only will
it never be possible for the author of a schema to anticipate all the
cases it might be applied to, it is often not the most elegant solution
to cram excessive functionality into one schema.
Instead, we allow a simple form of schema reuse, based on

pattern refinement. The idea is that a schema should be applicable
to nodes representing code fragments which have been matched
against a pattern that is more refined than the schema’s pattern.
Suppose for an example that we want to use one schema for

two different code generators, but have additional information for
one generator about the occurrences of this pattern. Consider for
example the schema for assign shown in Figure 4, which al-
lows arbitrary dimensional arrays. Now assume we know that the
generator only generates matrix-based code (i.e., the array will be
two-dimensional), and further, that it represents vectors as matrices
of dimension 1×N (i.e., the loop index variable will only occur in
the second position), which allows us to to simplify the pattern. As-
sume further that we need to ensure that this pattern is not applied
within double-nested loops initializing “proper” matrices, requir-
ing an outside-constraint. Rather than copying and modifying the
for assign-schema, we simply define a new, skeletal schema
for assign refined (see Figure 7) that uses the refined pat-
tern, but contains no actions. This allows us to further simplify the
pattern by removing all weaving actions and access operators from
the pattern. We then use for assign refined only for CFG-
construction (where it results in the desired matches), and rely on
the unchanged for assign to construct the annotations.
Conceptually, this requires the patterns to have the same “com-

putational content”, that is, to differ only in the occurring con-
strained patterns and meta-variable instantiations. This can be for-
malized as an inductive relation over patterns, but is implemented
simply by checking that the matched term in the CFG matches the
more refined pattern.

4.5 Schema Compiler
Since we are building on an existing, large infrastructure code
base, the actual annotation schema compiler is surprisingly small—
approximately 500 lines of Prolog code. It provides two top-level
functions, corresponding to the phases (i.e., CFG construction and
traversal) of our analysis. Both functions take as input a list of anno-
tation schemas, but not necessarily the same. The first function sim-
ply pre-processes the patterns, strips away all @- and ←-operators,
and passes the result into the CFG-construction. The second func-
tion is the compiler proper. For each schema, it produces a cor-
responding annotate clause that is called from the existing in-
ference algorithm when it is trying to annotate a CFG-node (Sec-
tion 3.3). Each clause consists of five general phases: (i) check that
the program fragment corresponding to the CFG-node matches the
schema’s pre-processed pattern (this is necessary because the two
phases can use different schemas); (ii) select the program fragment
and bind the pattern’s meta-variables, including those introduced
by pre-processing; (ii) evaluate the schema’s guards, to to ensure
applicability; (iv) execute the schema’s actions, to construct the an-
notations; and finally (v) execute the update actions specified in the
pattern. This is the same structure as the manually implemented an-
notation clauses, which is hardly surprising, since both are called
in the same context. However, the schemas are significantly more
compact and on average amount to only about 35% of the man-
ual versions, and the annotation schema compiler eliminates the
tedious term-operations in steps (ii) and (v) above, which are also
a source of errors that are difficult to trace.

5. Experiences
We have evaluated the schema compiler and inference engine on
code generated by two in-house code generators, AUTOFILTER and
AUTOBAYES, as well as a COTS generator, Real-Time Workshop.
We give a more detailed evaluation for our own generators

using two series of models, orb and segm, for AUTOFILTER
and AUTOBAYES, respectively. Both generate code that is highly
numerical, using many vector and matrix operations, and with
complex control flow.

orb is an idealized model of the orbital dynamics of the Crew
Exploration Vehicle using a simple aiding sensor for position and
velocity.6 It assumes that the earth is a perfect ellipse and is for-
mulated as a two-body problem using Kepler’s Laws [27]. AUTO-
FILTER generates Kalman filter based state estimation code from
this, which estimates the state of the CEV from the sensor read-
ings. orbj2 extends orb by adding so-called J2 perturbations.
These are additional terms in the differential equations of the pro-
cess model of the vehicle dynamics which account for irregularities
in the earth’s gravitational field. orbj2bier represents the same
model but where the generator is configured to select a different
algorithm, namely the Bierman measurement update. This uses LU
matrix decomposition in order to represent matrices in a more nu-
merically stable form.

segm{1,2,3} are three different program versions generated by
AUTOBAYES from the same model, by using different initializa-
tion methods for an iterative clustering algorithm. These programs
have been applied to an image segmentation problem for planetary
nebula images taken by the Hubble Space Telescope.

6This model was developed by the first author together with Johann Schu-
mann, and is based on a model of the orbital coasting mode of the space
shuttle developed by the second author.

Spec. |P | |A | N VC Tinf TVCG Tsimp TATP

orb 326 398 2 22 2.2 0.1 3.2 24
orbj2 378 424 2 22 2.7 0.1 3.7 25
orbj2bier 447 2106 3 53 5.2 0.1 5.2 71
segm1 165 1521 3 105 4.3 0.0 4.8 88
segm2 161 1495 2 107 4.6 0.0 5.0 86
segm3 155 1512 2 107 4.5 0.0 4.8 90

Table 1. Annotation inference: results for init-property

Spec. |P | |A | N VC Tinf TVCG Tsimp TATP

orb 326 78 0 0 0.1 0.1 1.5 -
orbj2 378 96 0 0 0.2 0.1 1.7 -
orbj2bier 447 208 0 7 0.2 0.1 2.2 4.4
segm1 165 125 0 0 0.1 0.0 0.3 -
segm2 161 129 1 4 0.3 0.0 0.4 3.1
segm3 155 148 1 4 0.3 0.0 0.4 3.2

Table 2. Annotation inference: results for array-property

5.1 Initialization Safety
Table 1 shows the results of applying the inference engine for the
init-safety property to the code generated from the above models
by AUTOFILTER and AUTOBAYES.
The first two columns give the size of the generated programs

and the size of the inferred annotations, which are as large as, and
in some cases substantially larger than, the program itself. The third
column gives the number of definition patterns used to generate the
annotations for each program. This is, in contrast, quite small—in
each case here, only either 2 or 3 patterns are required to handle
the programs. This is partly because the junk mechanism allows a
single high-level pattern to capture much of the variability present
in the code, and confirms our intuition that our pattern language is
a highly concise means of encapsulating the knowledge required to
prove safety properties.
The next column gives the number of verification conditions

generated from the annotated program. The additional algorithmic
complexity for orbj2bier is reflected in a substantially larger num-
ber of VCs, although it requires only one more pattern.
The subsequent columns lists the times taken to infer the an-

notations, to apply the VCG, to simplify and to prove the VCs.
Inference time is clearly negligible in comparison to prover time,
which dominates the overall run-time. All times here are wall-clock
times in seconds, measured on an otherwise idle 2.2GHz standard
PC with 3GB RAM running Red Hat Enterprise Linux WS release
4. We used the SSCPA system [26] to run the E (version 0.99) [25]
and SPASS (version 2.2) [29] theorem provers in parallel.

5.2 Array Safety
Table 2 shows the results of applying the inference engine for the
array safety property to the same models and generator configu-
rations. This property is significantly simpler than init, and this is
reflected in both the number of definition patterns, and the number
of VCs. In fact, for most of the cases here, there are no definitions
required. This is a consequence of no uses being designated hot
[8]. There are, nevertheless, still some annotations generated (sim-
ple loop bounds which do not require patterns). In several cases,
the VCs are simplified away entirely before the prover phase.
The only cases which require definition patterns are segm2

and segm3, which make use of array indirection, and so require
annotations to give bounds on the values of matrix elements.

Spec. |P | |A | N VC Tinf TVCG Tsimp TATP

orb 326 230 2 2 1.1 0.0 53.1 38
orbj2 378 256 2 2 1.3 0.0 54.5 38

Table 3. Annotation inference: results for symm-property

5.3 Matrix Symmetry
Some of the matrices handled by the Kalman-filter algorithm rep-
resent covariance information [16] and should thus maintain their
symmetry after each update within the Kalman filter loop. This can
be formulated as a domain-specific safety property. In the corre-
sponding annotation schemas, the patterns describe the different
update steps for the covariance matrices. Formulating the schemas
was straightforward, and yielded the correct annotations at the first
attempt. However, this reused insights and code from our previous
work on generating annotations together with the code (see [7] for
details). Schema formulation “from scratch” would require some
initial domain engineering. For example, the Bierman measurement
update requires additional schemas; consequently, Table 3 contains
no entries for orbj2bier.
The inferences time are longer than for the simpler properties

but still remain small. Since there are only a few updates to the
covariance matrices, symm only induces a small number of VCs.
However, these are substantially more complicated, which is re-
flected in larger simplification and proof times. Moreover, neither
E nor SPASSwere able to cope with the large number of matrix ax-
ioms in the domain theory, so we switched to using E-Setheo [22]
as prover here.

5.4 Optimizing Generators
Since we consider the code generator as a black box, and make no
assumptions about the way the code is generated, but only rely on
its final form, our approach is also applicable to optimizing code
generators. The key step is to formulate patterns and schemas that
appropriately capture the result of applying the optimizations rather
than encoding them in our framework.
Fortunately, the existing patterns are—in combination with the

default pattern pre-processing—insensitive to many commonly ap-
plied optimizations, including common subexpression elimination,
loop hoisting, and loop fusion. Consider for example an unopti-
mized fragment on the left and assume this is optimized as shown
on the right:
for i := 1 to N do
for j := 1 toM do
a[i,j] := 1/i*i;

for i := 1 to N do
for j := 1 toM do
b[i,j] := a[i,j]+1;

for i := 1 to N do
v := 1/i*i;
for j := 1 toM do
a[i,j] := v;
b[i,j] := v+1;

In both cases, the for for assign schema is applicable. The
reason for this insensitivity is the list wildcard patterns added dur-
ing pre-processing. These absorb the code fragments introduced or
moved into a new location by the optimizations. In the unoptimized
case, each pair of loops will become a definition node for the re-
spective initialized variable (with the other pair becoming a barrier
node), and the list wildcards will be set to empty. In the optimized
case, the fused loops will become the definition for both variables,
and the list wildcards will be matched against the assignments to v
and the other array-variable. Note that this causes the program frag-
ment (i.e., the fused loop) to be annotated multiple times (with dif-
ferent annotations), but this is also possible for unoptimized code.
Other optimizations can change the program structure beyond

what can be handled by the list wildcards alone. In these cases

schema(for assign seq binary
, init
, def(A)
, (for (I := to)@ Index do

(A[(⊃/ I)@LoL; I <+I;(⊃/ I)@LoR]) := ⊃/ A
...
A[(⊃/I)@HiL; I <+I;(⊃/I)@HiR]) := ⊃/ A) ← &(post PostAI)

) ← &(inv Inv, post Post)
, default
, [nonvar(LoL), nonvar(HiL) ;

nonvar(LoR), nonvar(HiR)]
, [anngen for(init, AI,

Index, := LoL to HiL,
Inv, Post, , PostAI)]).

Figure 8. Annotation schema for assign seq binary

it is necessary to develop new annotation schemas. Consider for
example loop unrolling: assume that M = 3, and that the inner
loop is expanded to give:

for i := 1 to N do {
v := 1/i*i;
a[i,1] := v;
b[i,1] := v+1;
a[i,2] := v;
b[i,2] := v+1;
a[i,3] := v;
b[i,3] := v+1;

}

At first glance, it looks like the for assign schema (see Fig-
ure 4) would now be applicable here. However, the constraints on
the added list wildcards (see Figure 6) rule it out, which is the “right
thing” to do: with a more permissive pattern, for assign would
pick up only the first of the unrolled assignments, and would con-
sequently construct an incomplete (but correct) annotation, which
would lead to unprovable proof obligations.
A dedicated schema for this class of fragments is shown in

Figure 8. The main difference to the simple for assign schema
is that the pattern in the loop’s body now explicitly checks for
the unrolled sequence of assignments, again relying on the pre-
processing to match away any junk. Since either of the two loops
could have been unrolled, the pattern allows the remaining index
variable to occur in either position, and the schema’s guards ensure
that it occurs consistently. Note that the missing index is simply
constructed “on-the-fly” from the lower and upper array indices,
using a fresh Prolog variable as index variable

5.5 Real-Time Workshop
In a separate project, we have begun to apply the AUTOCERT tech-
nology to Real-Time Workshop (RTW) [1]. RTW is a commercial
off-the-shelf system that generates C code from Simulink models.
This is ongoing work at an early stage; since the integration infras-
tructure is not complete, we need to simplify and manually translate
the RTW output into the internal representation used by AUTO-
CERT. However, our initial experience is encouraging.
Here, we concentrate on init-safety. We have analyzed a small

program corpus from an independent NASA project and found the
expected regularity in the code structure. Moreover, within this
corpus, most idioms were already covered by patterns originally
developed for AUTOFILTER and AUTOBAYES, and we only had to
formulate two new patterns. The first of these patterns handles a
straightforward combination of the idioms shown in Figures 1(a)

and (b) (i.e., a for-loop followed by a sequence of assignments),
while the second is more interesting. It handles situations like
for i := 1 to N do a[i] := b[i];
for i := 1 to N do a[i+N] := c[i];

where different arrays are copied into into different segments of the
same target array.

6. Related Work
Annotation inference, or invariant generation, is an active research
area. Approaches use both static and dynamic program analysis
methods, and can further be distinguished according to the cate-
gory of the inferred annotations: we can contrast type annotations,
where properties are checked by special type systems, with logi-
cal annotations, which are usually processed by a VCG and then a
general-purpose theorem prover. Our work is in the latter category.
Early approaches [10, 18, 28] are based on predicate propaga-

tion and use inference rules similar to a strongest postcondition cal-
culus to push an initial logical annotation forward through the pro-
gram. Loops are handled by a combination of different heuristics
until a fixpoint is achieved. However, these methods still need an
initial annotation, and unlike our approach, the loop handling still
induces a search space at inference time. Moreover, the construct-
ed annotations are often only candidate invariants and need to be
validated (or refuted) during inference, because they increase the
search space.
Kovács and Jebelean [19] use techniques from algebraic com-

binatorics and polynomial algebra to compute polynomial relations
between variables that are assigned to within loops. These relations
are then turned into annotations and supplied to a VCG. The aim
is to characterize the behavior of loop variables in order to prove
the functional correctness of numeric procedures. They are able to
precisely characterize the class of loops for which they can infer
annotations, although users must manually add any non-algebraic
assertions (e.g., inequalities) which are required. Abstract interpre-
tation has also been used to infer annotations in separation logic
for pointer programs [20] although the techniques required there
are fairly specialized and elaborate compared to our patterns.
AOP is usually concerned with dynamic properties of programs

but [21] gives a language, inspired by description logic, for de-
scribing static properties of programs. Their pattern language has
some similarities to ours, but is used to define pointcuts that match
against violations of design rules, and the advice is simply the cor-
responding error message. Since they are concerned with localizing
errors, there is no need to infer annotations or propagate informa-
tion throughout the program. Our pattern language also captures
static properties but, in contrast, is essentially used to match against
fragments which establish the specified property.
Chin et al. [3] observe that the need for type annotations can also

be a significant burden for the use of type-based safety frameworks.
They give a type system for an OO kernel language which enforces
safety properties via annotations. The properties are defined for
objects given as ADTs (e.g., sparse array, bounded buffer) supplied
with appropriate annotations (size invariants and pre-conditions),
which must, however, be written manually.
Deputy [5] is a dependent type system for C which can be in-

stantiated by type constructors used to express safety properties of
mutable data structures. Programs are annotated with programmer
supplied type annotations, which are extended with automatically
inferred derived information. The type inference is implemented as
a program transformation which inserts run-time checks that the
properties expressed by the annotated types are preserved. A sub-
sequent analysis phase can omit some of these checks.
In generate-and-test methods the generator phase uses a fixed

pattern catalogue to construct candidate annotations while the test

phase tries to validate (or refute) them, using dynamic or static
methods. Daikon [11] is a dynamic annotation inference tool. Its
tester accepts all candidates that hold without falsification but with
a sufficient degree of support over the test suite. In order to ver-
ify the candidates, Daikon has also been combined [24] with the
ESC/Java static checker [15]. However, like all dynamic annota-
tion generation techniques, it remain incomplete because they rely
on a test suite to generate the candidates and can thus miss anno-
tations on paths that are not executed often enough. Houdini [14]
is a static generate-and-test tool that uses ESC/Java to statically re-
fute invalid candidates. Houdini starts with a candidate set for the
entire program and then iterates until a fixpoint is reached. This in-
creases the computational effort required, and in order to keep the
approach tractable, the pattern catalogue is deliberately kept small.
Hence, Houdini is incomplete, and acts more as a debugging tool
than as a certification tool.

7. Conclusions and Future Work
We have presented a declarative annotation schema language and a
schema compiler which, together with a generic annotation infer-
ence engine, forms the AUTOCERT system, which is able to auto-
matically certify a wide range of auto-generated programs with re-
spect to various safety properties—in fact, almost the entire range
of models and configurations (i.e., algorithmic variants and opti-
mizations) for AUTOBAYES and AUTOFILTER. This continues the
work begun in [8] and represents a significant advance in both pow-
er and expressivity of the technique.
By raising the level of abstraction at which annotation knowl-

edge is expressed, we are able to concisely capture many variations
of the underlying code idioms. In particular, we can easily deal with
optimizations which obscure low-level code structure. In this vein,
we plan to extend the framework with pattern isomorphisms. This
will complement the current use of the simple theory matching and
will lead to simpler patterns and less schemas. Indeed, there are
other forms of guidance which are naturally expressed in a similar-
ly declarative fashion, and we view schemas as a first step towards
a fully programmable certification language.
We are currently extending AUTOCERT with more domain-

specific policies. We are also scaling up the system to the inter-
procedural level. This requires not only rather straightforward ex-
tensions in the VCG, but also interface specifications to record safe-
ty assumptions about procedure parameters. We expect inference
times to increase, but there are numerous optimizations in the core
inference engine that we expect will keep the approach practically
viable. Finally, we continue to work on an adaptation to the Real-
Time Workshop [1] code generator. Initial results are encouraging.

References
[1] www.mathworks.com/products/rtw/
[2] XML Path Language (XPath) Version 1.0, 1999.

http://www.w3.org/TR/xpath.
[3] W.-N. Chin et al. Verifying Safety Policies with Size Properties and
Alias Controls. In ICSE’05, pp. 186–195. ACM Press, 2005.

[4] M. Clavel et al. The Maude system. In RTA-10, LNCS 1631, pp.
240–243. Springer, 1999.

[5] J. Condit et al. Dependent Types for Low-Level Programming. In
ESOP’07, pp. 520–535. Springer, 2007.

[6] E. Denney and B. Fischer. Correctness of source-level safety policies.
In FM’03, LNCS 2805, pp. 894–913. Springer, 2003.

[7] E. Denney and B. Fischer. Certifiable program generation. In
GPCE’05, LNCS 3676, pp. 17–28. Springer, 2005.

[8] E. Denney and B. Fischer. A generic annotation inference algorithm
for the safety certification of automatically generated code. In

GPCE’06, pp. 121–130. ACM Press, 2006.
[9] E. Denney, B. Fischer, and J. Schumann. An empirical evaluation
of automated theorem provers in software certification. Intl. J. of AI
Tools, 15(1):81–107, 2006.

[10] N. Dershowitz and Z. Manna. Inference rules for program annotation.
ICSE-3, pp. 158–167. IEEE Press, 1978.

[11] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution.
IEEE TSE, 27(2):1–25, 2001.

[12] B. Fischer and J. Schumann. AutoBayes: A system for generating
data analysis programs from statistical models. J. Functional
Programming, 13(3):483–508, 2003.

[13] B. Fischer and E. Visser. Retrofitting the AutoBayes program
synthesis system with concrete syntax. In C. Lengauer, D. Batory,
C. Consel, and M. Odersky, editors, Domain-Specifi c Program
Generation, LNCS 3016, pages 239–253. Springer, 2004.

[14] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for
ESC/Java. In FME’01, LNCS 2021, pp. 500–517. Springer, 2001.

[15] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In PLDI’02, pp.
234–245. ACM Press, 2002.

[16] M. S. Grewal and A. P. Andrews. Kalman Filtering: Theory and
Practice Using MATLAB. Wiley Interscience, 2001. 2nd edition.

[17] M.J. Harrold and G. Rothermel. Syntax-directed construction of
program dependence graphs. Technical Report OSU-CISRC-5/96-
TR32, The Ohio State University, 1996.

[18] S. Katz and Z. Manna. Logical analysis of programs. CACM,
19(4):188–206, 1976.

[19] L. Kovács and T. Jebelean. Finding Polynomial Invariants for
Imperative Loops in the Theorema System. In Proc. IJCAR’06
Workshop Verify’06, pp. 52–67, 2006.

[20] O. Lee, H. Yang, and K. Yi. Automatic Verification of Pointer
Programs Using Grammar-Based Shape Analysis. In ESOP’05,
LNCS 3444, pp. 124–240. Springer, 2005.

[21] C. Morgan, K. De Volder, and E. Wohlstadter. A Static Aspect
Language for Checking Design Rules. In AOSD ’07, pp. 63–72.
ACM Press, 2007.

[22] M. Moser et al. The Model Elimination Provers SETHEO and E-
SETHEO, J. Automated Reasoning, 18(1997) 237–246.

[23] G. C. Necula. Proof-carrying code. In POPL-24, pp. 106–19. ACM
Press, 1997.

[24] J. W. Nimmer and M. D. Ernst. Static verification of dynamically
detected invariants: Integrating Daikon and ESC/Java. In First
Workshop on Runtime Verif ication, Elec. Notes in Theoretical
Computer Science, 55(2). Elsevier, 2001.

[25] S. Schulz. E – A Brainiac Theorem Prover. J. AI Communications,
15(2/3):111–126, 2002.

[26] G. Sutcliffe and D. Seyfang. Smart selective competition parallelism
ATP. In FLAIRS’99, pp. 341–345. AAAI Press, 1999.

[27] D. A. Vallado. Fundamentals of Astrodynamics and Applications.
Space Technology Library. Microcosm Press and Kluwer Academic
Publishers, second edition, 2001.

[28] B. Wegbreit. The synthesis of loop predicates. CACM, 17(2):102–
112, 1974.

[29] C. Weidenbach et al. SPASS Version 2.0. In Proc. 18th CADE, LNAI
2392, pp. 275–279. Springer, 2002.

[30] M. Whalen, J. Schumann, and B. Fischer. Synthesizing certified code.
In FME’02, LNCS 2391, pp. 431–450. Springer, 2002.

[31] J. Whittle and J. Schumann. Automating the implementation of
Kalman filter algorithms. ACM Trans. Mathematical Software,
30(4):434–453, 2004.

